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This article presents a multistage, semi-automated procedure that can expedite the morphology analysis of nanoparticles. Material
scientists have long conjectured that the morphology of nanoparticles has a profound impact on the properties of the hosting material,
but a bottleneck is the lack of a reliable and automated morphology analysis of the particles based on their image measurements. This
article attempts to fill in this critical void. One particular challenge in nanomorphology analysis is how to analyze the overlapped
nanoparticles, a problem not well addressed by the existing methods but effectively tackled by the method proposed in this article.
This method entails multiple stages of operations, executed sequentially, and is considered semi-automated due to the inclusion of a
semi-supervised clustering step. The proposed method is applied to several images of nanoparticles, producing the needed statistical
characterization of their morphology.
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1. Introduction

Material scientists have conjectured that the morphology
of nanoparticles has a profound impact on the proper-
ties of the hosting material; see, for example, Wang et al.
(1998), Mohamed et al. (2000), El-Sayed (2001), Nehl et al.
(2006), and Pan et al. (2007). After a synthesis process
of nanoparticles, measurements can be taken using some
nano-specializing metrology devices (such as electron mi-
croscopes). The outputs from the metrology devices are
gray-scale images of nanoparticles and its surrounding ma-
terial in a sampled region; please see Fig. 1 for examples.
These images need to be processed to yield meaningful mor-
phological parameters, characterizing the shape and size of
the nanoparticles; this is known as morphology analysis.

A bottleneck in such research endeavors is the lack of
a reliable, efficient, and automated process for the charac-
terization and quantification of the size and shape of the
nanoparticles, based on the nanoparticle images (hereafter
shortened to “nano images”). Through our communication
with several research groups in nanotechnology in and out-
side the United States, we understand that the current prac-
tice of morphology analysis is still largely a manual count-
ing process, aided by certain software tools that are not
specifically designed for handling nano images. The pop-

∗Corresponding author

ular tools include ImageJ (http://rsbweb.nih.gov/ij) and
AxioVision (http://www.zeiss.com/). ImageJ is popular
probably because it is a freeware tool provided by the Na-
tional Institutes of Health for cell morphology analysis.
There are certain similarities between bio images and nano
images. It is not surprising that people went to the bio-
imaging field to look for a tool. However, when ImageJ
is applied to the nano images in Fig. 1, the particle recog-
nition rates are about 28% (left) and 48% (right), respec-
tively, deemed by the domain experts in our research team
as too low for the purpose of generating statistically reliable
and representative morphological results. The results from
ImageJ are presented in Section 7.

Despite the importance of morphology measurements,
there is only a limited amount of literature about automated
morphology analysis of nanomaterials. All of them used cir-
cularity of particle’s contours (McFarland and Van Duyne,
2003; Glotov, 2008; Chen, 2009) or an elliptical shape tem-
plate (Fisker et al., 2000) to segment overlapping particles,
so their applications are limited.

There is a rich body of literature dealing with similar
problems, especially in the field of biomedical imaging.
However, the majority of the literature in biomedical imag-
ing concentrates on locating cells in micrographs (Sage
et al., 2005; Jiang et al., 2007) or separating uniformly
shaped cells, usually elliptical cells, from the background
(Jung et al., 2008; Kothari et al., 2009). Applying ex-
isting methods from bio-imaging to the recognition of
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508 Park et al.

Fig. 1. Example transmission electron microscope images.

nanoparticles is ineffective primarily because of a
phenomenon called particle touching, namely, that the
nanoparticles often overlap with one another to varying
degrees. By contrast, cell morphology analysis in bio-
imaging frequently works on a single cell because it usually
pays to manually isolate a cell from its surrounding tissues.
We could find papers dealing with several cells in one
image but usually falling into the situations that either the
cells are well separated, or the cells, though overlapped,
are shaped elliptically (Jung et al., 2008). Once the shape
is fixed to elliptical, it is relatively easy to separate cells by
testing the roundness of the objects detected.

Our objective is to devise an effective procedure that can
attain a much higher recognition rate of nanoparticles in
nano images. By accomplishing high recognition, we are
able to obtain statistically more reliable distributions for
sizes and shapes of nanoparticles. Our basic strategy for
attaining a high recognition is to first learn and construct
shape statistics from those clearly identifiable particles and

then use the shape statistics to perform statistical reason-
ing on those nanoparticles insufficiently informed by nano
images.

The shape statistics implies the variations in shapes
within each predefined shape categories. The procedure to
construct the shape statistics is described in the bottom
part of Fig. 2. It starts off by extracting the boundaries
of nanoparticles, which contain sufficient information for
their morphology. If a particle is well separable from the
background and thus its boundary can be completely ex-
tracted, the procedure is to extract the shape features from
the boundary and to determine the shape class to which
the feature belongs. There are two major challenges. The
first one is to extract low-dimensional shape features in-
variant to undesired variations; e.g., rotation, shift, and
scaling of shapes. We propose a non-linear projection to
map boundaries to shape features having the invariance
property (Sections 3 and 4). The second challenge is to
classify a given shape feature into a set of predetermined

Fig. 2. Logical flow of the morphology analysis: white boxes depict the different representations of morphology data. Gray boxes
represent the steps in the procedure for data representation and analysis. The number in each gray box refers to a section in this
article. Arrows show the logical input–output between the white and gray boxes.
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Statistical method for nano-imaging 509

shape classes with minimal human intervention. For that,
we use a multi-class semi-supervised clustering method
(Section 5).

