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The properties of materials synthesized with nanoparticles (NPs)

are highly correlated to the sizes and shapes of the nanoparticles. The

transmission electron microscopy (TEM) imaging technique can be

used to measure the morphological characteristics of NPs, which can

be simple circles or more complex irregular polygons with varying

degrees of scales and sizes. A major difficulty in analyzing the TEM

images is the overlapping of objects, having different morphological

properties with no specific information about the number of objects

present. Furthermore, the objects lying along the boundary render

automated image analysis much more difficult. To overcome these

challenges, we propose a Bayesian method based on the marked-point

process representation of the objects. We derive models, both for the

marks which parameterize the morphological aspects and the points

which determine the location of the objects. The proposed model is

an automatic image segmentation and classification procedure, which

simultaneously detects the boundaries and classifies the NPs into one

of the predetermined shape families. We execute the inference by

sampling the posterior distribution using Markov chain Monte Carlo

(MCMC) since the posterior is doubly intractable. We apply our novel

method to several TEM imaging samples of gold NPs, producing the

needed statistical characterization of their morphology.
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1. Introduction. Nanoparticles (NPs) are tiny particles of matter with
diameters typically ranging from a few nanometers to a few hundred nanome-
ters which possess distinctive properties. These particles, larger than typ-
ical molecules but too small to be considered bulk solids, can exhibit hy-
brid physical and chemical properties which are absent in the corresponding
bulk material. The particles in their nano regime exhibit special properties
which are not found in the bulk properties, for example, catalysis [Kundu
et al. (2003)], electronic properties [Jana, Sau and Pal (1999)] and size and
shape dependent optical properties [Jana and Pal (1999)], which have po-
tential ramifications in medicinal applications and optical devices [Link and
El-Sayed (1999), Kamat (1993)]. The current challenge is to develop capa-
bilities to understand and synthesize materials at the nano stage, instead of
the bulk stage.

Among the various NPs studied, colloidal gold (Au) NPs were found to
have tremendous importance due to their unique optical, electronic and
molecular-recognition properties [Hirsch et al. (2003) and Gaponik et al.
(2000)]. For example, selective optical filters, bio-sensors, are among the
many applications that use optical properties of gold NPs related to surface
plasmon resonances which depend strongly on the particle shape and size
[Yu et al. (1997)]. Moreover, there is an enormous interest in exploiting gold
NPs in various biomedical applications since their scale is similar to that of
biological molecules (e.g., proteins, DNA) and structures (e.g., viruses and
bacteria) [Chitrani, Ghazani and Chan (2006)].

In recent years it has become possible to investigate the dependency of
chemical and physical properties on size and shape of NPs, due to Trans-
mission Electron Microscopy (TEM) images. Sau, Pal and Pal (2000) and
Kundu, Lau and Liang (2009), respectively, showed size and shape depen-
dence of synthesis and catalysis reaction where they observed different rates.
They also observed that circular gold NPs are better catalysts compared to
triangular NPs for a specific reaction. The development of new pathways
for the systematic manipulation of size and shape over different dimensions
is thus critical for obtaining optimal properties of these materials. In this
paper we develop novel, model-based image analysis tools that classify and
characterize the images of the NPs which provide their morphological char-
acteristics to enable a better understanding of the underlying physical and
chemical properties. Once we are able to accurately characterize the shapes
of NPs by using this method, we can develop different techniques to control
these shapes to extract useful material properties.

Substantial work in estimating the closed contours of objects in an im-
age has been done by Blake and Yuille (1992), Qiang and Mardia (1995),
Pievatolo and Green (1998), Jung, Ko and Nam (2008), Kothari, Chaudhry
and Wang (2009), among others. Imaging processing tools, especially for cell
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segmentation, also exist; for instance, ImageJ [ImageJ (2004)] is a tool rec-
ommended by the National Institute of Health (NIH). However, the features
of the data we are dealing with are quite different from those considered in
the literature reviewed, as there are various degrees of overlapping of the
NPs differing in shapes and sizes, as well as a significant number of NPs
lying along the image boundaries.

