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Abstract—This paper presents a method that enables automated morphology analysis of partially overlapping nanoparticles in

electron micrographs. In the undertaking of morphology analysis, three tasks appear necessary: separate individual particles from an

agglomerate of overlapping nanoobjects, infer the particle’s missing contours, and, ultimately, classify the particles by shape based on

their complete contours. Our specific method adopts a two-stage approach: The first stage executes the task of particle separation,

and the second stage simultaneously conducts the tasks of contour inference and shape classification. For the first stage, a modified

ultimate erosion process is developed for decomposing a mixture of particles into markers, and then an edge-to-marker association

method is proposed to identify the set of evidences that eventually delineate individual objects. We also provide theoretical justification

regarding the separation capability of the first stage. In the second stage, the set of evidences becomes inputs to a Gaussian mixture

model on B-splines, the solution of which leads to the joint learning of the missing contour and the particle shape. Using 12 real

electron micrographs of overlapping nanoparticles, we compare the proposed method with seven state-of-the-art methods. The results

show the superiority of the proposed method in terms of particle recognition rate.

Index Terms—Image segmentation, morphology analysis, shape inference, shape classification, nanoparticle analysis

Ç

1 INTRODUCTION

THIS paper introduces a new method for separating a
large number of partially overlapping convex objects

into individual pieces, inferring the missing contours, and
classifying the complete contours by shapes. A motivating
application is the morphology analysis of nanoparticles in
electron micrographs, which requires classifying individual
nanoparticles by their sizes and shapes. The functional
behavior of nanoparticles is tightly linked to the surface
morphology of the particles so that accurately classifying
the synthesized nanoparticles is crucial for characterizing
the nanoparticle’s behavior [1], [2], [3], [4].

There are two major difficulties in nanoparticle morphol-

ogy analysis. The first one is caused by particle overlap. We

frequently observe wide-ranging degrees of particle over-

laps in micrographs. The overlaps hide partial contours,

hindering the accurate recognition of individual particles.

Consequently, separating overlapped particles and inferring

the missing contours occluded by the overlaps are the key to
an accurate morphology analysis.

The second difficulty is the large number of nanoparticles
in a micrograph. It is not uncommon to see 30-100 particles in
a magnified image or 300-700 particles in a typical viewfield
of 1;024� 640 nm. This quantity makes the morphology
analysis different from the segmentation problems that focus
on recognizing a small number of complex objects. In order
to handle the morphology analysis problem within a
practically short time, the method needs to be computation-
ally efficient.

The undertaking of morphology analysis entails the
solving of three technical problems: The first is image
segmentation, aiming at separating individual particles from
the overlapping particle agglomerates; the second is contour
inference, recovering the missing parts of the separated
particles; and the third is shape classification, classifying the
particles by shape. To address these technical problems, we
choose to employ a two-stage approach: The first stage
solves the image segmentation problem and the second
stage solves the joint learning of the missing contour and
the particle shape. In the first stage, our segmentation
method is a new morphological erosion process, specially
tailored for handling convex objects because the theory
governing crystal formation tells us that stable nanoparti-
cles are highly likely in convex shapes [5]. In the second
stage, the contour inference problem and the shape
classification problem are solved simultaneously. The joint
learning is formulated as a Gaussian mixture model on
B-splines, where both the missing contour and the shape
category of the particle are hidden variables. These hidden
variables are estimated iteratively by using an expectation-
conditional maximization (ECM) algorithm.

The rest of the paper is organized as follows: Section 2
reviews the related work and identifies the competing
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alternatives to be compared. Section 3 describes our
approach for the image segmentation problem, while
Section 4 formulates the ECM for contour inference and
shape classification. In Section 5, we apply the proposed
method to several micrographs having different degrees of
overlap and compare the results with the competing
alternatives. Section 6 concludes the paper.

2 RELATED RESEARCH

Despite its importance, there is only a limited amount of
literature about automated morphology analysis of nano-
particles. To the best of our knowledge, all existing methods
assumed either circularity of particle’s contours [6], [7], [8]
or elliptical shape template [9] in order to segment
overlapping particles, so their applicability is limited. On
the other hand, there exists plenty of research for the biocell
segmentation problem. What we choose to review here is
the literature about multiple cell segmentation, which
involves the separation of individual cells from other cells;
this line of research is directly related to our objective.

Morphological image segmentation methods, repre-
sented by the watershed and its variants [10], [11], [12],
[13], [14], [15], are a classical approach. The approach first
finds markers pointing to the approximate locations of
cells and then segments an image region into several
influence zones of markers. The morphological segmenta-
tion methods generally work well, but this line of methods
does not provide any inference on the occluded parts,
which makes it difficult to fulfill the final objective of
morphology analysis.

Graph-cut methods have also been applied to cell
segmentation. The method constructs a graph by treating
each image pixel as a node. Each pair of nodes is connected
by an edge with the similarity between pixel intensities as
its cost. It finds a normalized minimum cut of the graph,
which naturally segments an image [16], [17]. This
approach does not separate overlapping objects well,
especially when the overlapping objects have similar
intensity levels. Hence, Dan�ek et al. [18] utilized the
estimated mean radius of cells for the purpose of separating
the overlapping cells, but their method is only applicable to
spherically shaped objects.