If a particle overlaps with other particles and its bound-
ary is barely separable from the background, we need more
analysis on the particle (Section 6). This part is reflected in
the top part of Fig. 2. For the case of overlaps, the bound-
aries from many particles compose a complicated pattern of
composite boundaries (see Fig. 7). We develop a boundary-
split method that separates the composite boundaries into
several simple boundaries, one for each particle. Some parts
of the separated boundary are missing because of occlusion
by other particles. We then perform a statistical reasoning
to recover the missing parts by using a procedure based on
the Functional Principal Component Analysis (FPCA).

This article provides a multistage procedure for extract-
ing morphological information on nanoparticles. Because
of the complicated nature of the real application, it is
necessary for our procedure to consist of multiple steps.
Our contribution is to sort out the necessary steps and to
identify the statistical methods to apply in order to solve
the practical problem. The purpose of this article is not the
development of brand new statistical methods but rather
the novel application of existing ones in this emerging
engineering problem of nano-imaging. Our procedure
incorporates several statistical learning tools including
multidimensional scaling, semi-supervised clustering,
multi-class classification, peak detection, and FPCA.
While each statistical method focuses on one aspect of
the problem, what provides the complete solution is the
appropriate integration of all the components.

The rest of this article is organized as follows. Section 2
provides more details regarding nano-imaging. Sections 3
to 5 explain an affine-invariant shape feature space along
with the semi-supervised shape clustering method work-
ing in the feature space. Section 6 is about the statistical
inference on particle boundaries partially hidden in nano
images. Finally, Section 7 presents the size and shape dis-
tributions obtained by our method as well as comparisons
with those from ImageJ. Section 8 concludes this article.

2. Transmission electron microscopy

The particular nano metrology device used in this research
for analyzing the nanoparticles is the Transmission Elec-
tron Microscope (TEM). The nanoparticles we analyzed
were mostly gold particles in a water-based solution. In or-
der to observe the morphology of nanoparticles, a drop of
the solution was deposited on a sample holder; i.e., a TEM
carbon grit. After the water had evaporated, the nanopar-
ticles were observed using the TEM. A JEOL 2010 high-
resolution TEM operating at 200 kV accelerating voltage
was used, which has a 0.27-nm point resolution. The micro-
scope transmits a beam of electrons through the particle-
deposited grit such that a gray-scale image was obtained.

Usually, one pixel of the gray-scale image has 256 possi-
ble gray-scale values. Refer to Fig. 1 for examples of TEM
images.

Due to the absorption of electrons by atoms, the regions
occupied by the nanoparticles usually look darker in the
image. The darkness pattern may be related to the crys-
tal structure and/or thickness of nanoparticles. Addition-
ally, one can see many tiny dark dots in the background,
which are uniformly distributed throughout the image re-
gion. These dark dots are generated because the atoms of
the carbon grit also absorb electrons. One may also notice
a thin white area wrapping around the whole or partial
boundary of a particle. This is the result of having surfac-
tants on the rim of the particle. The surfactants are added
to alleviate the aggregating effect among particles in the
process of synthesis.

3. Representation of particle boundaries

To extract the size and shape distributions of nanoparticles
in a TEM image, we need first to recognize the boundaries
of particles and have a convenient mathematical represen-
tation of these boundaries. We address two issues in this
section: (a) extracting the particle boundaries in a TEM
image and (b) representing the boundaries using paramet-
ric curves.

To obtain particle boundaries, we use an established edge
detection technique. Edge detection is a research topic that
has been thoroughly studied in the image processing liter-
ature. We chose to use Canny’s algorithm (Canny, 1986),
one of the mature algorithms having a high sensitivity in
edge detection. The edges detected by applying Canny’s al-
gorithm to a TEM image are in a far greater number than
needed for forming the boundaries of nanoparticles. We ap-
ply a simple thresholding rule (Gonzalez and Woods, 2002,
pp. 760–769) that can remove the unnecessary edges.

Every extracted boundary is in the form of a set of pixel
locations. To make the subsequent shape analysis easy,
we change the boundary representation into a paramet-
ric curve. For shape analysis, a basic requirement for the
parametric curve is invariance under rotation, translation,
and scaling; that is, the set of parameters representing a
shape does not change when an object of the same shape
rotates, translates, or changes size.

To meet the invariance requirement, we parameterize a
particle boundary by modifying the polar coordinate sys-
tem. In this parameterization, a boundary is represented by
a set of pairs (ri , θi ), where ri is the normalized distance of
the i th point on the boundary to the gravity center of the
particle, and θi is the angle between a prespecified axis and
the directed line connecting the gravity center and the i th
point. If Ri is the physical distance from the gravity center
to the i th point, the normalized distance ri is defined as
ri = Ri/µR, where µR is the sample average of Ri . Note
that using the sample average of Ri is a popular way to
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510 Park et al.

Fig. 3. Representation of nanoparticle boundaries; in (a), the black dot is the gravity center of the triangle and the gray points are
pixels sampled from the boundary of the triangle, which correspond to the gray points in (b).

measure the size of a shape (called centroid size) for the
purpose of scaling (Dryden and Mardia, 1998, pp. 23–24).

