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Detecting Nuclear Materials Smuggling: Performance
Evaluation of Container Inspection Policies

Gary M. Gaukler,1,∗ Chenhua Li,1 Yu Ding,1 and Sunil S. Chirayath2

In recent years, the United States, along with many other countries, has significantly increased
its detection and defense mechanisms against terrorist attacks. A potential attack with a nu-
clear weapon, using nuclear materials smuggled into the country, has been identified as a
particularly grave threat. The system for detecting illicit nuclear materials that is currently
in place at U.S. ports of entry relies heavily on passive radiation detectors and a risk-scoring
approach using the Automated Targeting System (ATS). In this article we analyze this ex-
isting inspection system and demonstrate its performance for several smuggling scenarios.
We provide evidence that the current inspection system is inherently incapable of reliably
detecting sophisticated smuggling attempts that use small quantities of well-shielded nuclear
material. To counter the weaknesses of the current ATS-based inspection system, we propose
two new inspection systems: the Hardness Control System (HCS) and the Hybrid Inspection
system (HYB). The HCS uses radiography information to classify incoming containers based
on their cargo content into “hard” or “soft” containers, which then go through different in-
spection treatment. The HYB combines the radiography information with the intelligence
information from the ATS. We compare and contrast the relative performance of these two
new inspection systems with the existing ATS-based system. Our studies indicate that the
HCS and HYB policies outperform the ATS-based policy for a wide range of realistic smug-
gling scenarios. We also examine the impact of changes in adversary behavior on the new
inspection systems and find that they effectively preclude strategic gaming behavior of the
adversary.
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tion; smuggling interdiction

1. INTRODUCTION

Large-scale terrorist attacks remain among the
most alarming threat situations in the world to-
day. Arguably the most disquieting scenario is
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presented by the possibility of an attack using a nu-
clear device.

While the worldwide arsenal of nuclear weapons
(in the form of warheads and fully assembled de-
vices) is generally believed to be well secured and
accounted for,(1) the same claim unfortunately can-
not be made for stockpiles of weapons-usable nu-
clear materials, such as plutonium and highly en-
riched uranium (HEU), the so-called special nuclear
materials (SNM). In the wake of the turmoil sur-
rounding the disintegration of the Soviet Union, for
example, nuclear material from Soviet reactors may
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have been diverted into illegal channels in unknown
quantities.(2)

The danger, then, is that a terrorist group may
acquire sufficient quantities of these nuclear materi-
als, smuggle them into the United States, assemble
them into a nuclear device, and use this device on a
target on U.S. soil.

Illicit trade and smuggling of nuclear materi-
als occur remarkably often: according to the Inter-
national Atomic Energy Agency (IAEA), between
1993 and 2006, there were 1,080 confirmed inci-
dents of illicit trafficking and unauthorized activities
involving nuclear and radiological materials world-
wide. Eighteen of these cases involved weapons-
usable materials, which could be used to produce a
nuclear weapon.(3)

Nuclear material could be smuggled into the
United States in a variety of ways: hidden in a vehi-
cle, in cargo containers, sent through mail, or carried
in personal luggage through an airport. Among these,
standard cargo container shipping is particularly vul-
nerable to smuggling nuclear materials. More than
15 million cargo containers arrive in the United
States each year,(4) and combined they carry more
than 95% of U.S. imports by weight and 75% by
value.(5)

Detecting nuclear smuggling, whether it be at a
domestic or a foreign port, is difficult due to a num-
ber of reasons. First, compared to many other nat-
ural and man-made sources of radiation, HEU and
plutonium are relatively “low-brightness” mate-
rials.(6,7) This means that there is a low level of
gamma and neutron particles being emitted by a
unit quantity of plutonium and, in particular, HEU.
The lower the amount of particles emitted, the more
difficult it is to detect the presence of the material
using detectors.

Compounding this difficulty is the expectation
that a smart adversary may try to minimize chances
of detection by smuggling very small amounts of ma-
terial. Approximately 15 kg of HEU are necessary
to fuel a nuclear weapon,(8) but an adversary could
conceivably attempt to smuggle this total amount
in much smaller quantities, perhaps down to 1 kg.
For reference, 1 kg of HEU in solid form is approx-
imately the size of a tennis ball. The smaller the
quantity smuggled, the lower the number of particles
emitted. In addition, both the gamma and neu-
tron emissions from HEU and plutonium are easily
shielded by large amounts of high-density metal, such
as lead.

Furthermore, there are many sources of neu-
tron and gamma radiation everywhere—from cos-
mic rays to emissions from concrete floors, ceramic
tiles, fertilizer, bananas, cat litter, etc. Thus, the de-
tection equipment needs to be able to differenti-
ate at some level between radiation coming from
background or from benign sources, and radiation
coming from smuggled HEU or plutonium. There-
fore, at any inspection station, an essential trade-
off exists between time and accuracy: inspecting
more stringently tends to cost more and delays the
cargo longer, but has a better chance of detecting
smuggled nuclear material, if it is present. There
are several detector technologies available, and each
technology has limitations in its ability to detect and
identify nuclear materials. Thus, the U.S. govern-
ment needs to develop useful inspection policies to
decide which technology to use for which container,
the sequence of detector use, and the detector oper-
ational parameters.

The inspection system currently in use at U.S.
and foreign ports is a layered system, which relies
heavily on intelligence information supplied by a
rule-based software system that attaches risk scores
to individual cargo containers. This software system
is called the Automated Targeting System (ATS).
We mathematically analyze this layered inspection
system in this article and demonstrate its perfor-
mance for several smuggling scenarios. Based on
the results of our study, we argue that this current
layered inspection system is inherently incapable of
reliably detecting sophisticated smuggling attempts
that use small quantities of well-shielded nuclear
material.

To counter the weaknesses of the pure ATS-
based inspection system, we develop and analyze
two new inspection systems in this article. The first
such system (initially proposed in Gaukler et al.,(9)

see also Section 2), which we call the Hardness
Control System (HCS), uses information obtained
from radiographic imaging to determine whether a
given cargo container contains a large amount of
shielding material (a “hard” container), or not (a
“soft” container). Then, based on this classification,
containers undergo different inspection treatment.
The second new inspection system, referred to as the
Hybrid Inspection System (HYB), integrates both
this radiographic imaging as well as the current ATS
approach into a single inspection system. We ana-
lyze and contrast these two inspection systems with
the ATS-based system and evaluate their response
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to several possible adversary strategies. Our study
indicates that for a wide range of scenarios, both
the HCS and the HYB significantly outperform the
ATS-based system, especially against sophisticated
adversary strategies.

The remainder of the article is organized as
follows. Section 2 provides a literature review of
related research on preventing the smuggling of
illicit nuclear materials or nuclear weapons. The cur-
rent ATS-based inspection system is modeled in
Section 3, and Section 4 contains an analysis of the
ATS-based inspection system. Sections 5, 6, and 7
present and evaluate the proposed Hybrid inspection
model. Overall conclusions and discussion are pro-
vided in Section 8.

2. RELATED WORK

Our article expands on the work done by
Gaukler et al.,(9) in which the authors propose replac-
ing the current ATS-based detection system with a
detection system that is radiography based. Rather
than relying on intelligence information, the pro-
posed system relies on calculated hardness measures
obtained from radiographic images taken of each in-
coming container. From these images, a set of possi-
ble “container scenarios” is formed. A container sce-
nario reflects the densities, positions, sizes, etc. of the
items inside the container. The system is evaluated
with respect to detection probabilities and inspection
delay times, and both of these values are conditioned
on the distribution of container types. A fundamen-
tal weakness of this radiography-based system is the
dismissal of the intelligence information provided by
ATS. A container’s path through the detection sys-
tem is determined solely by the data gathered from
that container’s radiographic image with no consider-
ation of intelligence information in the manifest data
that may suggest an alternative path.

In this article, we seek to eliminate this weakness
by proposing a hybrid system that combines the use
of both radiography imaging and the ATS system.
Another major difference is that in Gaukler et al.,(9)

the objective of the inspection policy optimization is
to maximize a weighted average of detection proba-
bilities for different container types. Such an objec-
tive formulation makes it potentially easier for ad-
versaries to game the system if they are able to select
a container type that has a low detection probability
(DP). Instead, in our current work, we use an objec-
tive of maximizing the minimum DP. This gives as-
surance that independent of the adversaries’ gaming

abilities, the lower bound on DP is maximized. Fi-
nally, in our current model we allow for container-
type-specific false alarm rates, whereas in Gaukler
et al.,(9) there was a single false alarm rate applied
to all containers types.

Other research that has focused on the inspec-
tion system of shipping containers with an empha-
sis on the threat of nuclear materials includes that of
Wein et al.,(10) Elasyed et al.,(11) and Young et al.(12)

The approach of Wein et al.(10) is an 11-layer secu-
rity system that calls for shipper certification, con-
tainer seals, and a targeting software system. Addi-
tionally, passive, active, and manual inspection of the
containers is performed both at foreign and domes-
tic ports. A Stackelberg game is used to formulate
the attacker-defender strategies and ultimately ob-
tain the optimal inspection strategy with respect to
budget constraints and port congestion. Unlike this
11-layer system, our hybrid model incorporates ra-
diography information along with the notion of con-
tainer types. This allows for differentiation between
containers laden with different materials, an impor-
tant factor in measuring the effects of container loads
on inspection system performance. Elsayed et al.(11)

formulate a constrained optimization problem by
modeling the inspection system at the port of entry
as a sequential problem in which both the threshold
levels and the sequence of the sensors must be de-
termined. They employ the enumeration method to
solve the optimization problem, minimizing total cost
subject to given budget constraints. Young et al.(12)

introduce to this model the additional objective of
minimizing the total expected time in the system. The
optimal sensor arrangement and optimal threshold
levels are determined with a multiobjective optimiza-
tion approach.