Active contour is another school of methods applied to
the cell segmentation [19], [20]. Active contour is originally
designed to segment a single object of complicated shape
from the background [21], but the level-set based active
contour [22] or the multiphase active contour [23] could
be used to segment multiple nonoverlapping objects. To
separate overlapping objects, a shape prior constraint is to
be associated with every single object [24], [25], [26]. The
shape prior level-set method is generally computationally
demanding when handling a large number of objects, and
consequently, they were mostly applied to the evolving of
a small number of level-set functions [27], [28]. The
computation cost can be reduced by applying the narrow
banding technique [29] to evolve a larger number of level-
set functions.

Recently, advanced nonlinear filtering algorithms have
been used for a noise-robust cell segmentation: sliding band
filter (SBF) [30], [31] and iterative voting method (IVM) [32].

A major difficulty in applying the nonlinear filtering
algorithms is that the range of object sizes should be known
a priori. The size range can be roughly estimated by
morphological granulometric analysis [33]. Still, if the range
is wide, the nonlinear filtering algorithms tend to be
ineffective to separate different objects and will likely
oversegment large objects.

The aforementioned methods have made great advance-
ments in biocell morphology analysis. But the nanoparticle
morphology analysis presents a technical challenge through
a combination of the following three major factors: the
particle overlap, various geometric shapes and sizes, and a
large quantity. Overlapping nanoparticles have similar
image intensities, which makes both graph cut and active
contour methods less ideal candidates. Nanoparticles often
manifest themselves in different sizes, and consequently,
hundreds of particles in a micrograph could present a rather
broad range of object size, rendering the nonlinear filtering
approach ineffective. Separating the large quantity of
particles needs a computationally effective solution, which
makes the active contour methods unattractive. Simple
segmentation methods such as the watershed method will
not give us the desired morphology information of particles
because the simple methods do not provide inference on the
missing parts caused by particle overlaps. Addressing the
challenges presented by nanoparticle morphology analysis
still calls for new, more effective approaches.

We propose a two-stage morphology analysis method in
this paper which can better address the above-described
nanoparticle problem. The contribution of our research is
as follows: First, we modify an existing morphological
erosion process for handling convex objects and provide
theoretical justification on its separation capability. Second,
we develop a method for associating the segmented edges
with markers and for making them meaningful chunks of
evidences to delineate individual objects. Third, the
evidences are used as input in the subsequent ECM
algorithm to fit the B-spline contours with the guidance
of multiple reference shapes (contour inference) as well as
to determine which reference shape best conforms with the
evidences (shape classification). The proposed method
solves the particle segmentation problem separately from
the ECM algorithm because incorporating the segmenta-
tion problem into the ECM formulation will cause heavy
computation and slow convergence of the ECM. We would
also like to note a limitation of our method: Since it is
designed for handling convex objects, the proposed
method will not work for image segmentation of non-
convex shapes, e.g., donut-shaped particles; for such cases
and methods that address them, please refer to [34], [35].

3 SEGMENTATION OF PARTICLE OVERLAPS BY

CONVEX DECOMPOSITION

According to the theory governing crystal formation [5],
nanoparticles are prone to having convex shapes. Hence, at
the first stage we need to deal with a convex decomposition
problem, namely, segmenting a complicated morphology
into convex subpieces.
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This segmentation task has two parts: finding the markers
of individual convex pieces (in Section 3.1) and obtaining the
contour evidences to delineate each of the individual convex
pieces (in Section 3.2). Our procedure is built upon the
existing morphological segmentation method, ultimate
erosion (UE) [36], but it has a couple of key differences.
First, our stopping criterion for iterative erosion is different,
producing more robust segmentation results for convex sets.
Second, our approach skips the marker-growing step used in
a typical morphological segmentation method. Rather, it
directly identifies the contour evidences relevant to each
marker by detecting edges and relating the edges as contour
evidences to one of the markers. To relate the edges, we
define an evidence-to-marker relevance measure different
from the one used in the marker-growing approach.

3.1 Ultimate Erosion for Overlapping Convex Sets

Suppose that we have a binary silhouette of overlapping
objects from a grayscale image (please see Fig. 1b for an
example). Such a binary silhouette can be easily obtained in
real micrographs picturing nanoparticles because these
micrographs have a high signal-to-noise ratio. There are
usually irregular intensity patterns in the interior of a
nanoparticle, but such noises could be effectively removed
by using alternative sequence filtering [37]. Since nanopar-
ticles only have convex morphologies, the binary silhouette
is a union of the convex silhouettes of individual particles.
This section describes how to decompose the binary
silhouette into disjoint convex sets.

Suppose that we have n nanoparticles in a micrograph.
Let I be the binary silhouette of the particles and Ci be a set
of pixels in the interior or on the boundary of nanoparticle
i, where Ci should be a convex set due to the convexity of
the particle’s morphology. As such, I ¼

Sn
i¼1 Ci. Given a

nonempty set I, we want to obtain a connected subset for
each Ci, called the marker of Ci, so that the markers are
pairwise disjoint. The marker plays an important role to
locate Ci in a micrograph and to guide the particle
segmentation.

The markers are produced through morphological
erosion, performed by applying the Minkowski subtraction
to I with respect to Bð0; 1Þ, where Bðx; rÞ is a closed ball in
IR2 centered at x with radius r [38, p. 133]. Conceptually, the
result of the erosion operator Bð0; 1Þ is equivalent to peeling
off I from its boundary by size one. Repeated applications
of the erosion operator may disconnect the junctions of
overlapping objects. A key question is when to stop the
morphological erosion. A popular choice is to keep

applying the erosion operator to each remaining connected

set just before it is completely removed. This is called the

ultimate erosion [36, p. 72].
Each connected set resulting from UE becomes a marker.

