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This article presents a Bayesian hierarchical model to combine misaligned two-resolution metrology data for inspecting the geometric
quality of manufactured parts. High-resolution data points are scarce and scatter over the surface being measured, while low-resolution
data are pervasive but less accurate and less precise. Combining the two datasets should produce better predictions than using a single
dataset. One challenge in combining them is the misalignment existing between data from different resolutions. This article attempts
to address this issue and make improved predictions. The proposed method improves on the methods of using a single dataset or
a combined prediction that does not address the misalignment problem. Improvements of 24% to 74% are demonstrated both for
simulated data of circles and datasets obtained for a milled sinewave surface measured by two coordinate measuring machines of
different resolutions.
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1. Introduction

To ensure dimensional quality of manufactured products, a
crucial step is to take metrology data (i.e., coordinate mea-
surements) of the geometric features and then check their
compliance with tolerance specifications. Traditionally, a
Coordinate Measuring Machine (CMM) with a mechani-
cal touch probe is used (Fig. 1(a)), due to its accuracy and
versatility in measuring complicated geometries. Recently,
a CMM with an optical/laser sensor probe (hereafter re-
ferred to as an OCMM, Fig. 1(b)) has been introduced into
industry practice as a complement, sometimes a replace-
ment, of the traditional CMM. An OCMM takes measure-
ments by forming an image consisting of the laser light
reflected from the part’s surface.

The resolution of an OCMM is typically much lower
than that of a CMM. By resolution, we refer to the small-
est spatial distance that a measuring device can distin-
guish. A high-resolution device can distinguish two closely
positioned points and pick up fine spatial features on a
product surface. It therefore attains greater accuracy (i.e.,
smaller bias) and better precision (i.e., smaller variability)
in its measurements than its low-resolution counterpart.
According to Shen et al. (2000), a CMM can have a reso-
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lution as fine as 0.5 µm, whereas an OCMM typically has
a resolution on the order of 10 µm. Even though the high-
resolution CMM is capable of measuring surfaces at much
finer scales, doing so is very time consuming. A common
practice is to take measurements of a few locations scattered
over the product surface. On the other hand, the OCMM
can scan the entire surface of a product much faster than a
mechanical CMM, but each measurement is of a lower res-
olution (i.e., higher inaccuracy and uncertainty). As such,
when both metrology devices are used, one would have a
large set of low-resolution data and a much smaller set of
high-resolution data. The scattered points (dark) and the
densely arranged points (gray) in Fig. 1 illustrate the two-
resolution metrology data.

The datasets of different resolutions complement each
other in terms of the information needed to predict the co-
ordinates of unmeasured locations and to reconstruct the
product surface. The low-resolution data points capture
the local and global shape of the product surface nicely
because of its high measurement density, but the mea-
surements themselves are not accurate, whereas the high-
resolution points, due to their scarcity, may not capture the
product shape, but each measurement reflects the true yet
unknown surface much better. An integrated analysis com-
bining the information from multi-resolution data sources
should be able to produce better predictions than merely
using a single-resolution dataset.

0740-817X C© 2011 “IIE”
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Fig. 1. Two-resolution data from a CMM using a touch probe and laser scanner.

A unique challenge in combining data for the metrol-
ogy application is the misalignment existing between the
data points of different resolutions. The input, denoted by
x in this article, cannot provide a unique reference in the
metrology application to the physical point where the mea-
surement is taken. For example, the same x = (1.0, 1.0, 1.0)
in two respective datasets could correspond to two com-
pletely different points on the actual part. On the other
hand, the same physical point could have two drastically
different input x values in the two datasets; e.g., in one
set, it is x = (0.0, 0.0, 2.0), while in the other set, it is
x = (10.0, 0.0, 0.0). This misalignment happens when two
metrology devices measure the same part but the data are
not collected with respect to a common coordinate system.
Moreover, the part may undergo a rotation between the two
measuring tasks and thus have different orientations while
being positioned. Even if the part is measured on a single
measuring platform carrying both a touch probe and a laser
probe, independent calibration is needed for each probe
and the coordinates of measured points are contaminated
by measurement noise, still resulting in misalignment be-
tween the datasets. This misalignment between the datasets
makes it difficult to decide how the data points correspond
to each other. Our research attempts to develop a method
capable of handling the misaligned metrology datasets and
making sound predictions of the product surface.

This article is structured as follows. Section 2 reviews the
existing work relevant to combining data from different
resolutions. Section 3 presents the important components
in the proposed Bayesian hierarchical model, including the
low-resolution model, the linkage model that connects the

low- and high-resolution data, and the approach to han-
dle the misalignment problem. Section 4 demonstrates the
advantages of the proposed method over three alternative
methods. Section 5 summarizes the article and discusses
future research.

2. Related work

Using multiple-resolution metrology devices is a rela-
tively new idea. Thus, research on combining the multi-
ple datasets of different resolutions is rather limited. There
have been reports of CMMs carrying multiple types of
sensors (Chen and Lin, 1997; Motavalli et al., 1998; Shen
et al., 2000; Carbone et al., 2001), which typically include
a mechanical touch probe and a vision system. A vision
system has a much lower degree of resolution (between 100
and 200 µm, according to Shen et al. (2000)), which is close
to, or sometimes larger than, the magnitude of manufac-
turing errors. On the other hand, a vision system is highly
efficient in capturing the global picture of the object under
measurement. Thus, the goal of having both the mechani-
cal probe and the vision system is as follows: use the vision
system to locate the object and generate a rough product
contour and then establish a sampling plan based on the
product contour so that the touch probe can measure the
product with little human guidance or intervention. The in-
formation from different sources is used sequentially. When
predicting the product surface for quality assurance, only
the high-resolution measurements (from the mechanical
probe) are used. The objective of this line of research is to

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
x
a
s
 
A
&
M
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
8
:
2
4
 
2
8
 
M
a
r
c
h
 
2
0
1
1



244 Xia et al.

improve the efficiency of a measurement procedure. Our
research focuses on combining information from different
sources for better predictions.

Sophisticated methodologies have been developed for the
problem of synthesizing spatial data collected at different
scales and resolutions (Gotway and Young, 2002; Ferreira
et al., 2005; Wikle and Berliner, 2005), of calibrating (deter-
ministic) computer simulation models of different accura-
cies, and of calibrating computer simulations with physical
measurements (Kennedy and O’Hagan, 2000, 2001; Hig-
don et al., 2004; Reese et al., 2004; Qian et al., 2006; Qian
and Wu, 2008). One popular approach is to establish a
single-resolution data model (typically for low-resolution
or low-accuracy data) and a linkage model linking data
from different resolutions. The linkage model assumes that
each high-resolution response can be predicted by the cor-
responding low-resolution one with a scale change and a
location shift.

The misalignment problem as described in Section 1 is
not a major concern in computer experiments. Although
computer simulation codes can be run at varying accuracy,
the input x values are always precisely designed, and they
are used as the unique reference to a response, so that the
corresponding relationship of responses can be easily iden-
tified across different resolutions. The misalignment prob-
lem is not discussed in the problems of synthesizing spatial
data either, because the inputs for those problems are ge-
ographic locations, the measurements of which, although
contaminated by noise, are at least one order of magnitude
more accurate than that of a spatial response. As a result,
it is reasonable to assume that the inputs in spatial prob-
lems are also precisely known, the same as in the computer
experiments.