Much research is comparable to our own in that
it focuses on the threat of nuclear materials smug-
gling but differs from our work in that it does not
examine the tactical problem of deciding the specific
inspection policy at a given location. Similarly, other
research works do propose an inspection policy at a
given location but the threat in question is not neces-
sarily that of nuclear materials.

The problem explored by Pan(13) and Morton
et al.(14) as part of the second line of defense is the
strategic, rather than tactical, problem of locating
inspection stations and nuclear materials detectors
along a long border when the inspection policy
is assumed to be given. In order to determine
these optimal locations, Pan(13) and Morton et al.(14)

develop a class of stochastic network interdiction
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models. The threat of nuclear materials is also the
subject of the work done by Wein et al.,(15) Atkin-
son et al.,(16) and Atkinson and Wein;(17) however,
in their work, it is assumed that nuclear materials
have already been successfully smuggled beyond the
border in question. In particular, they focus on the
situation in which a terrorist is attempting to drive
an already-assembled nuclear or radiological weapon
toward a target in a city center. Wein et al.,(15) Atkin-
son et al.,(16) and Atkinson and Wein(17) investigate
the last line of defense from different points of view,
and formulate and solve the corresponding optimiza-
tion problems. They apply stochastic dynamic pro-
gramming, queuing theory, and game theory in order
to model the behavior of the terrorist and the gov-
ernment both individually and together.

Boros et al.,(2,18) Stroud,(19) and Madigan
et al.,(20) have all provided research on container
inspection systems at the port of entry, but, in this
research, special attention is not paid to nuclear
materials. Boros et al.(18) seek to determine an
optimal inspection strategy for sequential container
inspection. To do so, they develop a large-scale
linear programming model that includes various con-
straints pertaining to factors such as budget, sensor
capacity, and time limits. Stroud(19) and Madigan
et al.,(20) on the other hand, seek the optimal policy
by formulating the inspection sequencing task as
a problem of finding an optimal binary decision
tree for an appropriate Boolean decision function.
The work of Boros et al.(21) reviews and presents
the research work that has been conducted for
improving container inspection procedures using
various optimization techniques.

Another area that lends itself to research very
similar to our own is that of aviation security. For in-
stance, Kobza and Jacobson(22) examine an inspec-
tion system with different layers of detection by
considering bags entering an aviation security sys-
tem, taking several subpaths with different detec-
tion technologies. Unlike our work and the work
down by Wein et al.,(10) however, they do not con-
sider any queuing results. Additional research on
the inspection of aviation passenger baggage for ex-
plosives has been done by Kobza and Jacobson(23)

and McLay et al.(24,25) Specifically, Kobza and Jacob-
son(23) present a method to quantify the effect of de-
pendence in security system architectures. They ex-
amine the Type I and Type II errors of a multide-
vice system and present probability models for access
control security system architectures. McLay et al.(24)

focus on risk-based issues in the detection of explo-
sives in aviation security baggage screening models.

A cost-benefit analysis is performed in order to quan-
tify the tradeoff between intelligence and screen-
ing technology capabilities. Finally, McLay et al.(25)

introduce a new problem, the Sequential Stochas-
tic Passenger Screening Problem, which utilizes pas-
sengers’ perceived risk levels in order to determine
an optimal passenger screening policy that maxi-
mizes the expected number of true alarms, sub-
ject to capacity and assignment constraints. Typ-
ically, the main targeted threat in these cases is
the presence of explosives rather than nuclear
materials.

3. THE CURRENT ATS-BASED
INSPECTION SYSTEM

The current inspection system at a given port is
a layered system comprised of the ATS, as well as
other detection hardware.

The first layer of security is the ATS, an expert
system that identifies suspicious containers based on
their manifest and customs entry document. The
ATS is a decision-support tool used by the Customs
and Border Protection that compares available in-
formation regarding incoming containers with addi-
tional intelligence data in order to assign a risk score
to each container.(26) It does this by considering in-
formation about the origin of the container, its des-
tination, and its declared content. This information
is available through the shipping manifest, the bill
of lading, and other means. This risk score is meant
to communicate whether or not a given container is
likely to contain dangerous or smuggled materials. If
a container receives a risk score above a predeter-
mined cutoff point, it is considered “high risk” and
sent directly to a manual inspection station where its
contents are emptied and reviewed. Containers with
risk scores falling below the cutoff point are consid-
ered “low risk” and proceed to an additional layer of
detection.

This additional layer of detection involves pas-
sive radiation inspection. Passive detectors (such as
the current radiation portal monitors (RPMs) de-
ployed at U.S. borders(27)) measure the emission of
gamma rays as the containers pass through. If a
container fails at this stage of the screening (i.e., it
exhibits too large an emissions level), it is sent to
manual inspection, where the container is opened up
and examined. Passive tests are the fastest means of
radiation detection, with a complete container scan
taking on the order of 30–60 seconds. Manual in-
spection, on the other hand, can take several hours
per container. However, manual inspection is much
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Fig. 1. ATS-based inspection system.

more capable in detecting nuclear materials, if they
are present. A note regarding the use of terminology:
manual inspection is generally referred to as the sec-
ondary inspection, while RPM inspection is part of
the primary inspection.

In addition to RPMs, there also exist active ra-
diation detectors. Active detectors emit gamma or
neutron particles that pass through the container,
while monitoring the particle counts being emitted
from the container. This particle bombardment ex-
cites a reaction in nuclear material, if such mate-
rial is present. This reaction produces a significantly
higher particle emissions count when nuclear mate-
rials are present, which can then be used to ascertain
the presence of nuclear materials.(28) Failure at active
screening would send a container to be inspected
manually. However, apart from radiography, active
detector technology is, at the time of writing of this
article, only available in laboratory testbed settings
and is not in use at ports of entry in the United States
or abroad. We therefore do not include an active de-
tector node in our analysis.

A flow graph of the current inspection system is
given in Fig. 1 . We point out that this inspection sys-
tem could either represent a domestic (U.S.) port, or
a foreign port. In the case of a foreign port where
containers are shipped to the United States, the load-
ing node represents the actual loading of containers
onto a ship, whereas in the case of a domestic port,
the loading node represents the pick up of a con-
tainer via truck or rail.

From Fig. 1, it is immediately clear that the per-
formance of the ATS-based detection system is a di-
rect function of (1) the reliability of container risk
scores, and (2) the capability of the passive RPMs.
(We assume from here on that when a container with
SNM is manually inspected, the DP is 1.)

4. EXAMINING THE RELIABILITY OF THE
ATS-BASED SYSTEM

The performance of the ATS-based system is
predicated on two components: the ability to assign
“correct” risk scores to incoming containers, and the
capability of passive detectors in detecting any infil-
trated containers that the ATS may have missed.

Problems arise in the ATS system whenever one
considers the possibility of “incorrect” risk score cal-
culations. Imperfect intelligence may easily lead to
the misclassification of a container as either “high”
or “low” risk. If a container is misclassified, it may
lead to one of two issues: (1) unnecessary congestion
of the system or (2) undetected nuclear materials.
The first would arise if a nondangerous container is
classified as “high risk” and manually inspected and
the second if a dangerous container is sent directly to
passive inspection where the nuclear materials may
go undetected.

It is important to understand that the ATS sys-
tem was not created exclusively to aid in detecting
nuclear materials smuggling. Rather, it is a compre-
hensive tool, developed to aid in the detection of
all types of smuggling attempts, such as intercept-
ing counterfeit goods, weapons smuggling, and ille-
gal narcotics trafficking. As such, the container traits
that the ATS system is checking against to ascer-
tain a compromised container exhibit a wide vari-
ety and are necessarily of a general nature. More-
over, there is no historical data on nuclear smug-
gling events that targeted the United States, and
thus it is not clear what signs of nuclear smug-
gling one would look for. Machine learning algo-
rithms are not applicable due to this same lack of
data. One might be inclined to use other smuggling
data as a substitute, but commercial smuggling of
drugs and even weapons is presumably significantly
different from smuggling nuclear materials, in that
there is a large flow of these goods. Thus, smug-
glers are prepared to see a fraction of these goods
be detected, as long as the bulk of the contraband
passes through. Given the extreme scarcity of spe-
cial nuclear materials such as plutonium and HEU,
it is unlikely that an adversary would treat smug-
gling them the same way as smuggling commodi-
ties. Note that the confirmed smuggling incidents
reported by the IAEA(3) took place in (Eastern)
Europe and the states of the former Soviet Union.
These reflect attempts to sell nuclear materials by
“smugglers of opportunity.” We argue that terrorist
groups trying to smuggle SNM into the United States
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represent a significantly different, more sophisticated
adversary.