If we have one marker for each Ci, we say that I is separable

by UE. However, UE is prone to producing more than one

marker for each Ci, especially in noisy images, thereby

leading to oversegmentation of nanoparticles, e.g., Fig. 1c.

To avoid the oversegmentation, we propose a noise-robust

morphological erosion process with an earlier stopping

criterion than that of UE. We call our erosion process

ultimate erosion for convex sets, UECS for short.

Definition 3.1 (Ultimate erosion for convex sets). The

ultimate erosion to I is an iterative process to update IðtÞ:
Initialization: Start with Ið0Þ ¼ I.
Iteration t: For the ith connected component A

ðt�1Þ
i in

Iðt�1Þ, compute Ri and update IðtÞ ¼
S
i Ri:

Ri ¼
A
ðt�1Þ
i �Bð0; 1Þ if A

ðt�1Þ
i is not convex

A
ðt�1Þ
i otherwise:

(
End: The iterations stop when IðtÞ ¼ Iðt�1Þ.

We will show that I is separable by UECS under

Assumption 3.2.

Assumption 3.2 (Chained cluster of overlapping objects).

The intersection of every three of the n convex sets composing

I is at most one point and for every pair i 6¼ j, CinCj is not

empty and is connected.

Intuitively, the assumption is related to the degree of

overlaps among particles; please refer to Fig. 2 for an

illustration. In real micrographs, one could observe that

many overlapping nanoparticles satisfy the assumption. For

examples, please see Fig. 5a. The exemplary micrographs

depict the chain-linked clusters formed by overlapping

nanoparticles. This type of clusters of nanoparticles is

separable by UECS.
For a formal statement, we first introduce some notations.

Let C be a connected set in IR2 and let dCðxÞ be the distance

function from x 2 IR2 to @C such that dCðxÞ ¼ inffkx �
yk : y 2 @Cg, where @C is the boundary ofC. We also define a

supporting set SðxÞ by

SðxÞ ¼ fy 2 @I : kx� yk ¼ dIðxÞg for x 2 I:
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The following theorem shows that I is separable by UECS
(for its proof, please refer to Appendix A, which can be
found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2012.163.)

Theorem 3.3 (Separability of UECS). Suppose that I is a
union of n overlapping convex sets, namely, C1; . . . ; Cn,
satisfying Assumption 3.2. Then, I is separable by UECS if
and only if there exists � > 0 such that Bðx; �Þ � f

P
k �kzk :

zk 2 SðxÞ;
P

k �k ¼ 1; �k � 0g for i ¼ 1; . . . ; n.

The if-and-only-if condition in the above theorem is
related to the size of the allowable overlap between
particles. For detailed discussions regarding the implication
of this condition, please also refer to Appendix B, available
in the online supplemental material.

UECS is less prone to oversegmentation because it uses a
noise-robust measure of convexity (or conversely, a measure
of concavity) as its stopping criterion for erosion. Many
works were reported regarding how to measure the size of
concavity in digital images [39]. Rosenfeld [40] compared
three popular measures for concavity in terms of their
sensitivity to the coarseness of digital grids, and identified
the following concavity measure as the least sensitive one.

Definition 3.4 [40, p. 72]. Let I be a connected set. If
O ¼ convðIÞ, V ¼ OnI is called a concavity of I. Suppose
that V consists ofm connected sets. If we denote the boundary of
the jth connected set by Vj, the size of concavity V is defined by

cðV Þ ¼ max
j¼1;...;m

d
�
Vj
T
@O; Vj

T
@I
�

l
�
Vj
T
@O
� ;

where dðX;Y Þ ¼ maxx2Xminy2Y kx� yk and lðLÞ is the
length of a line segment L.

The concavity measure ranges in ½0; 0:5� and its largeness
implies that P is not convex. Using this concavity measure,
the stopping criterion of UECS is defined by comparing the
measure with threshold �, i.e., continue erosion if cðV Þ > �,
but stop otherwise.

The choice of � determines the noise-robustness degree of
UECS. If � is large, UECS will be more robust to boundary
protrusion and intrusion by noise but may lose its separation
capability. Conversely, if � is too small, UECS will be less
robust but more capable of separating the overlaps. Empiri-
cally, we observed that � in between 0.2 and 0.3 worked well
with real micrographs. An exemplary result from UECS
(� ¼ 0:2) is presented in Fig. 1d, where the markers are
depicted as the white regions inside the nanoparticles.

3.2 Extraction and Association of Contour
Evidences

Once the markers are obtained, most existing image
segmentation methods grow the markers by repeated
applications of geodesic dilations to the markers, and the
growth of a marker usually stops when it collides with the
growth of other markers. Marker-controlled watershed also
follows this approach [36]. The contours of the grown-up
markers are used as the contour evidences to infer the
complete contours of objects. In such an approach, the
growing process can be regarded as an implicit way to get
the contour evidences for the final inference of the
complete contours.

Differently from the marker growth approach, we
choose to define the contour evidences explicitly; we first
extract all the edge pixels from an image and then associate
them with each individual marker according to a relevance
measure. This edge-to-marker association is used as our
contour evidences. This section presents our choice of the
relevance measure.