In the literature, the majority of the matching and align-
ment methods were developed for image analysis and regis-
tration applications. Brown (1992) and Zitova and Flusser
(2003) offered a comprehensive review of the methods in
image registration. Matching two objects or images refers
to finding correspondences between points or features of
one object and those of the other, which is also called
labeling. After establishing the correspondences between
two datasets, one can mark the matching relationship be-
tween them as labels. The data then become labeled points.
Given labeled points, the subsequent step is to estimate the
transformation model to bring the two objects or images
together. Statistical shape analysis (for example, Dryden
and Mardia (1998)) provides sophisticated methodologies
that address the problem of estimating the transformation
model and assessing the shape differences between different
images, based on labeled points.

The problem of matching the metrology data points is
to match unlabeled points. To find the matching correspon-
dence of two sets of unlabeled data points, there are two
major approaches in the image registration literature. One
relies on the feature properties associated with a point or a
graphic pattern formed by a set of points. For example, Ton

and Jain (1989) and Zitova and Flusser (2003) used cur-
vatures calculated to match two sets of points. Cheeseman
et al. (1996) have a different research objective but several
pieces of their method do share commonality with ours,
especially the registration part and the initial composite
using a compositing kernel (their Section 4.3). However,
their method uses images that are all taken from roughly
the same direction and, as a result, the alignment portion
is not particularly challenging; thus, their procedure fo-
cuses on the estimation of the transformation parameters
between the images.

In our metrology application, the high-resolution data
points are scarce due to time and cost constraints. There-
fore, it may not be possible to obtain a sufficient amount of
feature properties for matching. In any case, graphic pat-
terns obtained by using the scarce high-resolution data are
different from those using the dense low-resolution data. It
again makes the subsequent matching difficult. The high-
resolution points function more like a set of anchor points,
and their contribution in the prediction is to help calibrate
the shape-revealing low-resolution points with the under-
lying true surface.

The other approach of point matching is based on the in-
variance property of inter-point distances. The underlying
principle is that using either dataset, the relative distance
between the same two points should be approximately the
same (Ranade and Rosenfeld, 1980; Ton and Jain, 1989).
The distance-based approach is applicable to the metrology
application since the distances measured at different reso-
lutions differ from one another only by a small amount
caused by the measurement errors. Thus, we will later uti-
lize the distance-based approach to assist our matching
effort.

3. Bayesian hierarchical model

We devise a hierarchical predictive model as such: at the
lower level, a Gaussian Process (GP) model developed by
Xia et al. (2008) is used for representing the low-resolution
data; at the upper level, a neighborhood linkage model is
established to link each high-resolution output as a ker-
nel regression of all the low-resolution information in its
neighborhood. Different from the linkage models used in
the computer experiments, our model extends their one-to-
one linkage to a one-to-many linkage. The reason we make
this extension is that despite the alignment efforts, there is
no guarantee of finding the perfect match when distortion
is present (Ton and Jain, 1989; Mitra and Murthy, 1991).

Our linkage model is conditioned on a matching scheme
found between the two-resolution datasets. In order to find
the matching schemes, we devise a heuristic matching al-
gorithm based on the invariance property of inter-point
distance, as mentioned in Section 2. This algorithm can
produce multiple probable match candidates. Conditioned
on each of them, the hierarchical predictive model can make
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Gaussian process model for
low-resolution data (Section 3.1)

Neighborhood linkage model to link
high-resolution to low-resolution data

(Section 3.3)

Bayesian model averaging

Domain
knowledge

Prior
distributions
(Section 3.4)

Posterior estimation of model parameters
(Section 3.5)

Posterior prediction for product surface
(Section 3.5)

pool of candidate matches

Heuristic method to find good
initial matches (Section 3.2.1)

Matching and Alignment

Optimzation routine to find the
corresponding best transformations

(Section 3.2.2)

Fig. 2. Overall framework of the proposed Bayesian hierarchical model.

a prediction of the part’s surface. The final prediction is a
weighted average of the individual predictions over the pool
of all the match candidates. The weights are assigned ac-
cording to how well the observed data support each match.
Figure 2 summarizes the overall framework of the proposed
method.

In the following sections, we will first discuss individ-
ual model components in Sections 3.1 to 3.4, i.e., the
low-resolution model, the alignment procedure, the link-
age model, and the choices of the prior, respectively. Then,
we will explain in Section 3.5 how these individual compo-
nents are incorporated into a Bayesian framework to make
the final prediction.

3.1. Low-resolution data model

Xia et al. (2008) presented a GP model for single-resolution
data of a manufactured part. This GP model is adopted for
the low-resolution data in this article.

To explain how the coordinate measurements of a man-
ufactured product are taken, consider the two-dimensional
circular-shaped part in Fig. 3. The spatial coordinate used
by a metrology device is denoted by (u, v, w). We avoid
using (x, y, z) as the coordinate variables because those
symbols will be used in the model for different meanings. A
metrology device is usually controlled by a computer. The

device takes an input location through the computer inter-
face from an operator, denoted by xi = (ui , vi , wi )T; then
it directs its touch probe or laser beam to travel in a certain
direction, denoted by pi , to the object under measurement;
finally, it retrieves the coordinate information, denoted by
ai . The directional vector pi , associated with each measure-
ment taken, is either specified by the operator or calculated
automatically by the computer.

Additional complexities are involved due to manufactur-
ing errors and soft-fixturing process. Figure 3 shows three
contours of a round part, of which the solid line repre-
sents the actual part surface, and the other two contours
are explained in the following paragraphs. Before a metrol-
ogy device performs the actual measuring task, it will first
undergo a soft-fixturing process (Hulting, 1995), which is
that the machine takes a few measurements from the actual
surface and uses them to estimate where the part is located.
Since the actual dimension and shape of the part are un-
known initially, the measurement machine must decide the
location of the part assuming that the part has the perfect
design form and design dimensions; e.g., a perfectly round
circle for the example in Fig. 3 with the design value r0 as
its radius. Then, the machine translates its origin (0, 0) to
the center of the part. As such, the machine establishes a
known geometry, e.g., the circle centered at (0, 0) with ra-
dius r0 in Fig. 3, to serve as the reference for the subsequent
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ai

v-axis

f(xi,β)

r

(u1,v1)
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τ
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u-axis

Actual surface

Nominal geometry

Dashed-line geometry (shifted nominal geometry with
radius change)

CMM probe or laser beam

CMM coordinate axis

Fig. 3. Illustration of the coordinate measuring process.

measuring process. It is denoted by the dotted line and is
often called the nominal geometry. When the metrology de-
vice takes an input position xi , it considers this point to
be on the nominal geometry. After the measuring action
takes place, the response that a machine returns, ai , is on
the actual surface, by which a laser beam is reflected or a
probe is stopped.

The response ai is typically a vector, for example, for a
three-dimensional feature, ai = (aui , avi , awi )

T. Using it as
the response leads to a multivariate GP model. To simplify
the response, researchers (Hulting, 1997; Xia et al., 2008)
chose to project the value of ai (after the alignment in
Section 3.2) onto the measuring direction pi . The resulting
response y(xi ) ≡ aT

i pi is a scalar function of xi .
Xia et al. (2008) used a GP model for the single-

resolution data with the form of

yl (xi ) = ηl (xi ) + εl , i = 1, . . . , ml . (1)

Here a subscript l is associated with each term because
the model is used for the low-resolution data, although the
same model can be used for the high-resolution data as
well. In Equation (1), yl (xi ) is the i th low-resolution obser-
vation, ml is the number of low-resolution observations, εl
is the random error, dominated by measurement noises and
modeled as being independent and identically distributed
(i.i.d.) N(0, σ 2

l ), and ηl (·) is the low-resolution version of
the actual surface. Please note that ηl (·) is not exactly the
true surface because being in a low resolution, the mea-
surements provide a “blurred” view, rather than a sharp
reflection, of the actual surface.