Thus, it appears questionable that the ATS sys-
tem will be able to reliably identify nuclear materi-
als smuggling attempts, and therefore there is a per-
ceived high likelihood that a container with SNM
may not enter secondary inspection directly, but
will rather be relegated to an RPM inspection. In-
deed, congressional testimony as cited in Cirincione
et al.(29) indicates that the capability of the ATS with
respect to nuclear materials smuggling has “not been
proven to be any better than selecting containers at
random.”

Most existing passive detectors, including the
RPMs currently installed at sea ports and land bor-
der crossings, operate by counting gamma or neu-
tron particles across a predefined energy range (en-
ergy bins). For example, a particular RPM may count
all gamma particles across the range 0.8–1.1 MeV.
Based on the particle counts recorded by the detec-
tor, a decision is then made whether these count data
correspond to “normal” emissions, or whether this is
due to the presence of SNM. To implement this de-
cision making, a threshold policy is used: if particle
counts are above a threshold, perform additional in-
spection.

Statistically, the number of particles of a certain
energy range, emitted over a time window, follows
a Poisson distribution. For large enough particle
counts, this Poisson distribution can be approximated
by the Normal.(10) Thus, the fundamental problem
of detecting special nuclear materials in a container
using a single passive detector can be described as
follows.

For a particular container type s, let �s (mean
μ�s , standard deviation σ�s = √

μ�s ) be the normal
random variable describing particle incidence at a de-
tector when no SNM is present; and let �s (mean
μ�s ≥ μ�s , standard deviation σ�s = √

μ�s ) be the
normal random variable describing particle incidence
at a detector when SNM is present. Find the thresh-
old tPs such that the probability of detection of SNM
(the area under the probability density function (pdf)
of �s to the right of tPs ) is maximized, subject to the
probability of false alarm (the area under the pdf of
�s to the right of tPs ) being less than some predeter-
mined number.

What makes this problem challenging is the de-
gree of overlap between the two pdfs. For any thresh-
old that we stipulate for the detector operation, there
is a probability that the container with the HEU will
be let pass by the system. The lower the threshold is

pdfpdf

Fig. 2. Detection probability, false alarm probability, and distribu-
tion overlap.

set, the higher the DP, but also the higher the per-
centage of undesirable false alarms.

Fig. 2 shows these two pdfs for a partic-
ular shipping container that we simulated using
MCNP.(30) MCNP is a software package developed
at Los Alamos National Lab. This software is the
de facto industry standard for performing nuclear
transport calculations for particles such as photons,
neutrons, and electrons. The software simulates the
creation of particle emissions, particle trajectories,
and particle interactions with surrounding materials,
including absorption, reflection, scattering, and at-
tenuation. The container modeled here is loaded
with textiles, plastics, and some metal items. Back-
ground radiation is modeled coming primarily from
the concrete floor on which the container sits. Two
passive detectors were simulated, on both sides of
the container, similar to an RPM. We inserted a
1 kg sphere of HEU into this container as the special
nuclear material.

Fig. 2 demonstrates the significant overlap be-
tween the two distributions. The tradeoff between
DP and false alarms is dire. In order to attain a rea-
sonable DP, one would have to accept an unrea-
sonable number of false alarms; more than any sec-
ondary inspection installation would likely be able to
process.

We can conclude from this discussion that a sys-
tem that relies only on the capabilities of passive ra-
diation detection will necessarily be severely limited
in its performance. This limitation exists because the
gross counts of gamma or neutron particles from con-
tainers with shielded HEU are only slightly higher
than normal background emissions.
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Fig. 3. Hardness control system.

Thus, the two major determinants of the perfor-
mance of the ATS-based system, the “correctness” of
the ATS risk scores and the capability of the passive
detectors, both appear unsuited to defending against
a sophisticated and determined adversary who uses
shielding to his advantage.

5. IMPROVED INSPECTION POLICIES

In order to improve on the systemic weaknesses
of the ATS-based system, we here develop two in-
spection policies that incorporate the use of radio-
graphic imaging.

5.1. The Hardness Control Policy

The HCS inspection policy is a refined version of
the model described and analyzed in Gaukler et al.(9)

Fig. 3 shows the flow diagram for this system.
For the HCS, the ATS node is replaced by a new

inspection step, the radiographic imaging node. All
incoming containers arrive at this radiography node.
At the radiography node, x-ray equipment, similar
to the Z portal systems currently deployed at the
San Ysidro, CA border checkpoint,(31) is used to scan
every container. The z-values (or atomic numbers)
of the materials inside the container determine the
scattering and absorption of the x-ray radiation as the
container is scanned. High z-value materials (having
high density) absorb more x-ray radiation and leave
a dark area in the resulting radiographic image, while
a low z-value material (having low density) leaves a
bright area. From the darkness of the items (or ar-
eas) in the radiography image(s), it is possible to in-
fer the z-value of the corresponding contents in the
container. Thus, the radiographic images can be used

to determine the distribution of the z-values of mate-
rials stored inside the container.

This distribution of the z-values is then used to
determine a measure of how hard it would be for
a given passive detector to detect HEU inside that
particular container. We call this measure the hard-
ness of the container, and denote it by hs. For ex-
ample, a container that is empty, or loaded with low
z-value materials like textiles, has a low hardness;
meaning that even an unsophisticated passive detec-
tor has a reasonable chance to detect HEU inside, if
there is any. On the other hand, for a container that
is loaded with high z metal items, a passive detec-
tor would not be able to discriminate, and therefore
this container would be sent to manual inspection di-
rectly. Thus, the radiography information is used to
determine whether to send a container to passive in-
spection, or to manual inspection directly. As in the
ATS-based inspection system, containers that are
flagged at the passive inspection node are sent to
manual inspection.

Different from the simpler model in Gaukler
et al.,(9) we apply a randomization treatment at the
radiography node as follows: if the hardness mea-
sure for container type s is higher than a threshold
tR, then a randomly selected proportion a, 0 ≤ a ≤ 1,
of container type s is elevated to manual inspection.
If a container is not selected for manual inspection, it
will be sent to passive inspection. The idea behind the
randomization treatment is to reduce congestion and
to allow for more effective use of manual inspection.
The randomization parameter a is a decision variable
in our new model. Hence our formulation is a gen-
eralization of the HCS policy presented in Gaukler
et al.(9)

5.2. The Hybrid Policy

In major contrast to the HCS, this new inspection
policy also incorporates the use of intelligence data,
as seen in the pure ATS-based system. We there-
fore call this new inspection policy the hybrid policy
(HYB).

Fig. 4 shows the flow diagram for this hybrid sys-
tem. As with the current inspection system, the first
inspection of the proposed hybrid system is still the
ATS, which considers the manifest data and intelli-
gence information and classifies containers as either
“high-risk” or “low-risk” containers. The high-risk
containers are routed directly to manual inspection.
For low-risk containers, a new inspection node, the
radiography node, is added to the system. Low-risk
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Fig. 4. Hybrid inspection system.

containers are sent to this radiography node, instead
of the passive inspection in the ATS-based inspection
system. The radiography information is then used in
the same manner as in the HCS system to determine
whether to send the container to passive inspection,
or to manual inspection directly. Containers that are
flagged at the passive inspection node are always
sent to manual inspection. The radiography node
in the hybrid system works the same way as in the
HCS system.

Thus, the basic ideas behind the hybrid policy are
(1) to use intelligence information whenever it is in-
dicated that a container is “suspicious,” and (2) for
those containers that are “unsuspicious,” make their
treatment dependent on how difficult it is for the pas-
sive detector to differentiate between HEU inside or
not for that particular container.

In the following section, we describe the model-
ing aspects for the ATS-based system, as well as the
HCS and HYB systems. The detailed model formu-
lations are provided in Appendices B–E.

6. MODELING THE INSPECTION SYSTEMS

In order to realistically model and analyze the
behavior of the inspection systems, we need to be
able to describe five aspects:

(1) the level of emissions of gamma and neutron
particles from shipping containers, dependent
on differing contents of the containers;

(2) the performance of differing types of ra-
diation detectors with respect to the emis-
sions from (1), and the natural background
radiation;

(3) the “hardness” of containers;
(4) the intrinsic “accuracy” of the risk scores that

the ATS system is built upon;

(5) an inspection policy that describes (as a func-
tion of the inputs from (1)–(4) when to es-
calate a container from passive inspection to
manual inspection, and when to let a con-
tainer pass.

6.1. Emissions and Detector Modeling

We choose to model aspects (1) and (2) using
MCNP. We model both shipping containers (with
their contents), as well as the nuclear detector perfor-
mance. For our purpose of evaluating nuclear radia-
tion emitted from a shipping container, we provide
MCNP with the geometric and structural properties
of a shipping container, as well as the z-value ma-
trix representing the contents of the container. The
z-value, also called atomic number, describes the
number of protons in an atomic nucleus. The in-
formation on the z-values of the materials inside
the container is crucial because both gamma and
neutron emissions from SNM are easily attenuated
(shielded) by high z-value materials. Hence the ma-
terial contents of a container strongly influence the
emissions that a detector can register outside the
container.

Based on the container model, radiation fluxes
are computed by MCNP for defined regions around
the container, and the flux values are then incorpo-
rated into a detector model to arrive at gross particle
counts.