Suppose that we have n markers from UECS, denoted by
fT1; T2; . . . ; Tng, where Ti is the marker of Ci and it is
represented by a set of point coordinates in the marker. We
also have m edge pixel coordinates detected by an arbitrary
edge detection method and denoted by E ¼ fe1; . . . ; emg.
Note that the edges are the locations where image
intensities abruptly change and they have been used as
evidences of object’s contours previously, e.g., in [37]. In
order to measure the relevance of ej to Ti, denoted by
relðej; TiÞ, we define a compound measure rather than a
simple measure (e.g., distance). A component composing
the compound measure is a distance from ej to Ti, the same
as what is used in the marker-growing approach. We define
the distance measure in order to exclude the edge points
that locate close to an irrelevant marker by chance. The
distance is defined with respect to I (the same I used in the
previous section) as

gðej; TiÞ ¼ min
x2Ti

gjðxÞ; ð1Þ

where gjðxÞ is the euclidean distance jej � xj if the line from
ej to x entirely resides within I and1 when any portion of
the line is outside I. By the convexity ofCi, if ej is a substance
of Ci’s contour, the line from x 2 Ti to ej must be in Ci and
also in I. Such treatment helps avoid overemphasizing the
relevance of ej to markers irrelevant but close to ej.

The other component in the compound measure is the
divergence index of ej from Ti, which compares the
direction of intensity gradient at ej with the direction of
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line from x 2 Ti to ej. Technically, it is expressed as a
cosine function:

divðej; TiÞ ¼ min
x2Ti

~gðejÞ �~lðx; ejÞ
k~gðejÞkk~lðx; ejÞk

;

where ~gðejÞ is the direction of intensity gradient at ej and
~lðx; ejÞ is the direction of line from x 2 Ti to ej. The use of
the divergence index is motivated by how electron micro-
graphy works. In a typical electron micrograph, the regions
occupied by nanoparticles have lower image intensities
than the background. For this reason, if ej is a substance of
Ci’s contour, the gradient at ej diverges from Ti. Since Ci is
convex, the gradient direction is very close to the vector
direction from Ti to ej, i.e., the cosine of the angle between
the two directions is close to being maximized. In Fig. 3c,
the solid-line arrow outbound from ej is the (image
intensity) gradient vector at ej, ~gðejÞ, and the dotted-line
arrow represents the straight line from Ti to ej, ~lðx; ejÞ. The
divergence index is simply the cosine of the angle between
the two vectors.

Summing up gðej; TiÞ and divðej; TiÞ with a weight
constant� 2 ½0; 1�, we define the relevance measure of ej toTi:

relðej; TiÞ ¼
1� �

1þ gðej; TiÞ=nIter
þ � divðej; TiÞ þ 1

2
; ð2Þ

where nIter is the number of erosion iterations and both
terms are normalized to ð0; 1� before being weighted by �. If
i ¼ arg maxk relðej; TkÞ, ej becomes an element of the
contour evidences for Ci. Throughout this paper, we use
� ¼ 0:5, i.e., equally weighting the two terms.

By now, one can see that our image segmentation step
has two substeps: a modified erosion process (UECS) and
the subsequent edge-to-marker association. We acknowl-
edge that there are other robust erosion criteria in terms of
marker generation, for example, the extended maxima
transform [41]. However, when considering the whole
segmentation step altogether, i.e., comparing the proposed
UECS followed by edge-to-marker association with the
extended maxima transform followed by marker growing,
there are two major differences: 1) While both UECS and the
extended maxima transform are effective and robust in
generating markers, the marker growing step in a watershed
method still appears sensitive to noise. The watershed
method grows the markers up to the regional minima
(watershed lines), which could result in unreasonable

segmentation. 2) The edge-to-marker association performs

better when used after UECS than after the extended

maxima transform because UECS almost always stops

earlier than the extended maxima transform and leaves a

sizable marker. The larger markers are preferred and make

the edge-to-marker association effective since the associa-

tion is partially based on a distance measure.

4 CONTOUR EVOLUTION WITH MULTIPLE

REFERENCE SHAPES

Suppose that we have a set of mi edge points as the contour

evidences for Ci, which are denoted by fei1; ei2; . . . ; eimi
g,

where eij is a 2� 1 vector since we are dealing with 2D

images. The markers identified in Section 3 are used to

locate Cis but they will not be used explicitly in the

subsequent inference.
We want to infer a contour, fitted to the evidences and

regulated by the prior shape knowledge (known reference

shapes). One difficulty is that a contour can have several

possible (convex) shapes, whereas most previous research

only dealt with a single predetermined reference shape. To

deal with multiple reference shapes, we propose an

approach that simultaneously performs the shape classifi-

cation and contour inference.
A contour for Ci is assumed to be a uniform periodic B-

spline curve with order d and p control points; for t 2 ½0; 1�,

ffiðtÞ ¼
Xp�1

h¼0

�h;dðtÞppi;h; ð3Þ

where t is a parameter to identify a point on the curve,

�h;dðtÞ is the hth periodic B-spline bending function, and

ppi;h 2 IR2 is the hth control point.
Suppose that eij is a noisy observation of ffiðtÞ at a

B-spline parameter value tij, i.e.,

eij ¼ ffiðtijÞ þ ��ij; ��ij 	 N
�
0; �2II2

�
;

where the parameter value tij is unknown and it needs to

be estimated. The problem assigning tij to each data point

eij is called the data parameterization problem in the

literature [42], [43], [44]. For the time being, we assume that

tij is known. We denote mi contour evidences collectively

by a 2mi � 1 vector xi, which is formed by binding eij in a
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row-wise fashion. The likelihood of ffiðtÞ given xi or,
equivalently, the likelihood of ppi;hs given xi, is then

P
�
xijppi; �2

�
¼ N

�
xi; �ippi; �

2II2mi

�
;

where �i is a 2mi � 2p matrix with �r;dðtijÞII2 as its ðj; hÞth
2� 2 submatrix and ppi is a 2p� 1 vector binding ppi;h in a
row-wise fashion.