The low-resolution surface ηl (·) is modeled as a Gaussian
process with the i th mean component being f(xi ,βl )

Tpi and
the covariance function cov(ηl (xi ), ηl (x j )) = κ2

l R(xi , x j ),
where κ2

l and R(xi , x j ) are the variance and the correla-

tion function, respectively. Here f(·,βl ) is another imagi-
nary geometry, illustrated by the dashed line in Fig. 3. For
convenience, we will refer to it as the dashed-line geometry
later. This geometry is different from the nominal geome-
try (the dotted line) by a possible dimension difference and
a location difference. The dashed-line geometry incorpo-
rates the dimension errors of the manufactured part. For
the round part, r is the actual radius of the part and can
be different from the design radius r0. The differences be-
tween the solid-line surface and the dashed-line geometry
are the form or geometric errors of manufacturing. Figure 4
summarizes the three types of errors.

Figure 3 exaggerates the differences for the purpose of
illustration. Typically, the actual solid-line surface closely
follows the dashed-line geometry and the differences are no
more than a few hundreds of micrometers. The closeness
between the dashed-line geometry and the actual surface
motivates the selection of f(·,βl ) as the mean component
for the GP model. The function format of f(·,βl ) is known
from the design process of the part. Thus, the dashed-
line geometry is simply parameterized by βl , including the
dimension and location parameters. For the round part
example in Fig. 3, βl = (r, u1, v1), where (u1, v1) are the
coordinates of the part’s center. Naturally, f(xi ,βl ) repre-
sents the point on the dashed-line geometry corresponding
to xi on the nominal geometry. A three-step procedure to
compute the f(xi ,βl ) for a general geometry can be found
in Xia et al. (2008).

The correlation function R(xi , x j ) is modeled as a prod-
uct of Gaussian correlation functions (Santner et al., 2003)

R(xi , x j ) =
d∏

k=1

exp{−νk(xki − xkj )2}, (2)
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Differences between nominal geometry (dotted-line
geometry) and actual part (solid-line geometry)

Location error: the difference be-
tween the locations of the actual
part and the nominal part, e.g., the
difference between (u1,v1) and (0, 0)
in Fig. 3

Dimension error: the difference be-
tween the dimensional size of the ac-
tual part and the design dimension
size, e.g., the difference between the
radius r0 and r in Fig. 3

Form error: the difference between
actual part and the design geometry
form, e.g., the difference between the
acutal part (solid-line) from a per-
fect circle (dashed-line) in Fig. 3

Caused by soft-fixturing process Caused by manufacturing process

Fig. 4. Three different types of errors.

where d is the dimension of the input variables, i.e., xi =
(x1i , x2i , . . . , xdi ), and νl = (ν1, ν2, . . . , νd) are the scale
parameters controlling how fast the correlation decays
as the between-input distance increases in each dimen-
sion. For the metrology applications, d = 1, 2, or 3. For
this GP model, we summarize the model parameters in
θl = (βl , κ

2
l , σ 2

l ,νl ).
Denote by Xl = (x1, x2, . . . , xml )

T the location ma-
trix where low-resolution observations are made, by
ηl = (ηl (x1), ηl (x2), . . . , ηl (xml ))

T the low-resolution sur-
face and by yl = (yl (x1), yl (x2), . . . , yl (xml ))

T the low-
resolution data. Conditioned on θl , the joint distribution
of ηl and yl is as follows:

p(ηl , yl |θl ) = N
([

g(Xl ,βl )
g(Xl ,βl )

]
,

[
κ2

l Rl κ2
l Rl

κ2
l RT

l �l

])
, (3)

where g(Xl ,βl ) is an ml × 1 column vector, whose i th el-
ement is g(xi ,βl ) = f(xi ,βl )

Tpi ; Rl is an ml × ml correla-
tion matrix whose (i, j )th element is defined according to
Equation (2); and �l = κ2

l Rl + σ 2
l I.

Using the above joint distribution, the distribution of
ηl conditioned on the observations of yl can be obtained
as

p(ηl |yl ,θl ) = N
(
g(Xl ,βl ) − κ2

l Rl�
−1
l (yl − g(Xl ,βl )),

κ2
l Rl − κ4

l Rl�
−1
l RT

l

)
. (4)

This equation implies that ηl works also as a filtered version
of the low-resolution data, which are free of the random
measurement errors. Later, the filtered low-resolution data
ηl (xi ), instead of the unfiltered yl (xi ), for i = 1, . . . , ml ,
will be used when establishing a link to the high-resolution
data.

3.2. Align the two-resolution metrology data

Suppose that, before projecting onto p, we have a set of
high-resolution data Dh = {ah

i : i = 1, . . . , mh} and a set
of low-resolution data Dl = {al

j : j = 1, . . . , ml}, where
mh � ml . Both sets of data points are arbitrarily la-
beled for identification. The goal is to match a subset of

the low-resolution data points to the entire set of high-
resolution data points and then find the corresponding
transformation.

Matching two datasets refers to establishing the corre-
spondence between the two datasets. For example, a found
match could be ah

1 → al
5, ah

2 → al
11, ah

3 → al
64, . . . , ah

20 →
al

496, as in Fig. 5(a). Transformation refers to the rigid body
transformation between the low-resolution dataset and the
high-resolution dataset, as illustrated in Fig. 5(b). The pa-
rameters of the transformation (i.e., three for translation
and three for rotation) can be computed using the estab-
lished correspondence. In other words, the alignment pro-
cedure normally goes through two steps: first, we find the
correspondence between the two datasets, i.e., a procedure
called matching; and second, we compute the transforma-
tion parameters based on the found match.

3.2.1. Heuristic matching
We develop a heuristic matching algorithm utilizing the
invariance property of inter-point distances explained in
Section 2, which was initially introduced for image reg-
istration (Ranade and Rosenfeld, 1980). Mathematically,
it means the following: if (ah

i , al
j ) is a pair of matching

points, then for every other point ah
k in Dh , there should be

a corresponding point al
s such that the distance ||ah

i − ah
k||

“almost” equals to the distance ||al
j − al

s ||. Here we use
“almost” because both datasets are noisy, so an exact
equality is difficult to attain. During implementation, this
“almost equality” is implemented by setting a threshold
for the allowed difference. Before performing the heuris-
tic matching, we first estimate the nominal surfaces from
both datasets and align the nominal surfaces. In this way,
the two datasets are made close to each other so that the
heuristic algorithm can work effectively. The heuristic al-
gorithm proceeds as follows.

Repeat the following two steps for j = 1, 2, . . . , ml ,

Step 1. Let the first data point ah
1 in Dh be paired with the

j th data point al
j in Dl .
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ah
1 ah

2 ah
3

al
5 al

11 al
64

ah
20

al
496

(a). Matching
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⎤
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⎡
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ t + ε

Fig. 5. Two steps to align two-resolution data.