Thus, the MCNP code takes the z-value matrix
associated with a container type as its input, and sim-
ulates the detection performance of a given type of
detector. The MCNP code counts how many parti-
cle hits (i.e., influx) the simulated detector will reg-
ister for a specified exposure time, and outputs the
average influx per unit time per unit detector area. In
our work, we only model gamma radiation fluxes be-
cause neutron emissions in the case of HEU are ex-
tremely low (at the rate of roughly 1/s/kg),(6,32) and
thus not useful for the relatively short detection ex-
posure times attainable at a port of entry.

Fig. 5 is a 3-D view of a sample 20-foot cargo
container model used in the MCNP code. The large
boxes shown in the figure that make up the container
represent areas of different z-value materials (i.e.,
the cargo material) inside the container. The small
boxes, along the outside of the container, represent
the volumes in which the radiation flux is captured
in MCNP. The detectors are located on both long
sides of the container at a distance of 1 foot from the
container walls. The natural radiation background is
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Fig. 5. 3-D image of container model in MCNP.

modeled by putting a sandstone concrete floor under
the container, with thickness of 1 foot, and length and
width five times that of the container. For modeling
situations where HEU is present, a 1 kg HEU sphere
(60% U-238, and 40% U-235) with 1 cm lead shield-
ing is placed in the center of the highest z-value box
in the container. This placement of the HEU repre-
sents the hardest possible case for detection, and thus
is likely to be an adversary’s best choice.

The gamma emissions registered by the passive
detector can come from two sources: the first com-
ponent is the naturally occurring background level.
This background level is influenced by the container
and its cargo (e.g., the presence of NORM); by the
container surroundings; and by the amount of shield-
ing that is present at the detector to keep background
radiation from being registered. The second compo-
nent is the actual radiation emitted by the SNM, at-
tenuated by the container cargo and any shielding
material that may be present.

The gamma emissions stemming from natural
background radiation, denoted by �s, are modeled
as a normal random variable with a standard devi-
ation equal to the square root of the mean. Simi-
larly, the gamma emissions when HEU is present (in-
cluding both the HEU emission component and the
background radiation component), is another normal
random variable, denoted by �s.

6.2. Hardness Determination

To quantify the hardness (hs) of a container type,
we also utilize MCNP. The MCNP code takes the
z-value matrix associated with a container type as its
input, and simulates the performance of a given type
of passive detector. It counts how many photon parti-

pdf

Fig. 6. Determination of the hardness measure.

cle hits the simulated detector will receive for a spec-
ified exposure time. The MNCP code outputs the av-
erage photon counts per unit time per unit detector
area. From this information, we construct the pdfs of
particle counts for that container, with and without a
given quantity of HEU placed inside. The hardness
is then computed as the area of overlap between the
two pdfs; see Area A in Fig. 6 .

The higher this overlap between the distribu-
tions, the larger the hardness measure. Details on the
mathematical derivation of the hardness measure are
given in Appendix A.

6.3. Reliability of Risk Scores

To address the fourth aspect—the reliability or
accuracy of ATS risk scores—we assign a measure
of reliability to the risk scores. As we argued before,
if the ATS was perfectly accurate, then it would be
(from a DP standpoint) the optimal system, since it
would always assign any container with HEU to the
set of high-risk containers. In reality, the intelligence
used in the ATS is likely less ideal. Thus, we need to
assess and model how reliable the ATS classification
can be.

To create this reliability measure, we adopt the
“trust” concept (δATS) that was introduced in McLay
et al.(24) This trust measure is defined as the ratio of
the probability that a container labeled “high-risk”
contains HEU versus the probability that a container
labeled “low-risk” contains HEU. Thus,

δATS = P(HEU | HR)
P(HEU | LR)

. (1)

If this ratio is one, this indicates that the in-
telligence is no better than random sampling. High
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values of δATS, on the other hand, indicate that the
high-risk containers are significantly more likely to
contain HEU than the low-risk containers, and thus
the reliability of the ATS risk scoring is great. It is
possible that δATS < 1, and risk scoring could be
worse than random sampling in the presence of so-
phisticated adversaries.

6.4. Optimization of Inspection Policies

Modeling the inspection policy is handled in
our approach by treating the inspection system as
a queueing network. In this queueing network, the
individual inspection stations correspond to servers,
and the containers line up for service. A threshold
policy is used to decide when to escalate a container
to the next inspection step, or let the container pass.
This means that there is a critical number tPs such
that if the emissions registered at the passive detec-
tor are higher than tPs , then the container is going to
be escalated to manual inspection; else the container
is cleared and leaves the system.

For any choice of thresholds, we can calculate
the probability that a particular container, if it has
SNM inside, will be escalated to manual inspection,
and during manual inspection will be found to have
SNM inside. This quantity then is the DP. The DP
is, strictly speaking, a conditional probability be-
cause it is conditioned on the event that a particu-
lar container contains a quantity of SNM. Besides
the DP, we are also interested in the time delay that
is experienced by a particular container as it moves
through this inspection system. Since the more reli-
able detection method, manual inspection, takes sig-
nificantly longer time to complete than passive in-
spection, there is a tradeoff between DP and the time
delay experienced by containers.

Thus, the inspection system can be formulated
as an optimization problem, in which the U.S. gov-
ernment chooses an inspection policy that maximizes
DP, subject to a constraint on the average delay time
a container may experience in the system. For the
ATS-based inspection system, the decision variables
for the government are the threshold tPs , and the frac-
tion of containers to label as “high risk,” denoted
β. In reality, the quantity β is implicitly chosen by
the system operators through specifying a critical risk
score: any container with a risk score above this criti-
cal value would be treated as a “high-risk” container.

In Gaukler et al.,(9) the objective function of
this optimization problem is formulated as maximiz-
ing a weighted average of the detection probabili-

ties for the individual container types. That is, the
objective function is max DP = ∑

sωs · DPs, where
ωs are weights assigned exogenously to the individ-
ual container types. These weights represent the ex-
ogenous likelihood that an adversary would infiltrate
a particular container type. The drawback to this
formulation is that it potentially allows adversaries
to game the system: the objective function tends
to disregard the influence of the DP for container
types of low weighting ωs. Thus, the optimal
detection probabilities for these container types tend
to be very low. A sophisticated adversary can ex-
ploit this weakness by targeting exactly those con-
tainer types for a smuggling attempt. Thus, using a
weighted-average maximization approach may lead
to a significant overstatement of actual detection
probabilities and to system configurations that are
decidedly suboptimal. We circumvent this problem
in our current models by implementing an objective
function that maximizes the minimum DP over all
container types (max mins DPs). This objective is
also used, for example, in Wein et al.(10)

Furthermore, in our current models we allow the
use of container-type-dependent false alarm rates.
In Gaukler et al.,(9) the critical number thresholds
are set such that each container type has the same
false alarm rate. This is achieved by setting, for ex-
ample, the threshold for the passive node for con-
tainer type s to tPs = μ�s + γ · σ�s , but the same con-
stant γ is used for all container types. We relax this
in our current model and allow for individual false
alarm rates by setting thresholds for container type
s based on tPs = μ�s + γs · σ�s , where γ s differs for
different s. Since the container-type information that
is necessary to have for this relaxation is available
only through radiographic imaging, we only apply the
individual false alarm rate concept to the HCS and
HYB models. The ATS model necessarily still uses a
common γ for all container types.

Since in all three inspection systems the man-
ual inspection is the most discriminating inspection
step, and also the most expensive one in terms
of time and effort, any inspection policy will at
optimality attempt to utilize manual inspection as
much as possible. However, this extreme capacity
utilization behavior would make the system very sen-
sitive to even the smallest unanticipated changes to
the arrival stream, such as a slight arrival rate in-
crease, or container composition change, etc. In or-
der to obtain a more robust and practicable system,
we add a constraint on the utilization rate at the man-
ual node, denoted as ρM, and set ρM ≤ r, where 0
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< r < 1 is an exogenously given capacity utilization
limit.

In our models, we calculate two main perfor-
mance measures: the DP and the expected delay time
of containers (DT). In terms of the underlying queue-
ing network, the expected delay time corresponds to
the expected delay time of containers within the sys-
tem; that is, the sum of expected waiting and ser-
vice (inspection) times. In order to better illustrate
the tradeoff between the two conflicting performance
measures (DP and DT), we choose to present effi-
cient frontiers rather than provide a set of optimized
decision variables. These efficient frontiers are gen-
erated by solving a sequence of optimization prob-
lems for discrete choices of a delay time limit t.
Table I summarizes the decision variables used in the
inspection systems.

For the HYB, the optimization problem for ob-
taining the efficient frontier is:

max
β,tR,a,γs

min
s

DPHYB
s ,

s.t. DTHYB ≤ t, (2)

ρHYB
M ≤ r.

Since the ATS system, as shown in Fig. 1, does
not use a radiography node, the decision variables of
the ATS system are β, γ , and the optimization prob-
lem becomes:

max
β,γ

min
s

DPATS
s ,

s.t. DTATS ≤ t, (3)

ρATS
M ≤ r.

Note that the γ in Equation (3) is not container-type
specific (it does not have the subscript s) because
the pure ATS system, without the radiographic node,
does not have the container scenario information.