The ppi is affected by shape information. It also varies
with the pose parameters such as scaling, shifting, and
rotation of shapes. Hence, before constraining ppi with shape
information, we separate the pose parameters from ppi.
Given the scale parameter s, rotation angle �, and
horizontal-vertical shifts cc, the model for ppi;h is

ppi;h ¼
1

s
R�~ppi;h þ cc;

where ~ppi;h is the normalized shape feature independent of
the pose parameters, and R� is a transformation matrix for a
rotation by � in counterclockwise. The model for the whole
feature ppi is

ppi ¼
1

s
QQ�~ppi þHHcc; ð4Þ

where QQ� is a Kronecker product of the p� p identity matrix
with R� and HH :¼ 11p 
 II2 is a Kronecker product of the
p� 1 vector of ones with a 2� 2 identity matrix.

We constrain the normalized shape feature ~ppi by the
prior shape, summarized as follows: The shapes of
nanoparticles are grouped into K possible shapes. If
particle i belongs to the kth shape group, ~ppi follows a
Gaussian distribution with ��k as its mean and �k as its
variance-covariance matrix. We define the hidden group
membership vectors ggi ¼ ðgi1; . . . ; giKÞt, where gik is equal to
one if particle i belongs to shape group k, and zero
otherwise. Then, the prior distribution on ~ppi given ggi is

P
�
~ppijggi; ��;�

�
¼
YK
k¼1

N
�
~ppi;��k;�k

�gik ;
where �� is a set of ��ks and � is a set of �ks. Since ppi is the
linear transformation of ~ppi, ppi is also characterized as
Gaussian with parameters depending on the pose para-
meters. The pose parameters might depend on the shape
group that particle i belongs to. Hence, we denote them
separately for each shape group by sik, �ik, and ccik, and
denote them collectively for all ks by ssi, �i, and cci. Using (4),
ppi is distributed as

P
�
ppijggi; ssi; �i; cci; ��;��

�
¼
YK
k¼1

N
�
ppi;��ik; AAik�kAA

t
ik

�gik ;
where ��ik ¼ AAik��k þHHccik and AAik ¼ 1

sik
QQ�ik . We also put a

multinomial distribution on the hidden matrix ggi as its prior
distribution, i.e.,

P ðggij		Þ ¼
YK
k¼1

	gikk ; ð5Þ

where
P

k 	k ¼ 1 and 		 ¼ ð	1; 	2; . . . ; 	KÞt.
The ultimate goal of this section is to obtain the contours

of convex shapes Cis and to determine which shape group

Ci belongs to. This problem corresponds to estimating the
hidden variables ZZ ¼ fppi; ggi; i ¼ 1; . . . ; Ng. However, the
hidden variables depend on the unknown parameters
� ¼ f�2; 		; f��k;�kg; fssi; �i; ccigg. We estimate the unknown
parameters by maximizing the following marginal like-
lihood of observing contour evidences XX ¼ fxi; i ¼
1; . . . ; Ng with respect to �:

P ðXXj�Þ ¼
Z
ZZ

P ðXX;ZZj�ÞdZZ: ð6Þ

Given the estimated b�, ZZ is estimated by taking its
posterior mode, a maximizer of the following posterior
distribution:

P
�
ZZj b�; XX

�
¼
P
�
XX;ZZj b��
P
�
XXj b�� : ð7Þ

Conceptually, this solution approach involves two compli-
cated optimization problems, which are not easy to solve. In
practice, it is realized through an iterative solver, the
expectation conditional maximization, proven to converge
to a local maximum [45].

4.1 Expectation Maximization (EM) via the ECM
Algorithm

When we consider � as the unknown parameters, the
complete likelihood of the parameters given contour
evidences XX and hidden variables ZZ is as follows:

P ðXX;ZZj�Þ ¼
Yn
i¼1

YK
k¼1

½	kN
�
ppi;AAik��k þHHccik; AAik�kAA

t
ik

�
Nðxi; �ippi; �

2II2mi
Þ�gik :

At iteration t, the expectation maximization algorithm
first computes the expected value of the complete log-
likelihood function with respect to the posterior distribu-
tion, P ðZZjXX;�ðoÞÞ, where �ðoÞ is an old estimate of �
(E-step). The expected log likelihood is

EZZ ½logP ðXX;ZZj�Þ�

/
XN
i¼1

XK
k¼1


ik½2 log	k � log detð�kÞ þ 4p log sik

�
�
��k þ sikQQt

�ik
HHccik

�t
��1
k

�
��k þ sikQQt

�ik
HHccik

�
þ 2sikmm

t
ikQQ�ik�

�1
k

�
��k þ sikQQt

�ik
HHccik

�
� s2

iktrace
�
QQ�ik�

�1
k QQt

�ik
�ik

�
� 2mi log�2

� ��2xxtixxi þ 2��2�tik�
t
ixxi

� ��2trace
�
�t
i�i�ik

�
�;

ð8Þ

where 
ik ¼ 	kqik, �ik ¼ SSik þmmikmm
t
ik,

qik ¼ N
�
xi; �iAAik��k þHHccik; �2II2mi

þ�iAAik�kAA
t
ik�

t
i

�
;

mmik ¼ AAik�kAA
t
ik�

t
i

�
�2II2mi

þ�iAAik�kAA
t
ik�

t
i

��1

ðxxi ��iAAik��k �HHccikÞ þAAik��k þHHccik;
SSik ¼

�
AA�tik ��1

k AA�1
ik þ ��2�t

i�i

��1
:

Here, we omitted a lengthy derivation of the expectation
because of page limitation. For the full derivation of all
expressions in this section, please refer to Park [46]. In the
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M-step, we maximize the expectation in (8) with respect to

�. The first order necessary condition (FONC) with respect

to 	k, along with the constraint
P

k 	k ¼ 1, gives us the local

optimum for 	k:

	k ¼
PN

i¼1 
ikPN
i¼1

PK
k0¼1 
ik0

:

The local optimum for �2 also comes directly from the FONC:

�2 ¼
P
8i;k 
ik

�
xxtixxi � 2mmt

ik�
t
ixxi þ trace

�
�t
i�i�ik

��
2
PN

i¼1

�
mi

PK
k¼1 
ik

� :

We cannot obtain the closed form expressions of the local

optima for ��k, �k, �ik, sik, and ccik since their FONCs are

entangled with one another in complicated forms. We could

instead perform the M-step iteratively by the Newton

Raphson, but we want to avoid expensive iterations as well.

There are two other possible options to proceed with the

M-step without iterations; the first one is to improve the

expected log likelihood (8) rather than to maximize it for

every M-step, resulting in a GEM algorithm [47], and another

one is to use the ECM algorithm [45]. The first option does

not in general converge appropriately, but the second option

does. For this reason, we take the second option.
The ECM algorithm partitions � into L subgroups and

solves L optimizations, where each optimization max-

imizes (8) with respect to one subgroup of �, provided that

the other groups remained to be their previous values. For

the applications to real micrographs in Section 5, we used

L ¼ 5 with five subgroups of parameters f��kg, f�kg, f�ikg,
fsikg, and fccikg. From the FONCs with respect to each

subgroup, we have the following solutions for the M-step

of the ECM algorithm:

��k ¼
PN

i¼1 
iksikQQ
t
�ik
ðmmik �HHccikÞPN

i¼1 
ik
;

�k ¼
PN

i¼1 
ik
�
��ik þ sikQQt

�ik
HHccik

��
��ik þ sikQQt

�ik
HHccik

�tPN
i¼1 
ik

þ
s2
ikQQ

t
�ik

�ikQQ�ik � sik
�
��k þ sikQQt

�ik
HHccik

�
mmt

ikQQ�ikPN
i¼1 
ik

�
sikQQ

t
�ik
mmik

�
��k þ sikQQt

�ik
HHccik

�tPN
i¼1 
ik

;

ccik ¼
�
HHtQQ�ik�

�1
k QQt

�ik
HH
��1

HHtQQ�ik�
�1
k QQt

�ik
mmik �

��k
sik

� �
;

sik ¼
vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 8p
iku

p
2u

;

where

u ¼ trace
�
QQ�ik�

�1
k QQt

�ik

�
�ik þHHccikcctikHHt � 2HHccikmm

t
ik

��
v ¼ ðmmik �HHccikÞtQQ�ik�

�1
k ��k:

The solution for �ik is more complicated. The equation

governing x ¼ sinð�ikÞ is

4ða2 þ b2Þx4 þ 8ðbd� acÞdx3 þ 4ðc2 þ d2 � a2 � b2Þx2

þ 4ðac� 2bdÞxþ a2 � 4d2 ¼ 0;

where

a ¼ siktrace
��

��1
k IItp� þ IIp���1

k

��
�ik þHHccikcctikHHt

��
;

b ¼ siktrace
��

��1
k � IIp���1

k IItp�
��

�ik þHHccikcctikHHt
��

� 2siktrace
��

��1
k � IIp���1

k IItp�
�
HHccikmmik

��
;

c ¼ ðmmik �HHccikÞt��1
k ��k;

d ¼ ðmmik �HHccikÞtIIp���1
k ��k;

and IIp� is an antisymmetric matrix defined as

IIp� ¼ IIp 

0 �1
1 0

	 

:

The solution of the above quartic equation can be obtained
by means of a method discovered by Ferrari [48].

Once a convergence is attained from iterations of the
E-steps and the M-steps through the ECM, the posterior
distributions for ggi and ppi given the converged para-
meters � and evidences XX are obtained by

P ðgik ¼ 1jXX;�Þ / 
ik;

P ðppijXX;�Þ /
XK
k¼1


ikNðppi;mmik; SSikÞ:

Accordingly, the posterior mode of ggi is bgik ¼ 1 if k ¼
arg maxk0
ik0 and 0 otherwise. The posterior mode for ppi is
given by

bppi ¼ XK
k¼1


ikSS
�1
ik

 !�1XK
k¼1


ikSS
�1
ik mmik:

Finally, we determine the shape of Ci to be k if bgik ¼ 1, and
reconstruct the contour by plugging bppi into (3).

4.2 Approximate Data Parameterization

We have assumed that the spline parameter value tij for
evidence eij is known. In real problems, however, it is
unknown and needs to be obtained. In the literature,
assigning a parameter value tij to data point eij is called
data parameterization, where several methods were avail-
able, including the chord length parameterization, the
centripetal method [49], [50], or the intrinsic parameteriza-
tion [42]. Among these methods, the chord length para-
meterization is easy to use and efficient in computation. But
it requires the ordering information of the points to be
parameterized, which we do not have. The intrinsic
parametrization, on the other hand, is more general but
will add another family of parameters to the already large
set of parameters under estimation in the ECM. In the end,
we choose to base our approach on the chord length
parameterization, but use an approximation to get the
ordering of the data points.