High-level statistical image analysis techniques model an image as a col-
lection of discrete objects and are used for object recognition [Baddeley
and van Lieshout (1993)]. In images with object overlapping, Bayesian ap-
proaches have been preferred over maximum likelihood estimators (MLE).
The unrestricted MLE approaches tend to contain clusters of identical ob-
jects allowing one object to sit on the top of the other, whereas the Bayesian
approaches mitigate this problem by penalizing the overlapping as part of
the prior specification [Ripley and Kelly (1977), Baddeley and van Lieshout
(1993)], offering flexibility over controlling the overlapping or the touching.

In Mardia et al. (1997), a Bayesian approach using a prior which forbids
objects to overlap completely is proposed to capture predetermined shapes
(mushrooms, circular in shape). Inference is carried out by finding the Max-
imum A Posteriori (MAP) estimates and the prior parameters are chosen by
simulation experience, in effect, fixing the parameters that define the penalty
terms. Rue and Hurn (1999) also used a similar framework to handle the
unknown number of objects but introduce polygonal templates to model the
objects. However, their application is restricted to cell detection problems,
where the objects do not overlap but barely touch each other and the method
works more like a segmentation technique than as a classification technique.
Moreover, the success of this approach depends on prior parameters, which
are assumed known throughout the simulation. Al-Awadhi, Jenninson and
Hurn (2004) used the same model except that they considered elliptical
templates instead of polygonal templates and applied their method to sim-
ilar cell images. All the above methods take advantage of the Marked Point
Process (MPP), in particular, the Area Interaction Process Prior (AIPP), or
any other prior that penalizes the overlapping or touching, which we explain
later in the paper.

Since the structure of the data we are analyzing is different from the lit-
erature, we adapt object representation strategies discussed above to the
problem at hand. When we refer to a shape, we refer to a family of geomet-
rical objects which share certain features, for example, an isosceles and a
right triangle both belong to the triangle family. There are five types of pos-
sible shapes of the NPs in our problem. The scientific reason is that the final
shape of the particle is dominated by the potential energy and the growth
kinetics. There is a balance between surface energy and bulk energy once a
nucleus is formed. The arrangement of atoms in a crystal determines those
energies such that only one of these specified shapes can be formed. We use
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similar scientific reasons to construct shape templates. These templates are
determined by the parameters which vary from shape to shape.

Since there is a difference in the degree of overlapping from image to im-
age, we assume that the parameters of the AIPP are unknown and ought to
be inferred. This leads to a hierarchical model setting where the prior dis-
tribution has an intractable normalizing constant. As a result, the posterior
is doubly intractable and we use the Markov chain Monte Carlo (MCMC)
framework to carry out the inference. Simulating from distributions with
doubly intractable normalizing constants has received much attention in the
recent literature, but most of these methods consider the normalizing con-
stant in the likelihood and not in the hierarchical prior; Møller et al. (2006),
Murray, Ghahramani and MacKay (2006), and Liang (2010), among oth-
ers. In this paper, we borrow the idea of Liang and Jin (2011), which is a
modified version of the reweighting mixtures given in Chen and Shao (1998)
and Geyer and Møller (1994), which can deal with doubly intractable nor-
malizing constants in the hierarchical prior as well. The MCMC algorithm
used can be described as a two-step MCMC algorithm. We first sample the
parameters from the pseudo posterior distribution which is a part of the pos-
terior that does not contain the AIPP normalizing constant—and then an
additional Monte Carlo Metropolis–Hastings (MCMH) step that accounts
for this normalizing constant.

Sampling from the pseudo posterior distribution is also quite challeng-
ing. Inferring the unknown number of objects with undetermined shapes is
a complex task. We propose Reversible Jumps MCMC (RJ-MCMC) type
of moves to handle both the tasks [Green (1995)]. Birth, death, split and
merge moves have been designed based on the work of Ripley (1977), Rue
and Hurn (1999). We also propose RJ-MCMC moves to swap (switch) the
shape of an object. Using the above mentioned computational scheme, we
obtain the posterior distributions for all the parameters which characterize
the NPs: number, shape, size, center, rotation, mean intensity, etc. Owing
to the model specification and the computational engine for inferring the
model parameters, our approach extracts the morphological information of
NPs, detects NPs laying on the boundaries, quantities uncertainty in shape
classification, and successfully deals with the object overlapping, when most
of the existing shape analysis methods fail.

The rest of the paper is organized as follows: Section 2 describes the TEM
images, Section 3 deals with the object specification procedure, Section 4
describes the model specification, Section 5 describes the MCMC algorithm,
Section 6 describes a simulation study and Section 7 applies the method to
the real data. Conclusions are presented in Section 8.