As shown in Fig. 3, the result of this parameterization is
a curve (or a set of functional data) in the r–θ coordinate
system. Since both r and θ are defined relative to the gravity
center, they are invariant to translation. This parameteri-
zation is scale invariant because the distance is normalized
and the angle is not influenced by scaling. However, the pa-
rameterization is not yet rotation invariant; this issue will
be addressed later in Section 4.

This parameterization characterizes convex shapes such
as polygons and circles very well. For example, the curve
with three modes shown in Fig. 3(b) corresponds to the
triangular shape in Fig. 3(a). Similarly, the representing
curve has four modes for a rectangle and so forth for other
polygons. Note that, if we use the same set of angles to
represent all particles and the angles are taken to be evenly
spaced over [0, 2π ], we only need to record the values of
the distances ri .

For non-convex shapes, this parameterization is effective
only for star shapes. Fortunately, the shapes of nanopar-
ticles in our applications are mostly convex. There is a
physical explanation behind this phenomenon. A high
surface-to-volume ratio provides a strong driving force
to speed up the thermodynamic processes that minimize
thermodynamic free energy and, as a result, materials
with a high surface-to-volume ratio are not stable. Since
convex shapes have smaller surface-to-volume ratios than
non-convex shapes, the shapes of nanoparticles are prone
to being stabilized to convex shapes. For this reason, the
use of our parameterization is appropriate for the analysis
of nanoparticles.

4. Feature extraction by non-linear dimension reduction

To analyze the variations of shape, we need to obtain a
sufficient number of parametric curves in each shape class,

which demands a shape clustering method. There are two
technical difficulties hindering accurate shape clustering.
First, many clustering methods rely on using a distance or
similarity measure between the objects to be clustered; how-
ever, for morphology analysis there is no straightforward
definition of the similarity measure between a pair of para-
metric curves because a parametric curve is rotationally
variant. Second, the dimension of the resulting parametric
curves from a particle is high. It is well known that clus-
tering analysis methods using a similarity measure work
poorly in high-dimension spaces (Steinbach et al., 2003,
pp. 12–13).

In this section, we provide a solution that addresses these
two difficulties. We define a rotationally invariant similarity
measure on the space of parametric curves and a non-linear
projection of the parametric curves to a low-dimensional
Euclidean space using the technique of Isomap (Tenen-
baum et al., 2000; Choi and Choi, 2007). These two com-
ponents are combined in one procedure, to be explained
below, so that the end result of this procedure is a dimen-
sion reduced, rotationally invariant feature set.

Given m parametric curves f1, . . . , fm, each represents
a boundary of a particle. If each curve is evenly sampled
at every 2π/n for the angle parameter θ , then the curve
can be represented by a vector; e.g., fi = (ri1, ri2; . . . , rin)t.
A large value of n will ensure the accuracy of this vector
representation of the curves but will create problems for
subsequent clustering task. We want to project fi onto a
low-dimensional space by an embedding map φ : Rn →
Rp such that p � n.

Recall that we want φ(fi ) to be rotationally invariant.
Rotating the particle i by the angle of 2π/n clockwise cor-
responds to shifting the elements of fi circularly downward
by one. Thus, the requirement of rotational invariance on
φ(fi ) can be expressed as

φ(fi ) = φ(st ◦ fi ) for all t = 1, 2, . . . , n, (1)
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Statistical method for nano-imaging 511

where st ◦ v is an operator circularly shifting each element
of v downward by t elements, which is defined by st ◦ v :=
(vt+1, . . . , vn, v1, . . . , vt)t for v = (v1, . . . , vn)t ∈ R

n.
Finding a mapping φ meeting the constraints in Equa-

tion (1) is generally difficult. It is considerably easier, how-
ever, to define a rotationally invariant distance between a
pair of curves fi and f j . For this reason, toward the objec-
tive of finding a dimension reduced, rotationally invariant
mapping φ, our strategy is to first define a rotationally
invariant distance, then create a dissimilarity matrix using
such distance, and finally apply the MultiDimensional Scal-
ing (MDS) technique (Kruskal and Wish, 1978) to obtain
this φ.

Given two curves fi and f j , define a rotationally invariant
distance as

di j := d(fi , f j ) = min
t

‖fi − st ◦ f j‖, (2)

where ‖ · ‖ is the Euclidean distance. Since the collection
of particle shapes may form a curved manifold structure
(see Fig. 5), we use the geodesic distance rather than
the Euclidean distance to define the dissimilarity matrix
before applying the MDS technique (Tenenbaum et al.,
2000). The geodesic distance is the distance between
two points over the curvature in a manifold and reflects
the non-linear structure of the data distribution. For
neighboring points, the Euclidean distance provides a
good approximation to the geodesic distance, while for far
apart points, the geodesic distance can be approximated
by adding a sequence of local hops between neighboring
points. As such, to compute the geodesic distances, we
first construct a graph of data points having edges with
non-zero weights di j for the k-nearest neighbors only. Then
define the geodesic distance as the distance of the shortest
path between a pair of two data points. In the following,
g(·, ·) is used to denote the geodesic distance.

To illustrate, see the left subfigure in Fig. 4. Suppose
that all the fi are in a p-dimensional subspace embedded in
Rn (also called p-manifold.) The subspace is approximated
by a surface generated from the meshes of the k-nearest

neighborhood graph, so that the distance in the subspace
is the distance in the graph; this distance is the geodesic
distance g(·, ·). In the figure, the geodesic distance between
fi and f j is the summation of the weights of the edges that
are on the shortest path from fi to f j on the graph.