Step 2. For k = 2, 3, . . . , mh , calculate the inter-point dis-
tance between ah

k and ah
1, and then find a point in Dl ,

e.g., the sth low-resolution point, so that the dif-
ference between ‖al

s − al
j‖2 and ‖ah

k − ah
1‖2 is less

than some threshold � . If such a low-resolution
point is found, ah

k and al
s will be considered to be a

pair of matching points. When there is more than
one low-resolution point satisfying the above re-
quirement, select the one giving the smallest dif-
ference between ‖al

s − al
j‖2 and ‖ah

k − ah
1‖2. After

going through all the mh high-resolution points, if
all of them find their matching points in the low-
resolution data, we consider a match identified and
call the set of the matching pairs a consistent match,
a term first coined in the image registration liter-
ature (Mitra and Murthy, 1991). If not all the mh
high-resolution points find their matching point in
the low-resolution data, we say no consistent match
exists for al

j , go back to Step 1, and let ah
1 be paired

with the next low-resolution point.

We record each consistent match found between
the two datasets using a matching matrix M = (Mi j ),
where

Mi j =
{

1 if al
j is matched to ah

i ,
0 otherwise.

(5)

Note that
∑

i, j Mi j = mh . Also, only one low-resolution
point will match each high-resolution data point; i.e.,∑

j Mi j ≤ 1.
The heuristic matching procedure eventually produces

K consistent matches {Mk, k = 1, . . . , K}, where K is typ-
ically much smaller than ml . We will then find their cor-
responding transformation matrices or vectors and feed

them to the Bayesian hierarchical model that combines the
two-resolution data for prediction (in Section 3.5).

Given the two-resolution data, the number of consistent
matches K found by the heuristic procedure depends on
the distance threshold � . A small � will lead to a fewer
number of consistent matches. As a result, the Bayesian
hierarchical model will run over a fewer number of matches,
and the subsequent inferences will incur less computation.
For the examples in Section 4, we set � to be the average
inter-point distance in the low-resolution dataset. With this
� , for the two examples in Section 4, the heuristic matching
produces K = 15 or 30 consistent matches for the circular
surfaces and K = 2 or 1 consistent matches for the sinewave
surface, respectively. In the case where unevenly spaced
measurement data are used, one needs to relax the distance
threshold � to be anisotropic, meaning that different �

values are used for each direction of interest, and each �

can be set as the average inter-point distance along a specific
direction.

3.2.2. Optimization to calculate the transformation
parameters

After matching the two datasets, we can calculate the
transformation parameters (i.e., three rotation param-
eters in H and three translation parameters in t) by
solving the following optimization, which minimizes the
sum of the squared distances between the corresponding
points in the two datasets over the possible rigid body
transformations:

min
tu ,tv,tw

ρu ,ρv,ρw

∑
i=1:mh
j :Mi j =1

‖ah
i − (

H(ρu, ρv, ρw)al
j + (tu, tv, tw)T)‖2

(6)
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subject to

H(ρu, ρv, ρw) =⎡
⎣ cos(ρu ) cos(ρv) cos(ρu ) sin(ρv) sin(ρw)−sin(ρu ) cos(ρw) cos(ρu ) sin(ρv) cos(ρw)+sin(ρu ) sin(ρw)

sin(ρu ) cos(ρv) sin(ρu ) sin(ρv) sin(ρw)+cos(ρu ) cos(ρw) sin(ρu ) sin(ρv) cos(ρw)−cos(ρu ) sin(ρw)

− sin(ρv) cos(ρv) sin(ρw) cos(ρv) cos(ρw)

⎤
⎦ ,

tu, tv, tw ∈ R;
ρu, ρv, ρw ∈ [0, 2π);

where ρu, ρv, ρw are the rotations around, and tu, tv, tw are
the translations along, the u-, v-, and w-axes, respectively.

3.3. Neighborhood linkage model

Combining the metrology data of different resolutions for
prediction is fulfilled by using a neighborhood linkage
model. The linkage model connects each high-resolution
data point to all the low-resolution response ηl (·) in its
neighborhood as follows:

yh(xi ) = α1

∑
j=1,...,ml

K(xi , x j ) ηl (x j ) + α0 + e, (7)

where yh(xi ) is the univariate high-resolution response
defined in the same way as the low-resolution one, i.e.,
yh(xi ) = (ah

i )Tp j ; α = (α1, α0) are the scale and location
coefficients, respectively; K(·, ·) is a kernel function; e is the
residual, assumed to be i.i.d. N(0, σ 2

e ).
We use a tri-cube kernel function but generalize it by

having different kernel widths λ = (λ1, . . . , λd) associated
with different axes. The resulting kernel function is as
follows:

K(xi , x j ) = �

(
d∑

k=1

(
xki − xkj

λk

)2
)

, (8)

with

�(t) =
{

(1 − t3/2)3 if t ≤ 1;

0 if t > 1.
(9)

This kernel function defines the neighborhood of a
high-resolution data point. Only the low-resolution data
points within the neighborhood are linked with the high-
resolution data point. The size of the neighborhood is con-
trolled by λ and will be estimated using the data.

Utilizing the linkage model, we can predict the high-
resolution response yh(x0) at any given location x0. Given
the filtered low-resolution responses ηl at ml locations, and
conditioned on the model parameters θh = (α, σ 2

e ,λ) and
a match Mk, yh(x0) has the following distribution:

(yh(x0)|Mk,ηl ,α, σ 2
e ,λ) ∼ N

(
Fλ(x0)α, σ 2

e

)
, (10)

where Fλ(x0) is a row vector, defined as
(
∑

i=1,...,ml
K(x0, xi ) ηl (xi ), 1). Denote by Xh = (x1, . . . ,

xmh )T the locations of high-resolution responses. The

distribution in Equation (10) can be extended to the multi-
variate case, where yh = (yh(xl ), . . . , yh(xmh ))T such that(

yh|Mk,ηl ,α, σ 2
e ,λ

) ∼ N
(
Fλα, σ 2

e I
)
, (11)

where Fλ abbreviates Fλ(Xh), an mh × 2 matrix whose j th
row is defined as (

∑
i=1,...,ml

K(x j , xi ) ηl (xi ), 1), and xi is
the i th row of Xl and x j is the j th row of Xh .

3.4. Bayesian priors for the predictive model

This subsection discusses the choices of prior for the pa-
rameters in the hierarchical predictive model, and the next
section will derive the Bayesian inference and prediction.
We would like to note that both sections and the appen-
dices associated with the sections are developed in a manner
similar to Qian and Wu (2008).

The parameters consist of two parts: (θl ,θh), where
θl = (βl , σ

2
l , κ2

l ,νl ) are the parameters involved in the low-
resolution data model, and θh = (α, σ 2

e ,λ) are the parame-
ters involved in the neighborhood linkage model. They can
also be grouped into three categories: the mean-component
parameters (βl ,α), the variance parameters (σ 2

l , κ2
l , σ 2

e ),
and the parameters (νl , λ) in the correlation function and
the kernel function, respectively.

Regarding the GP model for the low-resolution data, we
follow the common practice (e.g., Qian and Wu (2008)) and
use a normal distribution for the priors of the mean param-
eter βl , inverse-gamma distributions for the priors on the
variance parameters (σ 2

l , κ2
l ), and gamma distributions for

the priors on the correlation parameter νl .
The linkage model is essentially a linear regression model

once the kernel width λ is given. We choose the non-
informative priors for α and σ 2

e to reflect our limited
knowledge regarding how the two-resolution metrology
data are related. An accompanying benefit of using the
non-informative priors is that the resulting posterior distri-
butions of α and σ 2

e are in closed forms, which helps speed
up the computation in the subsequent Bayesian inference.
The prior distribution for the kernel width λ = (λ1, . . . , λd)
is chosen to be uniform over a range. Let λi follow a discrete
distribution taking values j × c for j = 1, . . . , λ0, where c
is the size of the increment, and λ0 is a positive, typically
large, integer. Assuming λ a discrete distribution helps sim-
plify the computation of the subsequent Bayesian inference
as well.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
x
a
s
 
A
&
M
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
8
:
2
4
 
2
8
 
M
a
r
c
h
 
2
0
1
1



250 Xia et al.

Furthermore, the joint prior distribution is assumed to
be the product of the prior distributions of individual pa-
rameters as follows:

p(θ) = p(βl )p(σl )p(κl )p(α)p(σe)p(νl )p(λ), (12)
where

βl ∼ N(µl , Ql )
σ 2

l ∼ Inv-Gamma(a1, b1),

κ2
l ∼ Inv-Gamma(a2, b2),

νi ∼ Gamma(a3, b3) for i = 1, . . . , d,

p(α) ∝ 1,

p(σ 2
e ) ∝ σ−2

e ,

p(λi = j × c) = 1/λ0 for j = 1, 2, . . . , λ0; i = 1, . . . , d.