2. Data. In this paper we analyze a mixture of gold NPs in a water solu-
tion. In order to analyze the morphological characteristics, NPs are sampled
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(a) Gold nanoparticles at 20 nm (b) Gold nano particles at 50 nm

Fig. 1. Two examples of TEM nanoparticle images of different resolution and scale. We
observe NPs with different shapes which touch or slightly overlap each other while many
of them lay in the boundaries.

from this solution onto a very thin layer of carbon film. After the water
evaporates, the two-dimensional morphology of NPs is measured using an
Electron microscopy such as TEM. In our case, a JEOL 2010 high resolution
TEM operating at 200 kV accelerating voltage was used, which has 0.27 nm
of point resolution. The TEM shoots a beam of electrons onto the materials
embedded with NPs and captures the electron wave interference by using a
detector on the other side of the material specimen, resulting in an image.
The electrons cannot penetrate through the NPs, resulting in a darker area
in that part of the image. The output from this application will be an eight
bit gray scale image where darker parts indicate the presence of a nanopar-
ticle. The gray scale intensity is varying as an integer between 1 and 256.
Refer to Figure 1 for examples of TEM images.

Due to the absorption of electrons by the gold atoms, the regions occu-
pied by the NPs look darker in the image. The darkness pattern may vary
according to specific arrangements of the atoms inside any single nanoparti-
cle. Additionally, one can see many tiny dark dots in the background, which
are uniformly distributed throughout the image region. These dark dots are
generated because the carbon atoms of the carbon film also absorb electrons.
One may also notice a white thin aura wrapping around the whole or par-
tial boundary of a particle. This is the result of having surfactants on the
rim of the particles. The surfactants are added to keep the particles from
aggregating in the process of making colloidal gold. Analyzing the shapes of
the NPs in a TEM image is primarily based on modeling them as objects,
whose shapes are parametrized. Treating a nanoparticle as an object is the
critical component of our modeling framework, which we discuss in the next
section.
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3. Object specification. An object is specified in a series of steps that
allow us to model a wide variety of shapes. They are as follows: (a) template,
(b) shift, scale and rotate operators, (c) object multiplicity. We discuss each
of them in detail below.

3.1. Template. A template is a predetermined shape which is defined
by a set of parameters which we call pure shape parameters or simply pure
parameters. We will call the template T a pure object and we will specify
a pure object by its pure parameters as g0T = {g0T (1), . . . , g

0
T (q)}, where q is

the number of parameters, and it varies from shape to shape. For example, a
circle with unit radius at the origin (0,0) can be regarded as a template for
circular objects. Likewise, an equilateral triangle with unit sides, centered
at the origin with the median aligned to the x-axis, can be a template for
triangular objects. We can potentially differentiate an equilateral triangle
from an isosceles triangle even when they both belong to the triangle family.
However, to avoid defining an infinite number of templates, we consider
all types of a particular shape to be members of the same template. For
example, all types of triangles, such as equilateral, right-angled, etc., are
considered to be members of the triangle template. As such, when we refer
to a template in this paper we refer to a family of shapes that has certain
characteristics. A family of shapes is formed by deforming some of the pure
parameters {g0T (1), . . . , g

0
T (q)} in the shape definition. We distinguish g0T

parameters as random (unknown) grT and constant (known) gcoT . The random
pure parameters grT cannot be determined exactly by the template or by
other components of g0T . These random pure parameters affect the overall
shape, size and other geometric properties, thereby causing a large scale
deformation of the template. These parameters are closely related to the
template, but for simplicity we ignore the indicator T and use the notation
g0T = g0 = (gr, gco). The pure parameters are chosen such that the defined
template will have an area equal to the area of a unit circle, that is, π square
units. A template can be shifted, rotated and scaled, still belonging to the
same shape family.

