Supplement to: Decision Fusion from Heterogeneous Sensors in Surveillance Sensor Systems

Elif I. Gokce, Abhishek K. Shrivastava, Jung Jin Cho, and Yu Ding, Member, IEEE

I. ADDITIONAL RESULTS

All the comparison results mentioned in the published article are included in Figs. 1-4. Figs. 1 and 2 illustrate the results for the first cost scenario $c_m = 100c_f$, using FAP = MDP/100 and FAP = MDP, respectively. Figs. 3 and 4 illustrate the misclassification rate of each decision rule (i.e., $c_m = c_f$), using FAP = MDP/100 and FAP = MDP, respectively. In order to make the illustration clearer, Figs. 3(b) and 4(b) zoom into the bottom region of Figs. 3(a) and 4(a), respectively, after removing the curve corresponding to the 1-out-of-*n* rule, which has much larger misclassification rate (due to a significantly large false alarm rate) than the others. Please note that Figs. 2 and 3(b) appear in the published article as Figs. 4 and 5, respectively.

This work was supported in part by the National Science Foundation under Grants CMMI-0529026 and CMMI-0727305.

E. I. Gokce is with Columbus Radiology Corporation, Columbus, OH 43215 USA, email: elifilke@gmail.com. A. K. Shrivastava is with the Department of Manufacturing Engineering and Engineering Managament, City University of Hong Kong, Kowloon, Hong Kong, e-mail: Abhishek.Shrivastava@cityu.edu.hk. J.J. Cho is with Baker Hughes Inc., Houston, TX 77019-2118 USA, e-mail: cho.jungjin@gmail.com. Y. Ding is with the Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas 77843-3131 USA, email: yuding@iemail.tamu.edu.

Fig. 1. $FAP = MDP/100, c_m = 100c_f$

Fig. 2. FAP = MDP, $c_m = 100c_f$

(b)

Fig. 3. $FAP = MDP/100, c_m = c_f$

II. PROOFS OF THEOREMS

A. Proof of Theorem 1

Let

$$\hat{c}_j^f(\mathbf{y}_j) = c_j^f P(\mathbf{Y}_j = \mathbf{y}_j | U_j = 0) P(U_j = 0)$$

and

$$\hat{c}_j^m(\mathbf{y}_j) = c_j^m P(\mathbf{Y}_j = \mathbf{y}_j | U_j = 1) P(U_j = 1)$$

Since outputs \mathbf{y}_j are mutually exclusive, (3) is

$$C_j^* = \sum_{\mathbf{y}_j \in \{0,1\}^{n_j}} f(\mathbf{y}_j)$$

where

$$f(\mathbf{y}_j) = \min\{\hat{c}_j^f(\mathbf{y}_j)x(\mathbf{y}_j) + \hat{c}_j^m(\mathbf{y}_j)(1 - x(\mathbf{y}_j)) \mid x(\mathbf{y}_j) \in \{0, 1\}\}.$$
 (1)

For each $\mathbf{y}_j \in \{0,1\}^{n_j}$, an optimal solution to (1) is given by

$$x^*(\mathbf{y}_j) = \begin{cases} 1 & \text{if } \hat{c}_j^m(\mathbf{y}_j) \ge \hat{c}_j^f(\mathbf{y}_j) \\ 0 & \text{otherwise,} \end{cases}$$

establishing (4).

B. Proof of Lemma 1

Lemma 1 follows because

$$\begin{split} T(\mathbf{y}_{j}) &= \prod_{i \in I_{j} \setminus S(\mathbf{y}_{j})} \frac{P(Y_{ij} = y_{ij}^{*} | U_{j} = 1)}{P(Y_{ij} = y_{ij}^{*} | U_{j} = 0)} \prod_{i \in S(\mathbf{y}_{j})} \frac{P(Y_{ij} = 1 - y_{ij}^{*} | U_{j} = 1)}{P(Y_{ij} = 1 - y_{ij}^{*} | U_{j} = 0)} \\ &= \prod_{i \in I_{j}} \frac{P(Y_{ij} = y_{ij}^{*} | U_{j} = 1)}{P(Y_{ij} = y_{ij}^{*} | U_{j} = 0)} \prod_{i \in S(\mathbf{y}_{j})} \frac{P(Y_{ij} = y_{ij}^{*} | U_{j} = 0)}{P(Y_{ij} = y_{ij}^{*} | U_{j} = 1)} \frac{P(Y_{ij} = y_{ij}^{*} | U_{j} = 1)}{P(Y_{ij} = 1 - y_{ij}^{*} | U_{j} = 0)} \\ &= T_{max} \prod_{i \in S(\mathbf{y}_{j})} \frac{P(Y_{ij} = y_{ij}^{*} | U_{j} = 0)}{P(Y_{ij} = y_{ij}^{*} | U_{j} = 1)} \frac{P(Y_{ij} = 1 - y_{ij}^{*} | U_{j} = 1)}{P(Y_{ij} = 1 - y_{ij}^{*} | U_{j} = 0)} \\ &= T_{max} \prod_{i \in S(\mathbf{y}_{j})} \frac{1}{\delta_{i}} \end{split}$$

Fig. 4. $FAP = MDP, c_m = c_f$