For the HCS system without the ATS node, as
shown in Fig. 3, the decision variables are tR, a, γ s,

and the optimization problem is:

max
tR,a,γs

min
s

DPHCS
s ,

s.t. DTHCS ≤ t, (4)

ρHCS
M ≤ r.

Details of the derivation of DPs and DT for
HYB, ATS, and HCS systems are given in Appen-
dices B–E.

One can also add other constraints to the above
optimization problem in order to confine the length
of queueing at each node if the waiting space is lim-
ited. In this article, the waiting area is assumed to be
unconstrained.

7. ANALYSIS OF THE INSPECTION SYSTEMS

A genetic algorithm (GA) is used to solve the
max-min optimization problem. To simplify the cod-
ing of the GA, we turn the original constrained op-
timization problem into an unconstrained optimiza-
tion problem by changing the nonlinear constraint
into a penalty function. The new unconstrained op-
timization problem for the HYB system is:

min
β,tR,a,γs

(− min
s

DPHYB
s + η · (

max
{
0, (DTHYB − t)

}
+ max

{
0,

(
ρHYB

M − r
)}))

, (5)

where η is the penalty coefficient, and is set to 1012 in
our numerical study. The optimization problems for
the ATS and HCS models are transformed similarly.

7.1. Experiment Setup

The GA is implemented using the MATLAB
R©

GA toolbox, with default options for uniform cre-
ation, rank fitness scaling, stochastic uniform selec-
tion, Gaussian mutation, and scattered cross-over.(33)

After initial experimentation, we ran each repli-
cation for 100 generations, using a cross-over frac-
tion of 0.6 and an elite count (i.e., the number of

Table I. Summary of Decision Variables

Name Description Systems Used

β Proportion of containers labeled as “high risk” HYB, ATS
tR Hardness threshold at R-node HYB, HCS
a Proportion of hard containers sent from R-node to M-node HYB, HCS
γ s Escalation threshold at P-node for container-type s HYB, HCS
γ Escalation threshold at P-node (same for all container types) ATS
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Table II. Container Information and Simulated Gross Counts of
Passive Detection

s ps μ�s σ�s μ�s σ�s hs

1 0.60 9.99 3.16 29.52 5.43 0.02
2 0.30 9.99 3.16 15.75 3.97 0.41
3 0.08 9.99 3.16 12.10 3.48 0.75
4 0.02 49.95 7.07 52.06 7.21 0.88

unchanged chromosomes from one generation to the
next) of 4. The population size was 600 for the HCS
and 2,000 for the hybrid system.

With these settings, the computation time for ob-
taining one point on the efficient frontier was ap-
proximately 35 seconds for the HCS system, and
2 minutes for the HYB system, on a 3.2 GHz dual
core processor.

For our numerical example, we define four con-
tainer types. The first container type consists of only
low z-value materials, whose z-value is less than
10 (e.g., textiles, plastic, wood). The contents of the
second container type is a mixture of medium z-value
materials, whose z-value is between 10 and 20 (e.g.,
aluminum), and low z-value materials. The third con-
tainer type has high z-value materials, whose z-value
is greater than 20 (e.g., steel), and low z-value mate-
rials. The fourth and last scenario considers the case
where other particle emissions (from NORM) exist.
To account for the effect of NORM, the natural back-
ground emission level of the fourth scenario is set to
be five times that of the third scenario.

Table II lists the container information and
count data obtained from the MCNP simulations.
The first column, labeled ps, is the proportion of each
container type among all the containers. We assume
that there are relatively fewer hard containers than
there are soft containers. This assumption is based on
a 2007 listing of the top 100 U.S. container importers
and the industry (and thus cargo) segments repre-
sented by these top 100 importers.(34) For all four
container types, MCNP is used to obtain the back-
ground count data and the HEU count data. The last
column is the hardness corresponding to each con-
tainer type, calculated based on the description in
Section 6 and Appendix A.

The model parameters that describe the port op-
erations are summarized in Table III. We assume
that the arrival rate of containers at the port is
90 per hour, which is the same arrival rate used in
Wein et al.(10) The scan time for each of the three ra-
diography machines is taken to be exponentially dis-

Table III. Values for the Model Parameters

Parameter Description Value

λ Arrival rate of container 90/hour
μR Service rate at radiography node

(R-node)
40/hour

mR Number of servers at R-node 3
μP Service rate at passive detection

node (P-node)
80/hour

mP Number of servers at P-node 2
μM Service rate at manual detection

node (M-node)
1/hour

mM Number of servers at M-node 6

tributed with a mean of 90 seconds. For each of the
two passive detectors, the scan time is assumed to be
exponentially distributed with a mean of 45 seconds.
The inspection time at the manual detection stage is
also an exponential distribution with a mean time of
1 hour, and we assume that there are six manual in-
spection teams that can work in parallel. We set the
maximum allowable capacity utilization for the man-
ual inspection stage to be ρM ≤ 0.95 for all inspection
models.

We further assume that when a container with
HEU is manually inspected, the probability that the
HEU is discovered is dM = 1. If in reality there
is a possibility that manual inspection is unable to
discover the HEU in an infiltrated container, then
dM < 1, and the detection probabilities and effi-
cient frontiers that we report need to be scaled
by dM.

This choice of parameters is consistent with ear-
lier work in Gaukler et al.,(9) and also with Wein
et al.(10)

7.2. System Comparison

In this section, we compare the performance of
the three inspection policies. For the purposes of this
comparison, the ATS-based system is evaluated for
δATS values between 1 and 50. For simplicity of ex-
position, the hybrid system is evaluated only for two
choices of δATS values: 2 and 20.

The range of the γ s values in the example (which
determine the escalation thresholds) is γ s ∈ [0, 3.5].
The upper bound of γ s is conservatively set to be
3.5, such that the lowest possible false alarm rate is
0.02%. This false alarm rate is low enough for any
practical purposes, especially compared to current
practice, where false alarm rates are typically around
10–30%.(24)
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Fig. 7. System performance comparison.

Fig. 7 summarizes the system performance of the
HCS system, the HYB system, and the ATS system
for different δATS values.

Fig. 7 shows that for our sample data, the perfor-
mance of the HCS system alone (without using intel-
ligence information) is roughly equivalent to the per-
formance of an ATS-based system with intelligence
reliability of δATS = 20 at an overall delay time of
about 6 minutes, and about δATS = 25 at a delay time
limit of 8 minutes. The higher the acceptable delay
time, the better the HCS system performs relative to
the ATS. Thus, if a decisionmaker accepts an overall
delay time of 6 minutes or more, and if the decision-
maker believes that the reliability of available intel-
ligence information is less than δATS = 20, the HCS
will outperform an ATS-based system.

Fig. 7 also shows that if intelligence reliability is
very low, such as δATS = 2, the performance of the hy-
brid system is equivalent to that of the HCS system
(the efficient frontier curves are identical). In fact,
since there is very limited value to the intelligence in-
formation when δATS = 2, the hybrid system actually
does not use this information at all, and the propor-
tion of containers labeled as “high risk” is virtually
zero in this case (compare Table IV).

If, on the other hand, intelligence reliability is
fairly high, such as δATS = 20, the hybrid system per-
forms better than the HCS system. In this case, com-
bining the radiography information and the intelli-
gence information is roughly equivalent to an ATS
system with δATS = 30 at the overall delay time of
7 minutes.

Table IV. Route Selections with Overall Delay
Time of 6 Minutes

δATS s P-L ATS-M-L R-M-L P-M-L

ATS 1 1 0.938 0 0.062
2 0.938 0 0.062
3 0.938 0 0.062
4 0.938 0 0.062

2 1 0.938 0.046 0.017
2 0.938 0.046 0.017
3 0.938 0.046 0.017
4 0.938 0.046 0.017

20 1 0.938 0.060 0.002
2 0.938 0.060 0.002
3 0.938 0.060 0.002
4 0.938 0.060 0.002

50 1 0.938 0.060 0.002
2 0.938 0.060 0.002
3 0.938 0.060 0.002
4 0.938 0.060 0.002

HCS 1 1 0 0
2 0.951 0 0.049
3 0.698 0 0.302
4 0.560 0.031 0.409

HYB 2 1 1 0.0001 0 0
2 0.951 0.0001 0 0.049
3 0.699 0.0001 0 0.301
4 0.554 0.0001 0.091 0.355

20 1 0.967 0.033 0 0
2 0.958 0.033 0 0.009
3 0.844 0.033 0.0001 0.123
4 0.744 0.033 0.0001 0.223

Table IV shows the probabilities of a particular
incoming container going through different inspec-
tion steps when the delay time is 6 minutes. The nota-
tion P-L represents the probability of a container go-
ing through the passive detector and then leaving the
inspection system. As such, for the ATS system this
notation represents the path ATS-P-L; for the HCS
system the path R-P-L; and for the hybrid system
the path ATS-R-P-L . Similarly, the notation P-M-L
represents the path ATS-P-M-L for the ATS system,
R-P-M-L for the HCS system, and ATS-R-P-M-L for
the hybrid system, respectively.