We also specify landmarks l0 = l0(1), . . . , l0(M) as the M equally spaced
boundary points of a given template. These landmarks can be determined if
one knows the pure parameters. The landmarks will help us in representing
the shape of the real image. In polar coordinates, these landmarks can be
represented as

l0(k) = c0,0 + s0(k)[cos{θ(k)}, sin{θ(k)}]T ,

where s0(k) is the distance of the kth landmark from the center c0,0 and
θ(k) is the rotation of the kth landmark with respect to the baseline. The
particular choice of the coordinate system in which the landmarks are rep-
resented does not affect the results. Hence, we have chosen to use polar
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coordinates for the simplicity of the mathematical analysis. In this paper
we chose ninety landmark points for all the shapes. Simply speaking, these
landmarks in an image form the shape. The random deformation of these
landmarks results in small scale deformation of the template. In this paper,
we focus our attention on the large scale deformation since the main goal
is to determine the shape and not making boundary detection or contour
tracking, where small-scale deformations are important. Templates used in
the current study are given in (A) in the online supplementary material
[Konomi et al. (2013)].

3.2. Shift, scale and rotation operators. Apart from the parameters that
determine the shape which varies from template to template, there are also
some common parameters related to shifting, rotating and scaling which
are needed to represent the actual shape in the image. A particular affine
shape with shift c= (cx, cy), scale s and rotation θ is given by the landmarks
l= {l(1), . . . , l(M)}, whose polar coordinates are

l(k) = c+ c0 + sS0(k)[cos{θ(k) + θ}, sin{θ(k) + θ}]T

for k = 1, . . . ,M .

3.3. Object multiplicity and the Markov point process. In an image we
have multiple objects with different shapes and we assume that the number
of objects is unknown. A point process is used to model the unknown number
of objects and the overlapping. One of the widely used models that penalize
object overlapping is based on the Markov Point Process (MPP) [Ripley and
Kelly (1977)] representation of objects. In particular, the Area Interaction
Process Prior (AIPP) [Baddeley and van Lieshout (1993), Mardia et al.
(1997)] penalized the area of overlap between any two objects. Below, MPP
representation details are given. The location parameters c = (c1, . . . , cm),
the points in the MPP representation and the number of objects m are
modeled as

π(c,m|gr, s,θ,T, γ1, γ2) =
1

A∗
exp{−γ1m− γ2S(η)},(1)

where S(η) denotes the area of the image covered by more than one object,
ηi = (ci, si, ti, θi, g

r
i ) is a collection of parameters that represents the ith ob-

ject and η = ηm = {ηk}
m
k represents these parameters for all objects which

we call “object parameters”, A∗ is the normalizing constant which depends
on all the parameters described above (η,m) and the positive unknown
parameters γ1 and γ2 [A∗ = A(η,m,γ1, γ2)]. The interaction parameter γ2
controls the overlapping between objects and γ1 the number of objects in the
image. For example, γ2 = 0 does not penalize overlapping, whereas γ2 =∞
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does not allow overlapping at all. Prior distributions for γ1 and γ2 are con-
sidered in subsequent sections. Another way to penalize object overlapping
is the two-way interaction:

π(c,m|η) =
1

A∗
exp

{

−γ1m− γ2
∑

i<j

|R(ηi)∩R(ηj)|

}

× I[no three or more objects have common area].

The indicator term will not allow three or more objects to overlap in
the same area, R(ηi) is the region of a single object characterized by its
parameters ηi and R(ηi)∩R(ηj) is the overlapping area between the ith and
the jth object. We can generalize this case to allow more objects to overlap
in a region and also penalize with a different parameter γk. Investigating
such models is out of the scope of this paper. For notational convenience,
we introduce γ = (γ1, γ2) to represent the MPP parameters and define T=
Tm{ti}

m
i=1, s = sm = {si}

m
i=1, θ = θm = {θi}

m
i=1, gr = gr

m = {gri }
m
i=1 to be

used subsequently.

4. Model.

4.1. The likelihood function. Due to the electron absorption, the mean
intensity of the background is larger than the mean intensity of the regions
occupied by the NPs. Furthermore, since each nanoparticle has different vol-
ume size, the mean pixel intensity for each nanoparticle is different, which
is evident from the representative TEM images of gold NPs shown in Figure
1. It can also be observed that the overlapping regions usually have lower
intensity because they absorb more electrons in that region. For tractability,
we consider the darkest region to be the dominant region in determining the
configuration of the objects with which it is overlapping. Due to specific ar-
rangements of the atoms inside any single nanoparticle, the neighboring pix-
els have similar intensities. An appropriate choice for the covariance function
in such scenarios is the popular Conditional Autoregressive (CAR) model
[Cressie (1993)]. Computationally, a much simpler model is the independent
noise model [Baddeley and van Lieshout (1993), Mardia et al. (1997), Rue
and Hurn (1999)].