Given the dissimilarities gi j = g(fi , f j ) produced by the
geodesic distance, we find the low-dimensional features
φ1, . . . , φm of curves f1, . . . , fm such that the Euclidean
distances between the features are close to the correspond-
ing geodesic distances between the curves; that is,

g2
i j ≈ (φi − φ j )

t(φi − φ j ). (3)

Denote by G the dissimilarity matrix whose (i, j )-entry
is gi j and denote the doubly centered geodesic distance
matrix.

τ (G2) = −1
2

HG2Ht, (4)

where G2 is the matrix whose elements are the squares of
the elements of G, and H is the m × m centering matrix with
(H)i j = δi j − (1 − m). If the kernel matrix τ (G2) is positive
semi-definite, the classical MDS technique gives an explicit
solution to the embedding problem. Let τ (G2) = V�Vt

be the eigen-decomposition of τ (G2), then the collection
of p-dimensional features X = [φ1, . . . , φm]t is given by
X = V[ , 1 : p] �[1 : p, 1 : p]1/2, where V[ , 1 : p] is the first
p columns of V and �[1 : p, 1 : p] is the p × p upper-left
corner of �. Unfortunately, because of the use of geodesic
distances in defining G, the matrix τ (G2) is not guaran-
teed to be positive semi-definite. As a remedy, we use the
constant-shifting method that is well studied in the metric
MDS and replace G in Equation (4) by the matrix G̃ with
entries g̃i j = gi j + c(1 − δi j ), where δi j is the Kronecker
delta, and c is the largest eigenvalue of the matrix:[

0 2τ (G2)
−I −4τ (G)

]
. (5)

According to Cailliez (1983), the matrix τ (G̃2) is positive
semi-definite. Therefore, we can apply the classical MDS

Fig. 4. Basic idea of feature extraction: φ(·) maps the parametric curve f from a non-linear manifold M onto a low-dimensional
Euclidean space Rp, such that the Euclidean distance between the transformed curves φ(fi ) and φ(f j ) is “close” to the geodesic
distance g(fi , f j ) defined on the original manifold M. The p (� n) elements in φ(f) are called the p features of the original parametric
curve f.
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512 Park et al.

Algorithm 1. Feature Extraction by Isomap.
1. Construct a k-nearest neighbor graph on

{fi ; i = 1, . . . , m}.
2. Compute G with (G)i j = g(fi , f j ).
3. Compute τ (G) using Equation (4) and compute c by

taking the largest eigenvalue of matrix (5).
4. Compute τ (G̃2) using Equation (4) and also

substituting in G̃2 = G + c(1m − Im), where 1m is an
m × m matrix of ones and Im is an m × m identity
matrix.

5. Perform eigen-decomposition: τ (G̃2) = V�Vt.
6. Obtain X = V[ , 1 : p] �[1 : p, 1 : p]1/2 for a specific

dimension p.

procedure previously described to the modified kernel ma-
trix τ (G̃2) to obtain the desired non-linear embeddings. All
necessary steps for the non-linear embedding are summa-
rized in Algorithm 1.

In the non-linear embedding method, there are two tun-
ing parameters, k (number of nearest neighbors) and p (the
dimension of the reduced space or the embedding), whose
choice are important. To compute the geodesic distances,
we need decide on k, the number of nearest neighbors. If k is
too large, it will cause the “short circuit” edges that shortcut
the true geometry of a manifold reflecting the non-linear
structure of data; if k is too small, it will cause the manifold
to fragment into a large number of disconnected clusters.
Following Samko et al. (2006), we choose k by maximizing
|ρ(D,φk,p)|, where D and φk,p are the matrices of the Eu-
clidean distances between a pair of points in the original
space and the feature space, respectively, and ρ(·, ·) is the

linear correlation coefficient. Note that φk,p depends on p.
Samko et al. (2006) argued that the dataset has its intrinsic
dimension, and subsequently they showed empirically that
p does not change even if k changes. Hence, we decide to
first estimate p for an arbitrary (but reasonable) choice of
k and then choose the optimal k with this p.

In the application to the TEM image in the right-hand
panel in Fig. 1, we extracted 420 (i.e., m = 420) param-
eterized curves, where each curve was represented by a
315-dimensional vector (i.e., n = 315). Subsequently, we
computed the rotationally invariant pairwise distances di j
and constructed the graph structure retaining edges among
the k-nearest neighbors with k = 12. Finally, we projected
fs to a rotationally invariant subspace of dimension three
(i.e., p = 3) to obtain the features φ(f). The number of
neighbors was chosen by maximizing the correlation crite-
rion given in the previous paragraph. The dimension of the
low-dimensional subspace was chosen by using the scree
plot of the kernel matrix τ (G̃2); see the right-hand panel in
Fig. 5. The left-hand panel in Fig. 5 shows the scatterplot
of the 420 curves distributed in the feature space.