The covariance matrix Ql is a diagonal matrix, whose i th
diagonal elements q2

i denote the variance for the i th el-
ement of βl . Appendix A includes more discussions on
how to choose the parameters in the aforementioned prior
distributions.

3.5. Bayesian inference and prediction

The ultimate goal of combining the two-resolution data
is to predict the response yh(x0) at any input location x0,
given the observed data yh and yl , i.e., p(yh(x0)|yh, yl ).

After presenting in the previous sections the low-
resolution model, the linkage model, and the alignment
procedure, we can in principle make predictions condi-
tioned on a given matching scheme M of the two datasets.
In other words, we can obtain p(yh(x0)|M, yh, yl ), and the
details are shown in Equation (14). As such, p(yh(x0)|yh, yl )
can then be obtained by integrating over the distribution
of M:

p(yh(x0)|yh, yl ) =
∫

M
p(yh(x0)|M, yh, yl )

×p(M|yh, yl )dM.

However, it is practically difficult to solve the above in-
tegration. Thus, we recommend using a summation over
a discrete number of candidate matches to approximate
the integration. Suppose the alignment procedure in Sec-
tion 3.2 produces K matches, together with their cor-
responding transformation parameters. Here we denote
both a match and its corresponding transformation by
{Mk, k = 1, 2, . . . , K}. Using the K distinct matches, the
above integration is approximated by

p(yh(x0)|yl , yh) =
K∑

k=1

p(yh(x0)|Mk, yl , yh)

×p(Mk|yl , yh). (13)

where the first term p(yh(x0)|Mk, yl , yh) is the individual
prediction conditioned on a given match, and the second
term p(Mk|yh, yl ) is the posterior probability of a matching
scheme, representing how much a match is consistent with

the observed data. It puts different weights on the individ-
ual predictions conditioned on the corresponding match
and thus accounts for the uncertainty in the matches be-
tween the two-resolution datasets.

Given the prior distribution in Equation (12), it can be
shown (please see Appendix B for details) that the first
term in Equation (13), p(yh(x0)|Mk, yl , yh), can be solved
through the following steps:

p(yh(x0)|Mk, yl , yh) =
∫

θl

p(yh(x0)|Mk,ηl , yh)p(ηl |θl , yl )

×p(θl |yl )dθl , (14)

where p(ηl |θl , yl ) is given in Equation (4), p(θl |yl ) ∝
p(θl ) · p(yl |θl ), and

p(yh(x0)|Mk,ηl , yh) =
∑

λ1=c,2c,...,λ0c
...

λd=c,2c,...,λ0c

p(yh(x0)|Mk, yh,ηl ,λ)

× p(λ|yh,ηl ), (15)

in which

(yh(x0)|Mk, yh,ηl ,λ) ∼ tmh−2(Fλ(x0)α̂, s2(1 + Fλ(x0)

× (FT
λFλ)−1Fλ(x0)T)), (16)

p(λ|yh,ηl ) ∝ p(λ)|FT
λFλ|− 1

2

×
[

(yh − Fλα̂)T(yh − Fλα̂)
2

]− mh
2 +1

, (17)

Fλ and Fλ(x0) are defined in Equation (10) and Equa-
tion (11), respectively,

α̂ = (
FT

λFλ

)−1FT
λyh,

s2 = 1
mh − 2

(yh − Fλα̂)T(yh − Fλα̂).

The integration of θl in Equation (14) is solved numerically
using a Markov Chain Monte Carlo (MCMC) algorithm.

The second term in Equation (13), the posterior proba-
bility p(Mk|yh, yl ), can be computed by

p(Mk|yh, yl ) = p(yh|Mk, yl )p(Mk)∑K
k=1 p(yh|Mk, yl )p(Mk)

, (18)

where

p(yh|Mk, yl ) =
∫

θl

p(yh|Mk,ηl )p(ηl |yl ,θl )dθl (19)

p(yh|Mk,ηl ) =
∑

λ1=1,2,...,λ0

...
λd=1,2,...,λ0

(2π)−
mh
2 +1

∣∣FT
λFλ

∣∣− 1
2 �
(mh

2
− 1

)

×
[

(yh − Fλα̂)T (yh − Fλα̂)
2

]
. (20)

A uniform prior is used for Mk, and the derivation of
Equation (20) is included in Appendix C.
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Generate a set of 5000 points describing the true surface using Equations (21) and (22)

�
Have a Latin hypercube sample of size

�
Add random errors εh ∼ N(0,1 × 10−6)

�
Obtain mh

mh

high-resolution data

�
Smooth the surface with a moving window
of size 0.03 and sample ml data

�
Add random errors εl ∼ N(0, 9 × 10−6)

�
Perform a rigid-body transformation

Obtain ml low-resolution data
�

Fig. 6. Procedure to generate two-resolution data.

4. Illustrative examples

This section presents two examples: the first example simu-
lates two datasets of different resolutions obtained from
three circular features, respectively; the second example
uses measurements of a milled sinewave surface from a
CMM and an OCMM as illustrated in Fig. 1. Throughout
this section, the values of physical quantities are expressed
in millimeters unless otherwise indicated.

4.1. Circular features

Circular features manufactured by turning processes are
simulated using the formula proposed in Desta et al. (2003):

u = u1 + (r + A1 sin(4τ ) + A2 cos(3τ ) + A3 sin(7τ )
+A4 cos(10τ ) + ξ ) cos τ, (21)

v = v1 + (r + A1 sin(4τ ) + A2 cos(3τ ) + A3 sin(7τ )
+A4 cos(10τ ) + ξ ) sin τ, (22)

where A1 sin(4τ ) + A2 cos(3τ ) + A3 sin(7τ ) + A4 cos(10τ )
represents the low-frequency manufacturing errors show-
ing some systematic pattern; ξ represents the high-
frequency, random manufacturing errors; and the other
notations follow those in Fig. 3.

In the simulation, (u1, v1) is set to be (0.05, 0.02), and
the values are chosen to be within the typical range of
the soft-fixturing errors. A1, A2, A3, and A4 are chosen to
be 0.03, −0.02, −0.01, and −0.008, respectively, to reflect
typical manufacturing errors of a turning process (Groover,
2004, p. 85). A standard deviation of 0.002 is chosen for
ξ , according to the roughness level of a turning process
(Groover, 2004, p. 86). In other words, ξ is simulated by
N(0, 4 × 10−6).

Three circular features are simulated using Equations
(21) and (22) with radius r = 41, 100, and 150, respectively.
Each of these simulated circles is treated as a true surface
to be measured.