After analyzing both real and simulated data sets, the posterior specifi-
cation of the parameters did not change much even if we replaced the CAR
model with the independent Gaussian noise model. An added advantage with
the independent Gaussian noise model is that it is a lot simpler. We denote
µ = µm = (µ0, . . . , µm) as the mean vector and σ2 = σ2

m = (σ20 , σ
2
1 , . . . , σ

2
m)

as the variance vector for the background and objects intensity. To facilitate

the notation, we use Θ = (η,m,µ,σ2). In this case the likelihood can be
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written as

f(Y |Θ)∝

N
∏

p=1

exp

{

−
1

2φ(xp)
(yp − δ(xp))

2

}

,(2)

where N is the number of pixels, xp is the pth pixel, δ(xp) is the mean of the
pth pixel, φ(xp) is the function of the variance depending on the pixel and yp
is the intensity of the pth pixel. More explicitly, the mean intensity for pixels
covered by more than one object is taken to be the minimum mean intensity
of the objects covering the pixels and with variance which corresponds to
the variance of that object.

For example, in the case where we allow only two-way interaction, equa-
tion (2) can be written as

f(Y |Θ)

∝ exp

{

−
1

2σ20

∑

ν∈R(η0)

(yν0 − µ0)
2 −

m
∑

i=1

1

2σ2i

∑

ν∈R(ηi)\R(−i)

(yνi − µi)
2(3)

−
∑

i<j

1

2min(µi,µj)(σ
2
i , σ

2
j )

∑

ν∈(R(ηi)∩R(ηj ))

(yνi,j −min(µi, µj))
2

}

,

where R(−i) is the region occupied by all objects (NPs) without the ith
object and R(η0) is the area of the background.

4.2. Prior specification. We elicit the joint prior distribution hierarchi-
cally as follows:

π(Θ,γ) = π(Θ|γ)π(γ)

= π(µ,σ2)π(η,m|γ)π(γ)(4)

= π(µ,σ2)π(c,m|γ,gr, s,θ,T)π(gr, s,θ,T)π(γ).

In the above expression π(µ,σ2) is the prior of the means and the vari-
ances of the background and the objects, π(c,m|γ,gr, s,θ,T) is the joint
prior of the locations and the number of the objects as given in equation
(1), π(gr, s,θ,T) is the joint prior on all the “object parameters” except the
locations and π(γ) is the prior on the interaction parameters.

We assume independent (µi, σ
2
i ) pairs and assign a noninformative prior

for each of these pairs:

π(µ,σ2) =
m
∏

i=0

π(µi, σ
2
i )∝

m
∏

i=0

(σ2i )
−1.(5)

All the “object parameters” except the locations are assumed to be inde-
pendent from object to object. Also, the scale, rotation and template within
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the object parameters are assumed to be independent of other parameters
while gri is assumed to be closely related to the template Ti (shape). We
remind the reader that gri are different from template to template. In math-
ematical form we have

π(gr, s,θ,T) =

m
∏

i=1

π(si)π(θi)π(g
r
i |Ti)π(Ti).(6)

We assign a uniform prior for si which is proportional to the size of
the image Smax, that is, π(si) ∼ U(0, Smax). All other shapes, except cir-
cles, have a rotation parameter θ ∈ (0, π]. The prior density for θ is π(θ)∼
{| cos(θ)|+π−1}/3, which favors values near θ = 0 and θ = π. The circle and
square do not have a random pure parameter, while the other considered
templates have at least one random pure parameter. All these parameters
have one basic characteristic: they are constrained to take values between
two variables (a1, a2). We use altered location and scale Beta distribution
as a prior given by

π(gri ) =
1

Beta(α,β)

(gri − a)α−1(b− gri )
β−1

(b− a)α+β−1
,

where a, b,α,β are different for the three different cases. Furthermore, we
have used the uniform discrete distribution to specify the prior for the tem-
plate, Ti.

For both the object process parameters γ1, γ2 we assume independent log-
normal distribution priors with parameters which determine a mean close
to 100 and large variance, γ1 ∼ LN(α1, δ1), γ2 ∼ LN(α2, δ2). We calibrated
priors such that inference is as invariant as possible to changes in the im-
age resolution by defining parameters in physical units rather in terms of
pixels, and tried to retain their physical interpretation wherever possible.
For example, when we zoom out of an image, we may see a great number of
objects in the purview, and the perceived.