5. Semi-supervised clustering of shapes

The low-dimensional features obtained by the non-linear
embedding can be used as inputs to clustering algorithms to
cluster the nanoparticles. However, our experience is that
generic clustering methods do not work well in our con-
text. Such methods tend to overly partition a dataset into
far more groups than what is needed in nanomaterial re-
search. We thus adopt a semi-supervised learning approach
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Fig. 5. Rotational invariance feature extraction. The left panel is the scatterplot showing the projection of the 420 curves in the
three-dimensional feature space. The right panel shows a scree plot of the kernel matrix.
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Statistical method for nano-imaging 513

in which we ask domain experts to determine the number
of shape groups and manually pick a small number of parti-
cles from each shape group. We then use these labeled cases
as training data. It is known that semi-supervised learning
is able to significantly increase the accuracy of clustering
by using a small number of labeled data, together with a
large number of unlabeled data (Zhu, 2005).

There are various semi-supervised learning methods re-
ported in the literature, including using a generative model
with the EM algorithm, self-training, information regular-
ization, and graph-based semi-supervised learning; see Zhu
(2005) for a comprehensive review. We find it convenient
to use the graph-based approach proposed by Zhu et al.
(2003). The basic strategy is as follows. Labeled and unla-
beled data are represented as vertices in a connected graph,
where each edge is assigned a weight that measures the sim-
ilarity between the two data points connected by the edge;
the method produces a label function that is smooth on the
graph and correctly matches the known label. However, the
method was originally designed for binary classification;
here we extend it for multi-class classification.

Suppose that we have l labeled points (φ1, t1), . . . ,

(φl , tl ) from K classes and u unlabeled points (φl+1, tl+1),
. . . , (φm, tm) with m = l + u, where φi ∈ Rp is the fea-
ture for the i th case and ti ∈ {0, 1, . . . , K − 1} is the label
associated with φi ; for unlabeled cases, the ti values are
unknown. Construct a connected graph G = (V, E), where
V is the collection of nodes corresponding to the m data
points, where the coordinates of a data point are specified
by φi , and E is the collection of edges. The edge connecting
φi and φ j is weighted by the similarity measure

wi j = exp
{
−

p∑
d=1

(φid − φ jd )2

σ 2
d

}
,

where φid is the dth component of the feature vector φi ,
and σd , whose choice will be discussed later, is a scale for the
dth feature. Note that the σd -scaled Euclidean distance in
the feature space corresponds to the geodesic distance in the
original (curved) data space by the definition of the feature
mapping. Therefore, the weightings, wi j , closely reflect the
similarities between parametric curves in the original data
space. Our defining of wi j in the feature space is a major
difference from Zhu et al. (2003), in which the weightings
are defined in the original data space.

We construct a vector-valued label function h =
(h0, . . . , hK−1) on G, taking the feature vector φ as its in-
put. We require that the label function reproduce the true la-
bel for the labeled data; that is, hk(φi ) = δti ,k, i = 1, . . . , l,
where δ is the Kronecker delta. For unlabeled data, it is as-
signed the label k∗ if hk∗(φ) = maxk=0,...,K−1 hk(φ). More-
over, it is desirable that we choose the label function h such
that unlabeled points have the same labels as their neigh-
boring points in the graph. These considerations motivate
us to obtain the label function by minimizing with respect

to h the following loss function:

L(h) = 1
2

∑
i, j

wi j‖h(φi ) − h(φ j )‖2

= 1
2

∑
k

∑
i, j

wi j {hk(φi ) − hk(φ j )}2,

subject to the constraints that hk(φi ) = δti ,k, i = 1, . . . , l.
Let W denote the matrix whose (i, j )th entry is wi j and

let hk = (hk(φ1), . . . , hk(φm))t. The loss function can be
rewritten as a quadratic form:

L(h) = 1
2

∑
k

ht
k � hk, (6)

where � = D − W, and D is the m × m diagonal matrix
whose i th diagonal entry is di = ∑

j wi j . To present the so-
lution of this minimization problem, we write the matrices
W and D and the vector hk in block forms, corresponding
to labeled parts and unlabeled parts, respectively:

W =
[

Wll Wlu

Wul Wuu

]
, D =

[
Dll O
O Duu

]
, hk =

[
h(l)

k

h(u)
k

]
,

(7)

where the Os denote matrices of zeros whose dimensions
can be determined from the context. Note that h(l)

k is given
by the constraint hk(φi ) = δti ,k for i = 1, . . . , l. Ignoring
the term that is completely determined by h(l)

k , the loss
function can be written as

1
2

(
h(u)

k

)t
(Duu − Wuu)h(u)

k − (
h(l)

k

)tWulh
(u)
k .

We get the following closed-from expression for the mini-
mized h(u)

k :

h(u)
k = (Duu − Wuu)−1Wt

ulh
(l)
k . (8)

Given the label function in Equation (8), we assign the
label k∗ = arg maxk hk(φl+i ) to the unlabeled feature φl+i
for i = 1, . . . , u.

To choose a suitable scale σd in the weighting function,
we extend the heuristic rule by Zhu et al. (2003) to the
multi-class setting. We prefer a σd that can make the most
confident decision of labels. For a K-vector p with p′1K = 1,
the Shannon’s entropy H[p] measures the uncertainty asso-
ciated with the random variable whose probability distribu-
tion is p. Thus, a small value of H[p] is associated with a case
that the random variable is more focused on certain value.
Since the label function after appropriate normalization in-
duces a probability distribution on the labels, we propose
to find σd by minimizing the following average entropy:

H(h) := 1
u

l+u∑
i=l+1

Hi {h(φi )}, (9)
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514 Park et al.