The basic idea of our approximate chord length para-
meterization is as follows: Find a convex hull inscribing the
evidences and then use the parameterization of points on
the convex hull to get the approximate spline parameter tij.
The detailed procedure is as follows: Given a set of contour
evidences for Ci, fei1; ei2; . . . ; eimi

g:
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1. Find a convex hull inscribing the contour evidences
by the Qhull algorithm [51].

2. Sequentially order all points on the convex hull in
counterclockwise (or clock wise) into q0; . . . ;qL and
then parameterize the points by the chord-length
parameterization: the parameter tl for ql is assigned as

tl ¼
Pl

s¼1 jqs � qs�1jPL
s¼1 jqs � qs�1j

;

3. In order to get tij, find the point closest to eij among
the points in the convex hull, say, qs; set tij ¼ ts.

The main advantage of this parameterization is its
simplicity and computational efficiency. In addition, the
parameterization is not affected by the noisy contour
evidences which locate inside a nanoparticle. When the
noisy evidences locate outside a nanoparticle, the approx-
imate data parameterization may be distorted. This problem
can be addressed if we take the convex hull inscribing the
majority of points except for a few outliers.

5 APPLICATIONS TO REAL MICROGRAPHS

This section shows how our proposed method works with
real electron micrographs and compares its performance
with seven state-of-the-art methods: marker-controlled
watershed segmentation with h-dome transform [10,
WHD], marker-controlled watershed with h-maxima trans-
form [41, WHM], normalized-cut [16, N-Cut], multiphase
active contour [23, MPAC], sliding band filter [31, SBF],
morphological multiscale method [15, MSD], and iterative
voting method [32, IVM].

For the numerical comparison, we implemented WHD,
WHM, SBF, and MSD by ourselves. We used the imple-
mentation made by the corresponding authors for N-Cut
[16] and IVM [32], and the implementation made by Wu
[52] for MPAC. For generating markers in the two

watershed methods, in WHD, we took the h-dome trans-
form of an original grayscale image with h ¼ 6, and in
WHM, we took the extended maxima transform with h ¼ 8
on the distance transform of an image.

We chose 12 different real micrographs obtained from a
synthesis process of gold nanoparticles. In order to see the
recognition quality of nanoparticles having various de-
grees of overlap, we categorized the micrographs into
three groups according to their degrees of overlap: low,
medium, and high. The micrographs of “low” overlapping
degree have slightly touching among particles. In the cases
of the “medium” degree, most nanoparticles overlap and
the overlapping structures conform with Assumption 3.2.
The high degree cases are when nanoparticles overlap
more severely so that the overlapping clearly violates
Assumption 3.2.

5.1 Results of Contour Inference

The results of segmentation and contour inference of the
12 micrographs are presented in Figs. 4, 5, 6, and 7. Each
figure has four columns. The first column of each figure
contains the original micrographs. The corresponding
binary silhouettes were obtained by applying the alternative
sequence filtering [37], followed by Otsu’s optimum global
thresholding [53]. The UECS proposed in Section 3.1 was
applied to the binary silhouettes for obtaining the second
column, where a white-colored connected region implies
one marker. Contour evidences (pixels at the boundaries of
particles) were first extracted by Canny’s edge detection
method [54], and then they were associated with the
markers by using the procedure in Section 3.2. After the
association, the algorithm filtered out some noise edge
outliers based on the mean and standard deviation of g
defined in (1). In the third column of each figure, the
association to different markers is illustrated by different
colors of the contour evidences. The last column shows the
final result from the contour inference proposed in Section 4.
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contours by the ECM.



The proposed UECS correctly identified one marker per

particle for most of the cases from Figs. 4, 5, and 6. Fig. 7

has severe overlaps among the nanoparticles, and as a

result, UECS sometimes identified one marker for multiple

nanoparticles.
The association between the markers and the edge pixels

generally looks reasonable, although some noise edge pixels

have been classified as valid contour evidences. The

inference results match well with the original image. In

some cases where the contour evidences are not sufficient,

especially for the nanoparticles cropped by image borders,

the shapes of the nanoparticles cannot be inferred correctly

and the recovered contours do not look good. We want to

note that most of those cases cannot be easily handled even
by human vision.

The accuracy of our proposed method was quantitatively

compared with the seven methods as mentioned earlier. For

each of the 12 micrographs, we manually counted the total

number of nanoparticles and the number of the particles

correctly separated by each of the methods in comparison.

The results are tabularized in Table 1. Overall, our proposed

method is the best performer for eight of the 12 micro-

graphs, ties for two cases, and performs very similarly to

the best performer for the remaining two micrographs.
N-Cut and MPAC suffer from undersegmentation

because their image segmentation is guided by image
intensities but overlapping particles have similar image
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Fig. 6. Results from the medium-degree overlapping cases (continued).



intensities (please refer to Fig. 8 for an exemplary result).

SBF and IVM perform comparably well but both struggle

with the cases where the particle sizes vary drastically.

The third micrograph in Fig. 4 corresponds to such a case.