From Table IV we can observe that for the
ATS system, as the reliability of intelligence infor-
mation increases, the system in optimality uses this
information to send containers directly to manual
inspection. However, since capacity at manual
inspection is finite, this reduces the chance to send
containers to manual inspection following a reading
at the passive radiation detection stage: the higher
the reliability of intelligence information, the higher
the passive radiation emission threshold (μ + σ · γ )
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Table V. Optimal Thresholds with Overall Delay Time Limit of
6 Minutes

γ 1 γ 2 γ 3 γ 4

ATS δATS = 1 1.54 1.54 1.54 1.54
δATS = 2 2.11 2.11 2.11 2.11
δATS = 20 2.85 2.85 2.85 2.85

HCS 3.50 2.09 0.90 0.53
HYB δATS = 2 3.50 1.66 0.52 0.28

δATS = 20 3.50 2.36 1.14 0.74

that needs to be exceeded for a container to be es-
calated to manual inspection at the passive radiation
detection stage. When δATS = 50, the threshold at
passive inspection is set so high that only 0.2% of
containers will be escalated from passive inspection
directly to manual. For comparison, the HCS system
escalates between 0% (for the “softest” container
type) and 40.9% (for the hardest container type)
of the containers from passive detection directly to
manual inspection.

This observation underscores the earlier discus-
sion in Section 4 on the fundamental weakness of the
ATS-based system: if a sophisticated adversary man-
ages to infiltrate a container that will not be flagged
as high risk, the chance of SNM being detected at the
passive radiation detection stage is exceedingly small,
even when the system parameters are set optimally.

Additionally, the HCS and hybrid systems are
able to use container-type-specific false alarm rates
by selecting different passive detector thresholds
(μ + σ · γ s). For example, Table V shows that the
HCS and hybrid systems attach higher false alarm
rates to harder containers, and lower false alarm
rates to softer containers. This makes sense because
soft containers have low shielding ability, and thus
SNM, if present, will have a more obvious emissions
signature. Hence a higher threshold at passive in-
spection can be used, with resulting lower false alarm
rate. Thus, knowing the container type aids in fine-
tuning the escalation logic of the inspection system.
The ATS-based system is unable to do this because it
lacks the container-type information (i.e., the distri-
bution of z-values) that comes from the radiography
step. Thus, the ATS-based system uses one “overall”
false alarm rate for all container types.

This is visible in Table IV as well. One can ob-
serve that the ATS system treats all container types
in the same manner, regardless of their cargo con-
tent; the inspection path probabilities are identical
for all container types. The HCS and hybrid sys-

tems, on the other hand, are able to select inspec-
tion paths for containers based on knowledge of the
cargo contents. In the hybrid system for δATS = 2, for
example, none of the “soft” containers are escalated
to manual inspection directly from the radiography
node, but 9.1% of containers of the hardest container
type are. As the reliability of intelligence increases to
δATS = 20, more containers are escalated to manual
inspection using this intelligence information (3.3%
vs. 1/100 of a percent), and fewer containers are es-
calated to manual due to radiography (1/100 of a
percent vs. 9.1%).

We point out that inclusion of the radiography
node does cause extra time in the processing of con-
tainers; this is the price to pay to obtain the container
hardness information. As a result, the percentage of
containers handled by the manual node in a HCS or a
hybrid system, the most time-consuming yet most ca-
pable node in the whole inspection process, is smaller
than that in the pure ATS system. This can be easily
verified by inspecting Table IV. The percentage of
containers handled by the manual node can be calcu-
lated as 1 − ∑4

s=1(P-L)s · ps, where (P-L)s, s = 1, 2, 3,
4, represent the probability values in the P-L column
of Table IV. A simple calculation reveals that for the
pure ATS system, this percentage is 6.2%, while for
the HCS or the hybrid system, the percentages are
4.766% (HCS), 4.77% (HYB with δATS = 2), and 5%
(HYB with δATS = 20). However on the other hand,
the analysis we made so far suggests that the HCS
and hybrid systems are able to utilize the existing
capacity at the manual inspection stage more effec-
tively than the ATS-based system. This more intel-
ligent utilization of existing capacity in the end can
lead to a dramatic improvement in DP, despite the
slight decrease in container percentages processed by
the manual node.

Fig. 8 shows the detection probabilities individu-
ally for each container type.

For the ATS system, three different δATS val-
ues are considered: δATS = 1, 10, and 20. When
δATS = 1, there is no value to the intelligence infor-
mation, and the system is equivalent to a layered sys-
tem of passive detection and manual inspection only.
In this case, the DP for the softest container type is
approaching 1. However, the DP for the hardest con-
tainer type reaches only approximately 0.1.

Notice also that as δATS increases, the DP for the
softest container type decreases. This happens be-
cause with better intelligence, in optimality (based
on maximizing the minimum DP) one will send a
higher percentage of containers directly to manual
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Fig. 8. Detection probability of each container type: (a) ATS with δATS = 1; (b) ATS with δATS = 10; (c) ATS with δATS = 20; (d) HCS
system; (e) HYB with δATS = 2; (f) HYB with δATS = 20.
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inspection based on intelligence information alone
(compare Table IV). However, increasing this direct
escalation percentage comes at the expense of higher
thresholds at passive inspection, and thus a lower es-
calation percentage from passive inspection to man-
ual inspection, which lowers the DP for soft container
types.

For the HCS and hybrid systems, the DP for the
softest container type is above 0.9, but not as high as
in the ATS system. The other three container types
have essentially identical efficient frontiers. The min-
imum detection probabilities for the HCS and HYB
systems, as expected, are superior compared to the
ATS-based system.

Independent of container type, the ATS system
escalates a constant percentage of containers from
passive detection to manual inspection. Thus, the
ATS sets an escalation threshold (see Table IV) that
yields an “average” false alarm probability for all
container types. By doing this, the ATS-based sys-
tem achieves very high detection probabilities for
the softest container types because emissions from
unshielded SNM have a high likelihood of exceed-
ing this “average” threshold. However, the detection
probabilities for hard container types are very low
because the well-shielded SNM in the higher hard-
ness containers has a low likelihood of exceeding
this “average” threshold. As δATS increases, the de-
tection probabilities for all scenarios increase, but
the hardest container type remains the one with the
lowest DP.

Thus, in order to improve the minimum DP, the
HCS and hybrid systems sacrifice some of the poten-
tial detection capability for the softest containers, to
instead use the available capacity to elevate the DP
for hard containers.

7.3. Impact of Adversary Behavior

In real situations, the decisionmaker typically
does not know ahead of time which container type
an adversary might choose to infiltrate. Thus, to the
decisionmaker, the adversary’s choice in selecting a
container type for infiltration is stochastic.

For example, the adversary may prefer to select
a “hard” container (with larger hs value) to trans-
port HEU in order to take advantage of the added
shielding from the container contents. Alternatively,
if an adversary is aware of the principles of hardness-
based inspection policies, he might choose to select
a low-hardness container to reduce the likelihood to

Table VI. Various Prior Probability Distribution of ωs

ωs

Uniform
Quadratic

Bell Inv-Quadratic

s hs 1/ns 0.66 · h2
s 0.53 · exp

(
− (hs −h2)2

2·0.252

)
0.73 · (1 − hs)2

1 0.02 0.25 0.0003 0.1555 0.6950
2 0.41 0.25 0.1137 0.5333 0.2490
3 0.75 0.25 0.3706 0.2187 0.0460
4 0.88 0.25 0.5153 0.0925 0.0100

be singled out for more stringent inspection, or a
medium-hardness container to combine both effects.

For the decisionmaker, then, an important
question is whether the hardness-based inspection
policies may inadvertently open an avenue for the
adversary through which he can game the inspection
system.

In this section, we model various types of ad-
versary behavior through characterizing probability
distributions, and we evaluate the performance of
the inspection systems in response to these adversary
types.

Let ωs denote the prior probability that the
adversary selects container-type s to infiltrate. We
model four different types of adversaries, each with a
distinct distribution of ωs. To model a wide range of
adversary types, we use uniform, quadratic, bell, and
inverse quadratic distributions to characterize the ad-
versary.

For the uniform type, the adversary has no pref-
erence over the container type; thus all container
types have the same probability of being selected for
infiltration.

For the quadratic type, the container type with
the highest hs value has the highest probability of be-
ing selected; the functional relationship is such that
ωs is a quadratic function of the hardness value hs.

The inverse quadratic type is the opposite of the
quadratic type: soft containers have a higher proba-
bility of being selected than hard containers, and the
functional relationship between hardness and selec-
tion probability is inverse quadratic.

For the bell type, the adversary prefers to
choose medium hardness containers, producing a
bell-shaped distribution.

Table VI lists the parameters for the different
distributions ωs we consider in our analysis, and Fig. 9
shows the distributions graphically.

Fig. 10 shows the efficient frontier of the over-
all DP versus the overall expected delay time for the
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Fig. 9. Adversary behavior type.

ATS, HCS, and hybrid systems, under different ad-
versary behavior. Multiple levels of δATS are plot-
ted for the ATS system, such as: δATS = 1, 5, 10, 15,
20, 30, 40, 50. Two levels of intelligence information
reliability in the hybrid system are considered,
δATS = 2, and δATS = 20.