Fig. 6. Results of the semi-supervised learning: Each marker represents a low-dimensional embedding of a parametric curve. The
triangular, rectangular, circular, and diamond-shaped markers represent respectively triangular, rectangular, circular, and rod-shaped
particles. (a) The initial assign of labels shows a mix of a few manually assigned shape labels and the unassigned ones marked using
the small dots and (b) the situation after the semi-supervised learing process.

where

Hi {h(φi )} = H
[

h0(φi )∑
k hk(φi )

,
h1(φi )∑
k hk(φi )

, . . . ,
hK−1(φi )∑

k hk(φi )

]
,

is the entropy associated with the i th unlabeled case. This
minimization problem can be solved by a gradient-descent
algorithm. Derivation of the gradients is straightforward
and omitted.

In the application to the real TEM image shown on the
right panel of Fig. 1, we asked domain experts to determine
the number of shape groups and manually pick 10 particles
from each shape group to form the labeled data. According
to the experts, it is sufficient to distinguish a nanoparticle
into one of the four shapes: triangles, rectangles, circles,
and rods. These four shapes were assigned labels 0–3, re-
spectively. Figure 6 presents the results of applying our
semi-supervised learning procedure.

6. Dealing with incomplete and composite boundaries

Real TEM images do not often provide enough evidence
to obtain full particle boundaries. One cause of such sit-
uations is that a part of the boundary cannot be detected
due to lack of contrast with the background, so that the
detected boundary has a missing part, forming an incom-
plete boundary (see the first row in Fig. 7). Another cause
of such situations is that multiple particles form clusters. In
this case, the boundaries from several nanoparticles over-

lap with one another, forming a composite boundary (see
the second through to the last row in Fig 7).

This section describes how to infer the full boundaries
from incomplete and composite boundaries. We first pro-
pose in Section 6.1 a convexity analysis approach to split a
composite boundary into individual boundaries (of single
particles), each of which becomes an incomplete boundary.
Next, in Section 6.2, we discuss classification of particles
with incomplete boundaries. Finally, we present a shape
recovery method in Section 6.3 that estimates the missing
part of an incomplete boundary.

6.1. Convexity analysis for splitting touching particles

As we discussed in Section 3, the shapes of nanoparticles
that are of concern in our applications are mostly convex.
On the other hand, we notice that a composite boundary
formed by multiple touching particles usually has a non-
convex shape. A convex composite boundary only occurs in
the rare case of severely overlapped particles, and it is natu-
rally difficult, even for a domain expert, to tell for whether
it is one big particle or a composition of multiple overlap-
ping particles. Thus, we focus on splitting the boundaries of
the touching particles that satisfy the above non-convexity
condition.

The first step is to get the smallest convex hull covering a
composite boundary. We used the Qhull algorithm, which
is a fast algorithm to find a convex hull (Barber et al., 1996).
Convex hulls of a few examples of composite boundaries
are illustrated in Fig. 8.
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Statistical method for nano-imaging 515

Fig. 7. Examples where an edge detection algorithm fails to extract the complete, enclosed boundaries. The first row: there are
missing parts in the boundary detected. The second through last rows: composite boundaries resulting from overlapping or touching
nanoparticles. From the first to last columns: the original images, boundaries detected by an edge detector, a function representing the
shortest distance from each boundary point to the corresponding smallest convex hull, results of splitting the composite boundary
to individual boundaries, recovered boundary.

In the next step, we find the shortest distance from each
point on a composite boundary to its corresponding con-
vex hull. The shortest distance can be viewed as a function
of the polar angle representing the boundary points; see
the third column in Fig. 7. It is not difficult to see that
the intersecting points between individual boundaries in a
composite correspond to the local maxima of the function.
This understanding suggests that we only need to find the
local maxima of the distance function in order to identify
the splitting points for partitioning a composite boundary
into a number of incomplete boundaries of individual parti-
cles. To locate the local maxima of the distance function, we
first use wavelet smoothing to remove noises and then list
potential local maxima by finding downward zero-crossing
of the first derivative of the smoothed curve (Yang et al.,
2009). When two local maxima are too close, we compare
their values and regard only the bigger one as a local max-

imum. Some examples of applying the splitting procedure
are given in the fourth column of Fig. 7.

6.2. Classification of particles with incomplete boundaries

Incomplete boundaries arise either because of lack of back-
ground contrast or as an outcome of splitting a composite
boundary. Subsequently, we need to classify the incomplete
boundaries and also fill in the unobserved parts. We adopt
a heuristic approach here: we first classify the particles with
incomplete boundaries and then fill in the missing part of
a boundary using the classification result.

We propose to use a k-nearest neighbor (k-NN) classifier
to classify a nanoparticle with incomplete boundary infor-
mation. We first have a rough estimate of the gravity center
for the nanoparticle by taking the center of a circle fitted
with the non-missing part, where the circle minimizes the
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516 Park et al.

Fig. 8. Convex hulls of the composite boundaries: the dashed lines with rectangular markers are convex hulls and the rectangular
markers are the extreme points of the convex hulls.

mean squared distance between itself and the non-missing
part. With this estimated gravity center, the method in Sec-
tion 3 can be used to yield a partially observed parametric
curve representing the incomplete particle boundary. We
would like to remark that our gravity center estimate would
be inaccurate if the missing part is significant and such in-
accuracy would have a big impact on subsequent analysis.
A more sophisticated method needs to be developed for
such situations, which we reserve for future research. In our
study, we apply our method only to those particle bound-
aries whose missing part, if there is any, is no more than
20% of the entire boundary, measured in terms of polar
angles.