Among the two watershed algorithms, WHM works better

than WHD, but both are outperformed by the proposed

method. That is mainly due to inaccuracy in the marker

growing step, leading to unreasonable segmentation

(please refer to Fig. 9 for examples). Our method is

comparable to MSD but still holds a competitive edge in

most cases. The underperformance of MSD, compared

with the proposed method, comes mainly from two

reasons: undersegmentation and inaccurate marker grow-

ing. The undersegmentation is caused by the smoothing

step in the marker-generation step of MSD (m-fold

dilation) but fine-tuning this smoothing step for avoiding

the undersegmentation does not appear to be easy because

of the delicate tradeoff between oversegmentation and

undersegmentation. The marker-growing step in MSD is

similar to the region growing in the watershed. Like the

watershed’s segmentation shown in Fig. 9, MSD’s marker

growing step can also lead to unreasonable segmentation.

Fig. 8 presents one exemplary result of the segmentation
and contour inference performed by our method and the
seven competing methods. We can clearly observe under-
segmentation by MPAC and N-Cut. WHD also suffers from
oversegmentation due to its sensitivity to noise. The contour
estimation by SBF looks rough, but this roughness can be

678 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 3, MARCH 2013

Fig. 7. Results from the high-degree overlapping cases.

TABLE 1
Comparison of Performances on Nanoparticle Recognition

Fig. 8. Results of segmentation. The red lines correspond to the
contours identified by our method and six other methods in comparison.
The red dots correspond to the center locations identified by IVM.



smoothed out by curve fitting. SBF also misses a few
particles. IVM’s segmentation result is presented differently
because the author’s code produces the center locations of
the segmented objects rather than the segmentation bound-
aries. Generally, IVM, WHM, and MSD perform well.

We recorded the total computation times spent by the
methods for the micrograph used in Fig. 8. SBF spends the
longest time, 541 seconds, N-cut 256 seconds, MPAC
273 seconds, MSD 78 seconds, and WHD/WHM/IVM take
less than 1 second. Our method takes 72 seconds, where
28 seconds are for UECS and association of contour
evidences, and the rest of the time is for contour inference
and shape classification. Our method is not the fastest
among the eight methods. However, please note that our
method performs shape inference and classification along
with segmentation, while the other seven methods perform
either segmentation/inference (MPAC) or only segmenta-
tion (the other six methods).

5.2 Results of Shape Classification

We chose four out of the 12 micrographs to evaluate the
accuracy of shape classification. The four figures were
chosen because they contain various types of particle
shapes, while the remaining eight figures contain primarily
spherical nanoparticles. The classification results are pre-
sented by labeling the nanoparticles with one character
symbol representing shape classes; “t” ¼ triangle, “b” ¼
rectangle, “c”¼ circle, and “r”¼ rod. Please refer to Fig. 10.

We compare the automated classification outcomes with
how humans would classify the shapes. In the top-left
figure, the result is accurate except for two missclassifica-
tions; our method classifies a triangle as a circle and
classifies a circle as a triangle. Such missclassifications are
also observed in a few other cases at the bottom-left figure
and the bottom-right figure. The circle-to-triangle misclas-
sification is mostly caused by insufficient contour evi-
dences. The other type of missclassification is caused by a
faulty data parameterization for the spline curves in the
ECM. Looking for a more capable data parameterization is
certainly desirable but does not appear to be a simple task.
We leave this issue to our future research. Overall, we
believe that our automated method performs the shape
classification task reasonably well.

6 CONCLUSION AND DISCUSSION

In this paper, we have proposed a two-stage approach to
tackle the automated morphology analysis problems of
overlapping nanoparticles. The unique contributions of this
paper are:

1. to propose a modified ultimate erosion process
(UECS), followed by an edge-to-marker association,
to separate overlapping convex objects,

2. to provide the justification on the use of UECS in
terms of its separation capability for a chain-linked
cluster of convex objects,

3. to propose a new way to convert the segmented edge
pixels into contour evidences by using a compound
marker-to-edge relevance measure, and

4. to integrate the ECM with UECS and evidence
association, which allows us to solve a complicated
image segmentation and recognition problem.

Although the ECM solution approach for shape classi-
fication and inference is not entirely new by itself [55], our
proposed model and solution procedure can solve the
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Fig. 9. Comparison of segmentation results: h-maxima followed by
marker growing ((a)-(c)) versus UECS followed by edge-to-marker
association ((d)-(e)).

Fig. 10. Shape classification. Each particle’s shape is labeled as: t = triangle, b = rectangle, c = circle, and r = rod.



morphology analysis problem for a large number of
overlapping nanoparticles, evolving an equally large
number of contours with guidance of multiple reference
shapes. To our best knowledge, there is no other method
that has such capability.

The proposed method was tested with 12 electron
micrographs of overlapping nanoparticles. The results show
that the proposed method performs better than the existing
methods when both accuracy and computation efficiency
are considered. This is not surprising because the proposed
method is specially designed for the morphology analysis of
nanoparticles in the sense that it is more capable of
segmenting the chain-aggregate structure of overlapping
convex-shaped nanoobjects. We have argued, and would
like to reiterate here, that the two morphological character-
istics (chain-aggregated and convex-shaped) are particu-
larly relevant to nanoparticle’s formation, as told by the
physical laws governing the formation process.

The handling of nanoparticle images are our principal
interests in this paper. Nonetheless, we believe that the
method could be useful for other image analysis problems
of similar nature, i.e., if the overlapping objects are of
convex shapes, and the overlap happens in a chain-link
configuration, as described in Assumption 3.2. Other
applications that could potentially benefit from our method
may include some biocell segmentation problems (e.g., [10],
[11], [14], [18], [20], [56], [57]) and morpholometry analysis
of mineral particles (e.g., [58], [59]).
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