The high-resolution data are taken to be scattered over
the surface, but each of them can be very close to the true
surface. Thus mh data points are first sampled from the
simulated surface via a Latin hypercube sampling. Then
independent random noises εh of variance of 1 × 10−6 (i.e.,
a standard deviation of 1 µm) are added to them.

The low-resolution data are usually the averages of the
surface coordinates in a spatial neighborhood within which
a low-resolution device cannot distinguish distinct points.
To simulate a device of resolution roughly 30 µm, a 30
× 30 µm moving window is first used to smooth the sim-
ulated surface. A dense sample of ml data points is then
obtained, equally spaced over the entire surface. Then,
independent random noises of variance of 9 × 10−6 (i.e.,
with a standard deviation of 3 µm) are added. Since low-
resolution data may be misaligned from high-resolution
data, a rigid-body transformation is also performed to the
low-resolution data. The simulation procedure is summa-
rized in Fig. 6, and the amounts of high- and low-resolution
data are listed in Table 1.

The proposed Bayesian hierarchical model predicts the
surface coordinates at locations where only low-resolution
data are available. The resulting predictions are compared
with three alternative approaches: the low-resolution data,
the predictions using the high-resolution data alone (also
based on a GP model), and the predictions using a multi-
resolution GP model that does not address the misalign-
ment problem. For the last one, we use thetgppackage forR
(Gramacy and Taddy, 2008) which is close to the Kennedy–
O’Hagan method (Kennedy and O’Hagan, 2000). Since this
is a simulation study, the true circular surface is known. The
predicted surface from each method is compared with the
true circular surface. Table 1 lists the Mean Squared Errors
(MSE) of predictions, which are calculated by averaging
the squared errors between the predicted and true surfaces
over the different input locations.

As Table 1 shows, the proposed Bayesian hierarchical
model (in the fifth column) outperforms all the other
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Table 1. Evaluation of prediction (MSE in mm2) accuracy for a circular surface

Predicted

Using two-resolution data Using two-resolution data
Data amount and the proposed method and the tgp package

Radius (mh/ml ) Low-resolution Using high-resolution data (data aligned) (data not aligned)

41 20/500 3.83 × 10−5 6.47 × 10−4 9.84 × 10−6 5.35 × 10−4

100 20/1021 3.74 × 10−5 1.11 × 10−3 1.09 × 10−5 1.98 × 10−3

150 20/1013 3.84 × 10−5 1.76 × 10−3 1.81 × 10−5 2.19 × 10−3

alternatives. For the three simulated circular features, the
integrated prediction improves (in terms of the MSE values)
over the observed low-resolution data by 74.31%, 70.86%,
and 52.86%, respectively. We also observe that the predic-
tions using the high-resolution data alone perform worse
than the low-resolution data. We believe that this is be-
cause the amount of high-resolution data is insufficient to
allow good predictions. The last column has the predictions
from using the tgp package, which does not align the data
of different resolutions. When the two-resolution data are
not aligned, the low-resolution data either contribute little
to the combined prediction or mislead the integrated pre-
dictions. Thus, the tgp package performs worse than the
proposed method. This result suggests the importance of
addressing the misalignment problem when combining the
multi-resolution data for prediction.

4.2. Sinewave surface

We have a manufactured part of size 101 × 101 × 51 and
its top surface is milled to be in a sinewave shape. The
nominal geometry is w = ϕ1 sin(2π(ϕ2 + u)/ϕ3) where ϕ =

(ϕ1, ϕ2, ϕ3) are the dimension parameters, and ϕ1, ϕ2 and
ϕ3 are called the amplitude, the phase, and the wavelength,
respectively.

Two metrology devices are used to measure the sinewave
surface: the CMM is a Sheffield Discovery II D-8 with a
TB 20 touch probe; the OCMM is a LDI Surveyor DS-
2020 with a RPS 150 laser unit. The CMM has a resolution
of roughly 5 µm, whereas the OCMM has a resolution of
about 50 µm. Even though this CMM does not have a
resolution as high as many used in precision engineering,
it serves as the high-resolution device in this particular
pair. Moreover, the CMM and the OCMM have their own
measuring platforms so that the part is repositioned while
being measured on the second machine.

When measuring with the OCMM, it results in a low-
resolution dataset of ml = 1560 (i.e., 40 × 39) points, which
are evenly spaced over the surface with approximately 2.54
µm inter-point distance in both u and v axes; see Fig.
7. The CMM measures the same surface and obtains a
high-resolution dataset of also 1560 points. A large por-
tion of the 1560 high-resolution data points, after removing
those mh points used for model building, is reserved as the

Fig. 7. Three-dimensional view of the low-resolution data, illustrating the sinewave surface.
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coordinate measurement projection ( aiT pi)

Fig. 8. Integrated prediction reduces bias and uncertainty.

representation of the “true” surface and will be used as a
benchmark for assessing the prediction quality.

Consider two cases where the high-resolution observa-
tions are of size mh = 20 and 40, respectively. These ob-
servations are chosen via Latin hypercube sampling from
the 1560 high-resolution data. For each case, the proposed
Bayesian hierarchical model is used to make a prediction
combining the mh high-resolution observations and the
ml = 1560 low-resolution observations.

The position and orientation of the part on a metrology
measuring platform are unknown. It may be different from
its nominal position by translation t and rotation H. For
this reason, the coordinates of a point on the dashed-line
geometry f(·,βl ) is H · (ui , vi , wi )T + t, where (ui , vi , wi ) is
a point on the nominal geometry, satisfying the constraint
wi = ϕ1 sin(2π(ϕ2 + ui )/ϕ3).

As in the simulated examples, the proposed Bayesian
hierarchical model is used to predict the part surface at
locations where only the low-resolution data are available.
The predictions using the proposed method are compared
with the observed low-resolution data, the predictions us-
ing the mh (=20 or 40) high-resolution data alone, and the
predictions using the tgp package.

Figure 8 shows the prediction results for one location on
the part to illustrate the benefit of combining the multi-
resolution information. In Fig. 8, the “true” value (i.e., the
black solid line) is actually a reserved high-resolution mea-
surement. The gray solid curve represents the integrated
predictive distribution using the proposed multi-resolution

method, and the gray line in the middle is the predicted me-
dian. The dashed-dotted line represents the observed low-
resolution data. For this particular point, the integrated
prediction almost coincides with the true value and is an
improvement on the low-resolution data. The dashed line
and the dashed curve denote the predicted median and the
predictive distribution using the mh high-resolution obser-
vations. It is clear that the predictive distribution using the
multi-resolution data results in a much narrower distribu-
tion (i.e., a smaller uncertainty) than the prediction distri-
bution using the high-resolution data alone. In summary,
the integrated prediction produces the best prediction, less
biased (in terms of the distance between the predictive me-
dian and the true value) and with reduced uncertainty.

If the two-resolution datasets are combined to make pre-
dictions without properly aligning the datasets, they may
not produce the desired benefit. Still using the prediction on
the above chosen location, Fig. 9 compares the predictive
distribution between the proposed method and the multi-
resolution GP method in the tgp package. The proposed
method achieves a significantly better prediction than the
tgp package.