To apply a k-NN classifier, we need to define a distance
measure to identify neighbors. For a completely observed
curve fi ∈ Rn in a training dataset and the partially ob-
served curve f∗ ∈ Rs , a distance is defined as

d∗(fi , f∗) = min
t=1,...,n

‖f∗ − fi (t, s)‖, (10)

where fi (t, s) is a circularly completed subpart of fi start-
ing from t and having length s. That is, the distance is the
minimum of the distances between f∗ and all possible con-
tinuous subparts of fi with the same length as f∗. Based on
d∗, we select k-nearest neighbors of f∗ among all curves in
the training dataset and then estimate the shape label of f∗
by a majority vote of these neighbors. The neighborhood
size k can be determined by a 10-fold cross-validation.

6.3. Recovering the missing part of the boundary

We borrow information from the complete boundaries in
the same shape group to recover the missing part of an in-

complete boundary. The classification result from the previ-
ous subsection (Section 6.2) can be used to decide on which
shape group to use. We propose the following procedure.
First, apply the method of FPCA proposed by Huang et al.
(2008) to summarize the variations of shapes in a given
shape group. In particular, use the complete boundaries in
the same shape group to learn the principal component
basis functions. Next, use the observed part of the incom-
plete boundary to obtain the corresponding principal com-
ponent scores. Finally, combine the principal component
basis functions and the principal component scores to fill
in the missing part.

Specifically, we use the parametric curve representation
of particle boundaries. Let f∗ = (f∗t

obs, f∗t
mis)

t ∈ Rn be a par-
tially observed curve, where f∗

obs ∈ Rs and f∗
mis ∈ Rn−s de-

note respectively its observed and unobserved parts. Let
f1, f2, . . . , fr ∈ Rn be a sample of completely observed
curves, in the same shape group as f∗, and let f̄ be the sample
mean of these curves. Consider the following expansion:

fi = f̄ + v1u1i + · · · + vkuki , i = 1, . . . , r, (11)

where v1, . . . , vk are the principal component curves and
u1i , . . . , uki are the corresponding scores. The principal
component curves are obtained by sequentially minimiz-
ing a regularized least squares criterion that penalizes the
roughness of the curves (Huang et al., 2008). In particular:

v1 = arg max
v

{
r∑

i=1

‖fi − f̄ − v1u1i‖2 + α

r∑
i=1

u2
1i vt
v

}
,

where � is a penalty matrix and α is a penalty parame-
ter. Subsequent principal component curves are obtained
similarly by using the residuals after removing preceding
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Statistical method for nano-imaging 517

components. Following Huang et al. (2008), we use gen-
eralized cross-validation to select the penalty parameter
α and we choose the number of principal components so
that the majority (e.g. 99%) of the sample variation is ac-
counted for. The reason for using roughness penalties is
to guarantee that the recovered particle boundaries are
smooth. Note that Equation (11) can be rewritten in a
matrix form as fi = f̄ + Vui where V = (v1, . . . , vk) and
ui = (u1i , . . . , uki )t. Similar to what we did in Equation
(7), by partitioning f̄ and V, the partially observed curve
has the expansion:

[
f∗
obs

f∗
mis

]
=

[
f̄obs

f̄mis

]
+

[
Vobs

Vmis

]
u∗. (12)

We run a regression using the first part (i.e., the obs part)
of the system to obtain the vector of principal score u∗ and
plug it into the second part (i.e., the mis part) to get the

missing part of the curve. See the last column in Fig. 7 for
some examples of the recovered boundaries.

After recovering the unobserved part of a boundary, the
complete boundary can be used as an input to the learning
method of Section 5 to reclassify the particle. We find that
such a reclassification step is unnecessary and doing so
rarely produces a different result. This is expected because
the recovering step is based upon pre-classification of shape
category information, meaning that the missing boundary
is recovered based on the understanding that the complete
boundary is, for instance, a circle shape. With the recovered
boundary, the whole boundary will always re-enforce the
belonging of that boundary to the shape category it was
initially classified (i.e., the circle shape in this instance).

7. Obtaining size and shape distribution

The final destination of the statistical procedure proposed
in Sections 3 to 6 is to obtain the summary statistics of the

Fig. 9. Recognition results from our method for Image 4: 259 particles manually identified and 246 recognized by our method,
recognition rate = 94.8%. The top figure shows the boundaries of the recognized ones.
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518 Park et al.

morphology of nanoparticles, which usually includes three
major distributions: (i) the size distribution (the size of a
particle is characterized by the length of the longest axis of
the corresponding boundary); (ii) the shape distribution;
and (iii) the distribution of the aspect ratios, defined as the
length of the perimeter of a boundary divided by the area of
the same boundary. The three statistics are widely adopted
in nanoscience and engineering to characterize the mor-
phology of nanoparticles and are believed to strongly af-
fect the physical or chemical properties of the nanoparticles
(El-Sayed, 2001; Nyiro-Kosa et al., 2009). For example, the
aspect ratio is considered an important parameter relevant
to certain macro-level material properties because physical
and chemical reactions are believed to frequently occur on
the surface of molecules so that as the aspect ratio of a
nanoparticle gets larger, those reactions are more active.