Notice that Fig. 10, different from Fig. 7, does
not show the efficient frontier that corresponds to
the container type that exhibits the minimum DP. In-
stead, Fig. 10 displays the weighted detection prob-
ability DP = ∑

DPs · ωs, so that the impact of the
adversary’s decision can be studied. This weighting is
also the reason why in some of the figures the effi-
cient frontiers of the ATS-based system intersect for
different values of δATS: recall that the DP for the
softest container types tends to be higher for low val-
ues of δATS than for high values of δATS (compare
Fig. 8). Thus, if an adversary is more likely to infil-
trate a soft container, a lower intelligence reliability
can be, counterintuitively, actually an asset.

From the sequence of figures, we can observe
that compared to the ATS, the HCS system is most
competitive in the case of quadratic adversary be-
havior, where it performs better than δATS = 22.
Conversely, the HCS is least competitive in case of
inv-quadratic behavior, worse than δATS = 10.

This behavior results because the HCS system
focuses the inspection efforts on the hardest con-
tainer types, and therefore works best when the ad-
versary has a high likelihood of infiltrating hard con-
tainers; it performs worst (relatively speaking) when
the adversary has a high likelihood of infiltrating soft
containers.

The hybrid system with δATS = 2 performs equi-
valent to the HCS system. For δATS = 20, the per-
formance of the hybrid system is similar to the HCS
system with respect to the different adversary types,
but at a significantly higher level of DP.

Compared to the ATS system, the hybrid system
performs best when the adversary is of the quadratic
type, equivalent to approximately δATS = 28. Simi-
lar to the HCS system, the worst case happens when
the adversary is of the inv-quadratic type, where the
equivalent δATS = 15.

However, these observations do not translate
into an opportunity for the adversary to game the sys-
tem. Note that the absolute values of overall DP are
very high (>0.8) for the inv-quadratic case, whereas
the overall detection probabilities for the quadratic
case are lower. Thus, it is not in the interest of
the adversary to prefer to infiltrate soft containers.
Instead, if behaving rationally, the adversary, even
with knowledge of the new hardness-based inspec-
tion policies, will try to avoid selecting soft contain-
ers. Indeed, the adversary’s best choice is still to
target hard containers for infiltration because this
choice minimizes his probability of being detected.

Thus, since the HCS and hybrid systems focus
on maximizing the DP of the worst case, the choice
of either of these inspection policies by the defender
prevents the adversary from being able to game the
inspection system.

8. CONCLUSION AND DISCUSSION

In this article we present a model framework for
studying the problem of inspecting container traffic
at sea ports for special nuclear materials. We model
the port operations relevant to inspection efforts via
a queuing network, where the servers correspond to
individual inspection stages such as RPMs, radiogra-
phy, and manual inspection. This basic framework is
easily extensible to port operations in which other
inspection steps are performed by adding inspec-
tion stages such as active inspection to the queuing
network.

We also explicitly model the content of con-
tainers, and the impact of container content on
shielding emissions from SNM in the container, us-
ing realistic detector models via simulation in MCNP.
This allows us to obtain realistic estimates of actual
detection probabilities.

Using this framework, we compare the perfor-
mance of three basic inspection policies. One is the
ATS-based inspection policy as it is in use currently
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Fig. 10. Terrorist behavior analysis: (a) with uniform selection; (b) with quadratic selection; (c) with bell selection; (d) with inv-quadratic
selection.

at domestic and foreign ports. The second inspec-
tion policy is a container content-dependent policy
known as the HCS, which is a variant of a policy
first described in Gaukler et al.(9) The third policy
is a hybrid policy that combines elements of the
ATS and HCS policies. The second and third policies
rely on calculated hardness measures obtained from
radiographic images taken of each incoming con-
tainer. From these images, a “container type” is
formed that reflects the densities, positions, and sizes
of the items inside the container.

Our numerical studies show that the HCS and
hybrid policies typically outperform the ATS-based

policy under realistic assumptions of allowable in-
spection delay time and reliability of intelligence in-
formation. In general, we find that if the reliability
of intelligence information is low, a decisionmaker
ought to use the HCS policy. If the reliability of in-
telligence information is high, the decision maker
should make use of it via the hybrid policy. Only
in instances where the reliability of intelligence is
deemed extremely high (δATS > 30 in our study),
should a decisionmaker use the ATS-based policy.

Our study also shows that under an ATS-based
inspection policy, if a sophisticated adversary man-
ages to infiltrate a container that subsequently is not
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flagged as high risk, then the chance of SNM be-
ing detected at the passive radiation detection stage
is exceedingly small, even when the system param-
eters are set optimally. The HCS and hybrid poli-
cies are able to yield a significantly better DP in this
case.

The main reason for the improvement in DP un-
der the HCS and hybrid policies is due to the fact
that these two policies are container-type-specific.
As type-specific policies, they are able to set indi-
vidual detection thresholds and thus optimize the al-
lowance of false alarm rates for each container type.
In particular, the HCS and hybrid policies are able
to focus the inspection effort on “hard” containers
that present particular problems to existing RPMs.
In contrast, the ATS-based policy yields one “aver-
age” false alarm rate for all container types. Thus,
the HCS and hybrid systems are able to utilize the
existing capacity at the manual inspection stage bet-
ter and more effectively than the ATS-based system.
This more intelligent utilization of existing capacity
leads to a dramatic improvement in DP.

We also study the potential of an adversary being
able to game the inspection policies. For example, if
the adversary knows that a container hardness-based
policy is in place at a particular port, does this al-
low him to game the system by smuggling SNM into
“softer” containers that may be under less scrutiny
than hard containers? To address this concern, we
model several different adversary types, each char-
acterized by a different preference distribution for
container types to infiltrate. Our numerical results
suggest that there is no gaming opportunity for the
adversary. If he opts for infiltrating a “soft” con-
tainer, his success probability is actually minimized.
Hence the adversary’s best choice, even knowing a
hardness-based policy is in place, is to try to infil-
trate a “hard” container and take advantage of the
inherent shielding that this container offers. The de-
fender’s best strategies against this adversary then
are the HCS and Hybrid inspection policies. Thus,
the choice of either of these inspection policies by the
defender prevents the adversary from being able to
game the inspection system.

We believe that our combination of queueing
network analysis, policy evaluation and optimiza-
tion, and detector and particle emissions model-
ing in MCNP makes this the to-date most realistic
treatment of special nuclear materials interdiction at
ports.

For future work, we are interested in extending
this analysis to the international transportation net-

work level, where more than one port is involved. For
example, it is of interest to investigate how inspec-
tion policies at foreign ports might affect the inspec-
tion at domestic ports. How should a decisionmaker
at a domestic port use inspection results from foreign
ports in his decision making, if at all? How is this af-
fected by the possibility of container infiltration in-
transit between ports? Another interesting research
direction is to investigate which detection equipment
is most useful at what node in the transportation
network. For example, given a limited budget that
does not allow all ports to have the same level of
detection equipment, is there more benefit to install
radiography equipment at foreign ports, or at domes-
tic ports? We believe that our current single-port ef-
fort is a stepping stone toward, and likely a necessary
component of, a model formulation that can investi-
gate these additional questions.
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APPENDIX A. DERIVATION OF HARDNESS
MEASURE

The hardness measure hs of container-type s is
defined as the misclassification error that is deter-
mined by the two distribution functions, as area A
in Fig. 6, namely:

hs = P(conclude that HEU exists | HEU is absent)

+ P(conclude that HEU does not exist

| HEU is present).

In the absence of HEU, we assume that the nat-
ural background emission for container-type s is a
normally distributed random variable �s with mean
μ�s and standard deviation σ�s = √

μ�s . The normal
distribution is the result of the normal approximation
to the Poisson distributed particle counts. The pdf is:

f�s (x) = 1√
2πσ�s

e−(x−μ�s )2/2σ 2
�s .
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In the presence of a quantity of HEU, it is also
assumed that the radiation emission for that con-
tainer type is a normally distributed random variable
�s with mean μ�s , standard deviation σ�s = √

μ�s ,
and pdf:

f�s (x) = 1√
2πσ�s

e−(x−μ�s )2/2σ 2
�s .

Since μ�s < μ�s , and σ�s < σ�s , the intersection
points can be obtained as the solution to:

Find x such that f�s (x) = f�s (x).

The intersection points are given by:

x1,2 =
−R1 ∓

√
R2

1−R2

2
(
σ 2

�s
− σ 2

�s

) ,

where R1 =2μ�s σ
2
�s

− 2μ�s σ
2
�s

, and R2=4(σ 2
�s

−σ 2
�s

) ·
(μ2

�s
σ 2

�s
− μ2

�s
σ 2

�s
+ 2σ 2

�s
σ 2

�s
(ln(σ�s ) − ln(σ�s )).

The hardness of container-type s is then obtained
as:

hs = 1 −
∫ x2

x1

( f�s − f�s )dx.

APPENDIX B. SYSTEM COMPONENTS

In this section, we analyze the system flow and
provide the node-to-node transition probabilities for
containers entering the inspection network. These
probabilities are then used to derive the system DP
and the queueing network delay times.

B.1. Probabilities at the T-Node

In the ATS and the HYB, all containers first go
through the ATS-node (T-node). Information sub-
mitted by shipping companies as well as any addi-
tional intelligence information gathered regarding in-
coming containers will be evaluated by the ATS prior
to the onsite arrival of the containers, and then cat-
egorized as either “low risk” (LR) or “high risk”
(HR). Containers classified as HR are sent to the
M-node directly, and LR containers are sent either to
the P-node (for ATS), or to the R-node (for HYB),
respectively.