4.3. The posterior distribution. The model proposed above is a hierar-
chical model of the form

y|Θ∼ f(y|Θ),

Θ|γ ∼ π(Θ|γ)≡
1

A∗
π∗(c,m|γ,gr, s,θ,T)π(gr, s,θ,T|m),(7)

γ|α1, δ1, α2, δ2 ∼ π(γ|α1, δ1, α2, δ2),

where α1, δ1, α2, δ2 are known values, A∗ is a random intractable normalizing
constant and π∗(c,m|γ,gr, s,θ,T) is the MPP prior without the normalizing
constant.
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The posterior distribution of the parameters p(η,µ,σ,m,γ|y) is propor-
tional to the product of (a), (b) and (c) in the above hierarchical represen-
tation:

p(Θ,γ|y)

∝ π(γ)π(µ,σ2|η)π(η|γ)f(y|η,µ,σ2)
(8)

=
1

A∗
π∗(c,m|γ,gr, s,θ,T)π(gr, s,θ,T)π(µ,σ2)π(γ)f(y|η,µ,σ2)

=
1

A∗
p∗(η,µ,σ,m,γ|y).

We use the Markov chain Monte Carlo (MCMC) computation algorithm
to carry out the inference since the posterior distribution is analytically
intractable and the point process prior has a random intractable normalizing
constant. To facilitate the discussion, we call p∗(η,µ,σ,m,γ|y) the pseudo
posterior distribution.

5. Posterior computation using MCMC. The MCMC algorithm used in
this paper can be described as a two-stage Metropolis–Hastings algorithm.
We first sample the parameters from the pseudo posterior distribution fol-
lowed by a Monte Carlo Metropolis–Hastings step to account for A∗ [Liang
and Jin (2011), Liang, Liu and Carroll (2010)].

The MCMC algorithm will have the following form:

• Given the current state Θk,γk draw Θ′,γ′ from p∗ using any standard
MCMC sampler.

• Given all the parameters, simulate auxiliary variables z1, . . . , zM from the
likelihood z ∼ f(z;Θ′) using an exact sampler.

• Estimate R= A(η′,m′,γ′)
A(ηk ,mk,γk)

as

R̂=
1

M

M
∑

i=1

f(z;Θ′)

f(z;Θk)

π(Θ′|γ ′)

π(Θk|γk)

π(γ ′)

π(γk)
,

which is also known as the importance sampling (IS) estimator of R.
• Compute (estimate) the MH rejection ratio α as

α̂=
1

R̂

p∗(Θ′,γ′)

p∗(Θk,γk)

Q(Θ′,γ ′ →Θk,γk)

Q(Θk,γk →Θ′,γ′)
=

1

R̂
.(9)

The last equation is true since Q = p∗. So, the above approximates the
normalizing constant of the posterior.

• Accept Θ′,γ ′ with probability min(1; α̂).
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Simulating auxiliary variables zi from the likelihood is straightforward
and simply requires us to sample from normal distribution with parameters
defined at the proposed state of the sampler. The challenge lies in drawing
from the pseudo posterior.

A generalized Metropolis-within-Gibbs sampling with a reversible jump
step is used to simulate from the pseudo posterior distribution with known
number of objects. Additionally, a reversible jump MCMC (RJ-MCMC)
with spatial birth-death as well as merge-split move is invoked to sample
the number of objects and their corresponding parameters.

We draw from the joint pseudo posterior p∗(µ,σ2,η,γ,m|y) by alter-
nately drawing from the conditional pseudo posteriors of µ,σ2η|m,y,γ,
γ|µ,σ2η,m, y and m|η,µ,σ2,γ, y as follows:

• Draw ηk+1,µk+1,σk+1 from p∗(η,µ,σ|mk,γk, y) using a Metropolis-within-
Gibbs sampler.

• Draw mk+1 from the pseudo posterior p∗(m|µk+1,σk+1,ηk+1,γk, y) using
a RJ-MCMC.

• Draw γ
(k+1)
1 , γ

(k+1)
2 from the distribution p∗(γ|y,Θ) using an M–H step.

We explain these steps in detail, in the following paragraphs.