Now we report the results of applying our proposed pro-
cedure to six actual TEM images under different scales. One

image consists of palladium (Pd) nanoparticles prepared by
microwaving a palladium solution with a surfactant. The
remaining five images contain gold (Au) nanoparticles re-
duced from a gold salt solution heated and stirred, adding
different ratios of citrate concentration. Figures 9 and 10
are two examples, where the distributions of size, shape, and
aspect ratio are displayed in histograms. The results from
the other images are omitted for succinct presentation of
the article.

Those particles that are successfully recognized and clas-
sified are labeled by an integer number in the image. One
can observe that our procedure recognizes the majority.
Most of the unlabeled particles are those located on the
border of the image, of which a significant portion was
not observed. Domain experts deem that these particles
do not need to be recognized so that they are intention-
ally removed before our analysis. Our classification results
of particle type was also verified by domain experts and

Fig. 10. Recognition results from our method for Image 6: 396 particles manually identified and 351 recognized by our method,
recognition rate = 88.6%. The top figure shows the boundaries of the recognized ones.
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Statistical method for nano-imaging 519

Fig. 11. Recognition results from ImageJ for Image 4: Only the recognized particles are shown. Out of the 259 particles, 124 are
recognized. Recognition rate = 47.8%.

deemed satisfactorily accurate. This verification was done
manually by the domain experts, who looked through each
image, compared the recognition result with the original
image, and then counted the number of correctly and incor-
rectly recognized subjects. This manual verification appears
the only valid way for the time being.

As part of the verification process, we compared the ac-
curacy of our method with the imaging tool ImageJ that is
popularly used in nanotechnology research. Table 1 sum-
marizes the number of nanoparticles recognized by our

method andImageJ for all six TEM images. For three TEM
images with slight overlaps among particles, our procedure
recognized 89–100% of the total particles, compared to 78–
95% recognition rates of ImageJ. For three other TEM im-
ages where many particles are tangled with other ones (the
images in Figs. 9 and 10 are two of them), ours approach 70–
95% recognition rates, whereas ImageJ’s recognition rates
were 28–48%; see Figs. 11 and 12. Considering the frequent
occurrence of overlaps in TEM images of nanoparticles, the
existing software tool cannot be more than a supporting

Table 1. Comparison of performances on nanoparticle recognition.

The number of correctly recognized ones

Samples Degree of overlap Total number of particles Our method ImageJ

Image 1 Low 66 59 52
Image 2 Low 91 87 87
Image 3 Low 64 64 53
Image 4 (Figs. 9 and 11) Pervasive 259 246 124
Image 5 Pervasive 41 29 17
Image 6 (Figs. 10 and 12) Pervasive 396 351 110
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520 Park et al.

Fig. 12. Recognition results from ImageJ for Image 6: Only the recognized particles are shown. Out of the 396 particles, 110 are
recognized. Recognition rate = 27.8%.

tool. The high recognition rate of our method can facilitate
nanomaterial exploration more effectively.

8. Conclusions

Our research presents a multistage, semi-automated pro-
cedure to characterize the morphology of nanoparticles,
including the following major components:

1. We use a parametric curve to characterize the mor-
phology of nanoparticles. The curve captures the es-
sential features of the shape of the nanoparticles and is
translation and scaling invariant, which are important
properties to have in order to ensure a robust shape
classification.

2. We introduce the kernel matrix-based projection that
projects a high-dimensional curve onto a rotation-
invariant subspace of much lower dimensions.

3. We use semi-supervised learning to classify the para-
metric curves into a number of distinctive shape groups.
Minimal degree of human expert inputs is required at

this step. Otherwise, the whole procedure is rather auto-
mated. This step clusters the complete, enclosed bound-
aries in a TEM image and characterizes the variation in
shapes within each shape group, providing the informa-
tion to be used in the latter FPCA-based missing value
estimation.

4. We use a convexity analysis to split composite bound-
aries into individual ones and recover the missing part
of a boundary using the FPCA-based missing value es-
timation.

The merit of our development is to provide a tool for
nanotechnology practitioners to recognize the majority of
the nanoparticles in nano images and to obtain morphol-
ogy summary statistics based on the recognized particles.
We expect that our work expedites the process to quantify
the morphology information of nanoparticles, which can
help evaluate how well the synthesis process of nanoparti-
cles is controlled.

A final remark is on our strategy tackling the nano-
imaging problem. We employ a divide-and-conquer strat-
egy consisting of multiple steps. As mentioned earlier, this
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is a result of the complicated nature of the real application.
For each step we need to make choices of which statistical
method to use, and our choices have been guided by the real
application and our interaction with domain experts. While
it is tempting to have a single statistical model that can han-
dle the entire problem in a unified framework, to the best of
our knowledge that such a unified model does not yet exist.
Our experience in obtaining the current results also sug-
gests that such a development is very challenging, because
real applications present a number of difficult statistical and
engineering issues that need to be addressed, including in-
variant, low-dimensional parameterization, non-standard
data distribution on a manifold, and handling of the miss-
ing data. Improving each step of the procedure as well as
developing a unified framework will require ingenious ef-
forts from the nano-imaging community.
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