Then, the probability that a container will travel
from T to M is:

P(TM) = P(HR) = β,

and the probability that a container will take the
other path or be classified as “low risk” is:

P(LR) = P(TP) (for ATS)
= P(TR) (for HYB) = 1 − β.

With the definition of the intelligence informa-
tion reliability measure δATS in Equation (1), and an
application of Bayes’s theorem, the probability that a
container with HEU is classified as HR at this T-node
of the network is obtained as:

P(TM | HEU) = P(HR | HEU) = δATS · β

(1 − β) + δATS · β
.

In the proposed inspection system, the fraction of
containers that are directly escalated to manual in-
spection based on intelligence information, namely,
β, is a decision variable.

B.2. Probabilities at the R-Node

Both HCS and the hybrid system utilize the
R-node, where radiography information is used. Dif-
ferent from the treatment in Ref. 9, we apply a ran-
domization policy at the R-node. Instead of sending
all the container types with hardness values greater
than the threshold value tR to manual detection, we
randomly select a fraction a of those scenarios. This
a is a new decision variable in our model. For a given
container-type s, the probability of going from the
R-node directly to the M-node, denoted by P(RM|s)
for non-HEU containers, or P(RM|sHEU) for HEU
containers, is:

P(RM | s) = P(RM | sHEU) =
{

a hs ≥ tR

0 hs < tR,

and the probability of going from the R-node directly
to the P-node, denoted by P(RP|s), is P(RP|s) = 1 −
P(RM|s).

B.3. Probabilities at the P-Node

The P-node and M-node are the common inspec-
tion nodes for all three inspection systems. At the
P-node, containers undergo passive radiation screen-
ing. The results of the screening will be compared
against the predetermined threshold at the passive
node tPs , where tPs = μ�s + σ�s · γs , and γ ss are de-
termined through the optimization. Containers with
passive screening results that fall below the thresh-
old will proceed to the loading node. Containers with
passive screening results that fall at or above the
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threshold will proceed to secondary screening at the
manual node.

For a container of type s, the probability that this
container will travel from P to M is:

P(PM | s) = P(�s > tPs ) = 1 − (γs).

Here, ( · ) represents the cumulative distribution
function of a standard normal distribution. We can
then use this probability to define the proportion of
containers that go from P to M as:

P(PM) =
∑

s

P(PM|s)P(s|RP),

where P(s|RP) = P(s) · P(RP|s)∑
s

P(s) · P(RP|s)
.

Containers screened at the passive node may
contain HEU. Hence, the probability that such con-
tainers will be successfully detected and will continue
to the M-node from the P-node is:

P(PM | sHEU) = P(�s > tPs ) = 1 − μ�s ,σ�s
(tPs ).

Here, μ,σ ( · ) represents the cumulative distribution
function of a normal distribution that has mean μ and
standard deviation σ .

B.4. Probabilities at the M-Node

The M-node is the location in our network at
which the final decision will be made whether or not a
container in fact contains HEU. We denote by dM the
probability that HEU will be successfully detected at
M when it is present in a container. In this article, we
assume that dM = 1.

APPENDIX C. HYB MODELING

This section contains the mathematical models
for the HYB. By analyzing the flow diagram in Fig. 4,
the DP and the expected delay time of the hybrid sys-
tem are obtained. Here the DP is the probability that
an HEU container will be successfully escalated to
the manual detection.

C.1. Hybrid DP

For the HYB, a container may arrive at this node
in one of three ways. Either the container is identi-
fied as “high risk” by the ATS, or it is identified as
“low risk” and travels from R to M, or it is identi-
fied as “low risk” and travels from R to P to M. Then
the probability that a container that contains HEU

arrives at M for HYB system is expressed as:

P
(
M | sHEU

)HYB

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P
(
TM | sHEU

)
T-M

P
(
TR | sHEU

)
P

(
RM | sHEU

)
T-R-M

P
(
TR | sHEU

)
P

(
RP | sHEU

)
P

(
PM | sHEU

)
T-R-P-M.

The DP for container-type s, denoted as DPHYB
s ,

is then defined as the HEU container of type s suc-
cessfully arriving the detection node in the HYB. We
can calculate the DPs as follows:

DPHYB
s = dM · [P(TM|sHEU)

+ P(TR|sHEU)P(RM|sHEU)

+ P(TR|sHEU)P(RP|sHEU)P(PM|sHEU)].

C.2. Hybrid System Queueing Network Model

The second performance measure, that is, the ex-
pected delay time, represents the average time a con-
tainer spends in the system. To calculate the expected
delay time, we need to know the expected time spent
at each node i, Ti, i ∈ {R, P, M}. Ti is the summation
of the expected waiting time, which is found using a
queueing network model. The queueing model uses
the expected service time (which is the reciprocal of
μi) and the number of servers at each node, denoted
as mi.

In this section, we explore the queueing results
for all the nodes in the network. Since ATS decisions
are made while the containers are still en route, the
expected time spent at the ATS node is considered
to be negligible. Therefore only the queues at the R-
node, P-node, and M-node are considered. We as-
sume that containers arrive at the port according to
a Poisson process with rate λ, and the service rate
at each of those nodes are also Markov processes.
Thus, the R-node, P-node, and the M-node are mod-
eled as M/M/C queues, where the first M denotes
the Markov arrival process, the second M denotes
the Markov service process, and C denotes multiple
servers. The general M/M/C queue results can be ap-
plied to obtain the expected response time at those
nodes, denoted as Ti, i ∈ {R, P, M}, shown as follows:

Ti = 1
μi

+ ρi

λi (1 − ρi )
· (miρi )m

i

mi !(1 − ρi )
· π0,
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where ρi = λi
mi μi

, and π0 = 1∑mi −1
j=0

(mi ρi ) j

j! + (mi ρi )m
i

mi !(1−ρi )

. Here,

ρ i represents the utilization rate at node i. The uti-
lization rate at the manual node is ρM = λM

mMμM
, which

is one of the constraints to the optimization problem.
An incoming cargo container can take one of

four paths through the system:

ATS → M → L

ATS → R → M → L

ATS → R → P → M → L

ATS → R → P → L

Because the decisions at the ATS node (T-node)
are made prior to the container’s arrival and the load-
ing node (L-node) is not considered part of the con-
tainer inspection policy, we do not include the time
spent at these nodes. As such, the time spent in the
system for each container type is:

THYB
s

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TM with P(TM)

TR + TM with P(TR)P(RM|s)

TR + TP + TM with P(TR)P(RP|s)P(PM|s)

TR + TP with P(TR)P(RP|s)(1 − P(PM|s))

Consequently, the expected delay time of all con-
tainer types for the hybrid system is:

DTHYB =
∑
s∈S

THYB
s · ps,

where ps is the proportion of each container type and
listed in Table II.

APPENDIX D. ATS INSPECTION SYSTEM
MODELING

This section contains the mathematical models
for the ATS-based inspection system, shown in Fig. 1.
Compared to the hybrid system in Fig. 4, the ATS
system does not have the R node. Thus, a container
can arrive at the M node through two paths: either
from the T node directly to the M node, or from the
T node to the P node and then to the M node.

D.1. ATS DP

The probability of a container with HEU inside
arriving at the M node for the ATS system:

P(M|sHEU)ATS

=
{

P(TM|sHEU) T-M

(1 − P(TM|sHEU))P(PM|sHEU) T-P-M

The DP for container type s for the ATS system
is then:

DPATS
s = dM · [P(TM|sHEU)

+ (1 − P(TM|sHEU))P(PM|sHEU)].

D.2. ATS System Queueing Network Model

The expected delay time for container-type s is:

TATS
s

=
⎧⎨
⎩

TM with P(TM)
TP + TM with (1 − P(TM))P(PM|s)
TP with (1 − P(TM))(1 − P(PM|s))

Therefore, the expected delay time of all con-
tainer types for the ATS system is obtained as:

DTATS =
∑
s∈S

TATS
s · ps .

APPENDIX E. HCS INSPECTION SYSTEM
MODELING

Similarly, the mathematical formulation for the
HCS inspection system is obtained by analyzing the
system flow shown in Fig. 3. Containers can arrive
at the M-node through two paths: either from the R-
node directly to the M-node, or from the R-node to
the P-node and then to the M-node.

E.1. HCS DP

The probability of a container with HEU inside
arriving at the M-node for the HCS sytem is:

P(M|sHEU)HCS

=
⎧⎨
⎩

P(RM|sHEU) R-M

(1 − P(RM|sHEU))P(PM|sHEU) R-P-M.

The DP for container-type s for the HCS
system is:
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DPHCS
s = dM · [P(RM|sHEU)

+ (1 − P(RM|sHEU))P(PM|sHEU)].

E.2. HCS System Queueing Network Model

Since the HCS inspection system has queueing at
the R-node, P-node, and the M-node, the expected
delay time for container-type s is:

THCS
s

=
⎧⎨
⎩

TR + TM with P(RM)
TR + TP + TM with (1 − P(RM))P(PM|s)
TR + TP with (1 − P(RM))(1 − P(PM|s))

The expected delay time for all container types
for the HCS system is then obtained as

DTHCS =
∑
s∈S

THCS
s · ps .
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