We use all of the aforementioned methods to make pre-
dictions over the product surface and compare the pre-
dictions with the reserved high-resolution data. Table 2
summarizes the MSE values of the predictions. The re-
sults confirm the understanding garnered from the simu-
lated example. For both high-resolution data sizes (mh =
20 or 40), the proposed Bayesian hierarchical model shows
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Table 2. Comparison of the predictions (MSE in mm2) for the sinewave surface

Predicted

Using two-resolution data Using two-resolution data
Data amount and the proposed method and the tgp package
(mh/ml ) Low-resolution Using high-resolution data (data aligned) (data not aligned)

20/1560 1.18 × 10−3 1.04 × 10−2 7.85 × 10−4 3.24 × 10−2

40/1560 1.05 × 10−3 2.44 × 10−3 6.10 × 10−4 3.60 × 10−3

significant improvements from using the low-resolution ob-
servations. When mh = 20 and ml = 1560, the proposed
method improves the prediction of low-resolution data
by 25.24%. When mh = 40 and ml = 1560, the proposed
method improves the prediction of low-resolution data by
30.86%. When the number of high-resolution data increases
from 20 to 40, the prediction using the proposed Bayesian
hierarchical method improves. The improvement, however,
is not proportional to the increase in the amount of high-
resolution data. Studying what is the most beneficial data
ratio between the low- and high-resolution data is worth
further exploration.

Recall that a discrete uniform distribution U(1, λ0) is as-
signed as the prior distribution of the kernel width λ. In
this example, we choose λ0 = 30 and c = 2.54, the average
inter-point distance in the low-resolution data. Figure 10
shows the marginal posterior distributions of the kernel
widths in the u- and v-axes, respectively. The kernel width

along the u-axis λ1 is 2.54, suggesting that only the nearest
low-resolution data point in the u-direction has a strong
connection with each high-resolution data point. For the
v-axis, the kernel width λ2 of 7.62 has the highest proba-
bility, and the probabilities at the 11 kernel widths have a
noticeable non-zero mass. This makes good sense for the
sinewave surface in Fig. 1, which is easier to align along the
u-direction than along the v-direction because of a much
larger surface slope in the u-axis than in the v-axis.

The Bayesian hierarchical method assigns posterior
weights to different kernel widths according to how much
they are consistent with the data. As shown in Fig. 10,
the kernel widths greater than 27.94 (or 11 inter-point dis-
tances) barely have any posterior weight and will not con-
tribute much to the posterior inference in this application.
This is not a surprise because after all the alignment efforts,
the remaining misalignment is presumed to be small. This
implies that one can choose a big upper bound λ0 so that

coordinate measurement projection ( aiT pi)

Fig. 9. Integrated prediction using misaligned data could lead to worse results.
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Table 3. Sensitivity analysis of the choices of c (c = i × 2.54 mn).

i

1 0.75 0.5 0.25 0.1

MSE 7.853 × 10−4 7.782 × 10−4 7.772 × 10−4 7.818 × 10−4 7.822 × 10−4

the posterior inference of the prediction is not sensitive to
the prior choice for λ. In this example where λ0 is chosen to
be 30 (i.e., the kernel width is 76.20), much greater than 11,
we believe that the posterior inference on λ largely reflects
the information from the data.

We also conducted a sensitivity analysis of the integrated
predictions under different increments of c (using mh = 20
and ml = 1560). The results are summarized in Table 3. It
shows that the integrated predictions are insensitive to the
value of c when c takes a value less than or equal to the
average inter-point distance of the low-resolution data.

5. Concluding remarks

We present a Bayesian hierarchical model for combining
misaligned two-resolution metrology measurements for the
purpose of predicting a product surface. The current model
is not a fully Bayesian model because a heuristic matching

and alignment algorithm is used for finding the set of the
consistent matches. Our final prediction is approximated
by averaging over the set of consistent matches. A fully
Bayesian approach needs the development of a Bayesian
alignment model. Green and Mardia (2006) developed a
Bayesian alignment model for a different problem but its
application to the metrology problem does not appear
straightforward. Several critical issues still remain to be
solved, including the effectiveness and efficiency of solving
the Bayesian alignment model and the integration of the
alignment model with the other models into a Bayesian
hierarchical modeling framework.

In the current study, we only used data evenly spaced
over the entire product surface. The evenly spaced mea-
surements are readily achievable using today’s metrology
technology. We also expect that our method does not heav-
ily rely on the data being evenly spaced. Nevertheless, we
acknowledge that it is possible to have unevenly spaced low-
resolution data from scanning a high-curvature feature of

10.16 20.32 30.48 40.64 50.8 60.96 71.12 805.08

0 10.16 20.32 30.48 40.64 50.8 60.96 71.12 805.08
0

0.2

0.4

0.6

0.8

1
Mean of the marginal posterior distribution of the kernel width in u-axis

0
0

0.05

0.1

0.15

0.2
Mean of the marginal posterior distribution of the kernel width in v-axis

Fig. 10. Marginal posterior distributions of the kernel widths in the u-axis and v-axis.
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a complicated three-dimensional part, and the effect (or
the non-effect) of the data distribution on our proposed
method has not yet been experimentally verified. It would
be valuable in future work to conduct a comprehensive
experimental study to see how the proposed method works
for unequally spaced low-resolution data, different geome-
try complexity, and other practical considerations.

If the high-resolution data do not cover the same surface
area as the low-resolution data, the matching results may
become trapped in local minima, leading to an incorrect
coordinate transformation and poor alignment. Thus, if
engineers are concerned about fully utilizing the informa-
tion in the two datasets that requires a good alignment, they
should plan for it during the data collection stage, in or-
der to ensure that both datasets cover the whole workpiece
surface.

Our study uses a univariate response model, which was
first developed by Hulting (1995, 1997). Using this univari-
ate response leads to a univariate GP model for the low-
resolution data. Recently, progress has been made to extend
GP modeling to multivariate cases; for example, Ankenman
et al. (2010), Santner et al. (2003), and Wackernage (2003).
However, a multivariate GP model for metrology applica-
tions is not yet available. Since projecting the multivariate
measurements ai onto the approaching direction pi might
introduce additional deviations, it is worthwhile to explore
the benefit of having a multivariate GP model for handling
ai directly.

The effectiveness of the integrated prediction depends on
the data ratio in the multi-resolution datasets as well as on
the resolution ratio of the metrology devices. The sinewave
example shows that when the amount of high-resolution
data is doubled (i.e., the cost of measurement is almost
doubled), the prediction errors are far from being halved.
Studying how to produce the most cost-effective benefit
in combining multi-resolution data for prediction merits
further exploration as well.
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Appendices

Appendix A: Choosing parameters for Bayesian priors

This section provides additional thoughts on how to choose
the parameters for the prior distributions. The βl includes
the parameters accounting for a part’s actual location (on a
measuring platform) and dimension. In Fig. 3, the dashed-
line geometry f(·,βl ) deviates slightly in location from the
nominal geometry. The deviation is small due to the use of
the soft-fixturing process. There is also some difference in
dimensions between these two geometries, but it is small
because a manufacturing process normally produces the
required dimension with reasonable accuracy. By treating
the location of the nominal geometry to be at the origin of
the coordinate system, we can assign the mean component
of the prior distribution of βl as µl = (0, ϕ∗), where ϕ∗
is the nominal dimensions of the part. The variance q2

i
can be determined from a crude least-squares estimation
of the part’s location as well as the typical manufacturing
process capability (Groover, 2004, p. 85) causing variability
in actual part’s dimensions.

For the prior distribution of σ 2
l and κ2

l , we choose
α1 = α2 = 1 and β1 = β2 = 1 × 10−4 so that σl and κl
mostly take values smaller than 0.2 mm (or 200 µm),
which is consistent with engineers’ knowledge on the error
magnitudes from the manufacturing processes and the
metrology devices. Also, this prior distribution gives higher
probabilities to the smaller values as they correspond
to a better fit of the low-resolution data to the model.
The prior chosen for each correlation parameter νi is
Gamma(0.01, 0.01), effectively a non-informative prior
(Gelman et al., 2003).

Appendix B: Proof of Equation (14)

Recall that the model parameters are θ = (θl ,θh). We ex-
press p(yh(x0)|yl , yh) as

p(yh(x0)|Mk, yl , yh) =
∫

θ l

∫
θh

p(yh(x0)|Mk, yl , yh,θl ,θh)

×p(θl ,θh|Mk, yl , yh)dθhdθl

=
∫

θ l

∫
θh

p(yh(x0)|Mk, yh,ηl ,θh)

×p(θh|Mk,ηl (Xl ), yh)dθh

×p(ηl |yl ,θl ) × p(θl |yl )dθl

=
∫

θl

p(yh(x0)|Mk, yh,ηl )

×p(ηl |Mk, yl ,θl )p(θl |yl )dθl

(A1)

where

p(yh(x0)|Mk,ηl , yh) ≡
∫

θh

p(yh(x0)|Mk, yh,ηl ,θh)

×p(θh|Mk,ηl , yh)dθh

=
∫

α,σ 2
e ,λ

p(yh(x0)|Mk,ηl ,α, σ 2
e ,λ)

×p(α, σ 2
e ,λ|Mk,ηl , yh)

×dα dσ 2
e dλ

=
∫

λ

∫
σ 2

e ,α

p(yh(x0)|Mk,ηl ,α, σ 2
e ,λ)

×p(α, σ 2
e |Mk,λ, yh,ηl ) dα dσ 2

e

×p(λ|Mk,ηl , yh)dλ (A2)

In order to get the expression of p(yh(x0)|Mk,ηl , yh), per-
form the integration in (A2) in the following two steps:

(i) Integrate out α and σ 2
e ;

(ii) Integrate out λ.

Step (i): integrate out α and σ 2
e . We denote the inner in-

tegration in Equation (A2) by p(yh(x0)|Mk, yh,ηl ,λ), that
is,

p(yh(x0)|Mk, yh,ηl ,λ) ≡
∫

σ 2
e ,α

p(yh(x0)|Mk,ηl ,α, σ 2
e ,λ)

×p(α, σ 2
e |Mk,λ, yh,ηl ) dα dσ 2

e

∝
∫

σ 2
e ,α

p(yh(x0)|Mk,ηl ,α, σ 2
e ,λ)p(yh|Mk,ηl ,α, σ 2

e ,λ)

×p(α, σ 2
e ) dα dσ 2

e .

Given the kernel width λ, the linkage model can be con-
sidered as a linear regression model yh = Fλα + εh . Recall
that εh ∼ N(0, σ 2

e I). Therefore,(
yh|Mk,ηl ,α, σ 2

e ,λ
) ∼ N

(
Fλα, σ 2

e I
)

(yh(x0)|Mk,ηl ,α, σ 2
e ,λ) ∼ N(Fλ(x0)α, σ 2

e )

These are the same results as in Equations (10) and (11).
Given that the prior distribution of α and σ 2

e is p(α, σ 2
e ) ∝

σ−2
h , Gelman et al. (2003, p. 359) stated that under this

priors, the posterior predictive distribution of yh(x0), con-
ditioned on the data and kernel width λ, is

(yh(x0)|Mk, yh,ηl (X0),λ)
∼ tmh−2(Fλ(x0)α̂, s2(1 + Fλ(x0)(FT

λFλ)−1Fλ(x0)T)).

where α̂ = (FT
λFλ)−1FT

λyh and s2 = 1
mh−2 (yh − Fλα̂)T(yh −

Fλα̂). This is how Equation (14) is obtained. Consequently,
after α and σ 2

e are integrated out, Equation (A2) becomes

p(yh(x0)|Mk,ηl , yh) =
∫

λ

p(yh(x0)|Mk, yh,ηl (X0),λ)

×p(λ|Mk, βl , yh)dλ. (A3)

Step (ii), integrate out λ. Recall that λ has a discrete dis-
tribution. Thus, the integration in (A3) can be written as a
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summation (and Equation (15) is obtained):

p(yh(x0)|Mk,ηl , yh) =
∑

λ1=1,2,...,λ0

...
λd=1,2,...,λ0

p(yh(x0)|Mk, yh,ηl ,λ)

p(λ|Mk, yh,ηl ),

where

p(λ|Mk, yh,ηl ) ∝ p(λ)p(yh|Mk,ηl ,λ). (A4)

The marginal distribution of the high-resolution data given
the inputs ηl and the kernel width λ is as follows

p(yh|Mk,ηl ,λ)

=
∫

σ 2
e ,α

p(yh,α, σ 2
e |Mk,ηl ,λ) dα dσ 2

e

=
∫

σ 2
e ,α

p(yh|Mk,ηl ,α, σ 2
e ,λ)

×p(α, σ 2
e ) dα dσ 2

e

=
∫

σ 2
e

∫
α

(2π)−
mh
2 (σ 2

e )−
mh
2

×exp
{
− 1

2σ 2
e

(yh − Fλα)T(yh − Fλα)
}

× dα σ−2
h dσ 2

e

=
∫

σ 2
e

∫
α

exp
{
− 1

2σ 2
e

[(yh − Fλα̂)T(yh − Fλα̂)

+(α − α̂)TFT
λFλ(α − α̂)]

}
dα

×(2π)−
mh
2 (σ 2

e )−
mh
2 −1dσ 2

e

=
∫

σ 2
e

∫
α

exp
{
− 1

2σ 2
e

(α − α̂)TFT
λFλ(α − α̂)

}

×dα(2π)−
mh
2 exp

{
− 1

2σ 2
e

(yh − Fλα̂)T

×(yh − Fλα̂)
}

(σ 2
e )−

mh
2 −1dσ 2

e

=
∫

σ 2
e

2π |FT
λFλ|− 1

2 σ 2
e (2π)−

mh
2

×exp
{
− 1

2σ 2
e

(yh − Fλα̂)T(yh − Fλα̂)
}

×(σ 2
e )−

mh
2 −1dσ 2

e

= (2π)−
mh
2 +1|FT

λFλ|− 1
2

∫
σ 2

e

(σ 2
e )−( mh

2 −1+1)

×exp
{
− (yh − Fλα̂)T(yh − Fλα̂)

2σ 2
e

}
dσ 2

e

= (2π)−
mh
2 +1|FT

λFλ|− 1
2 �
(mh

2
− 1

)

×
[

(yh − Fλα̂)T(yh − Fλα̂)
2

]− mh
2 +1

. (A5)

Note that in the second line of this derivation, we utilize that
(11) which specifies the distribution of p(yh|ηl ,α, σ 2

e ,λ).
Given the above, Equation (A4) can now be written as

p(λ|yh,ηl ) ∝ p(λ)|FT
λFλ|− 1

2

×
[

(yh − Fλα̂)T(yh − Fλα̂)
2

]− mh
2 +1

This shows how Equation (14) is obtained.

Appendix C: Proof of Equation (20)

To prove Equation (20), we just integrate Equation (A6)
over λ. As λ takes discrete values, we end up with a sum-
mation over possible values for λ as in Equation (20):

p(yh|Mk,ηl ) =
∑

λ1=1,2,...,λ0

...
λd=1,2,...,λ0

(2π)−
mh
2 +1|FT

λFλ|− 1
2 �

(
mh

2
− 1

)

×
[

(yh − Fλα̂)T (yh − Fλα̂)
2

]
.
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