5.1. Updating η,µ,σ, given m and γ. The conditional distribution of
p∗(η|µ,σ2,m, y) does not have any closed form and the same is true for the
conditional distribution of every component or group of components of η.
A Gibbs sampling step which contains Metropolis–Hastings steps and RJ-
MCMC steps is utilized. In the online supplementary material (B) [Konomi
et al. (2013)] we give the Metropolis–Hastings updates for (η,µ,σ) excluding
T, which is given next.

5.1.1. Updating the template Tj (swap move). We can view the problem
of shape selection as a problem of model selection between Mj,t1 , . . . ,Mj,tD ,
where Mj,ti represents the model with template ti. Moving from shape to
shape is considered a difficult task since not only the pure parameters that
characterize the template are different, but also the parameter specification
may not have the same meaning across templates. For example, one can
argue that the scaling parameter of a circle can be different from the scaling
parameter of a triangle. The move from shape to shape is based on the rule
that both shapes should have the same area and the centers of both shapes
are the same. This increases the likelihood of generating good proposals. For
the particular shapes we deal with, the equality of area also means equality
of the scaling parameter. This means that all of the above models Mj,ti have
the same scaling sj and location cj parameters. The rotation parameter, θ,
can be chosen such that the proposed shape overlap “matches” as much as
possible to the existing shape given the same (sj, cj) or simply one may
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retain the same θ while changing shapes. The pure random parameters are
the only parameters that do not have a physical meaning when we change
the shape and also their number could vary from shape to shape. Reversible
Jump MCMC is used successfully for problems with different dimensionality
and is characterized by introducing auxiliary variables for the unmatched
parameters [Green (1995)]. This is the approach we follow in this paper. For
more details see Appendix A.

5.2. Updating m. Two different types of moves are considered in updat-
ing the number of objects: birth-death and split-merge. In the death step,
one chosen-at-random object is deleted and in the birth step, one object
with parameters generated from the priors is added. In the merge step we
consider the case where two objects die and give birth to a new one and
in the split step two new objects are created in the place of one. For more
detail see Appendix B.

5.3. Updating γ. The random walk log-normal proposal is used to sample
from the pseudo posterior distribution of γ, p∗(γ|Θ, y).

6. Simulations. In this section we use a simulation study to evaluate the
performance of our proposed MCMC method. We consider two examples
wherein a 200 × 200 image with ten objects each are generated from the
prior distributions described in Section 4.2 with area interaction parameter
γ2 = 40 and γ2 = 10, respectively. The pixels inside each object have con-
stant mean, which is different from object to object. The covariance matrix
is chosen from a CAR model with parameters very close to the extreme de-
pendence. Objects in both the example images have different morphological
properties and belong to the five different shape families described in Sec-
tion 2. The image used in the first example is shown in Figure 2(a) and the
second is shown in Figure 2(b). For the example images, the MCMC samples
drawn from the posterior distribution of γ2 are given in Figure 3. From these
simulations, we can see that the Markov chain mixes well and the posterior
mean is close to the true values we used to simulate the data. Values close to
40 are drawn in example 1 [Figure 1(a)], while values close to 10 are drawn
in example 2 [Figure 2(b)]. A general observation in the simulations is that
the variance of the posterior distribution of γ2 depends on the value of γ2.
For large values of γ2 we observe relatively larger posterior variance than for
small values. Another significant observation is that there is a dependence
on the accuracy and the variance of the posterior distribution of γ2 on the
number and size of objects. To investigate this phenomenon, we fixed the
value of γ2 but simulated images with a different number of objects and
sizes. As we increase the number and the size of objects, the posterior dis-
tribution of γ will be closer to the true value. Below, we discuss two features
of our method using the two examples.
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(a) γ2 = 40 (b) γ2 = 10

Fig. 2. Two different simulated images with ten objects, m= 10, and two different values
for the interaction parameter γ2. The value of the interaction parameter is related to the
degree of overlapping.

6.1. Unknown AIPP parameters. We demonstrate one of the advantages
of treating the AIPP parameters as unknown. First, we compare the MCMC
results from the proposed model with the results of the model that does not
penalize overlapping. More specifically, we treat γ2 as a random variable in
the first scenario, and then consider it known and misspecified in the second
scenario. In both the runs, the parameter γ1 is set to its true value 10. The
MCMC posterior distribution of m for the image in Figure 2(a), in a total of
12,000 iterations, is recorded and presented for these two different cases in
Figure 4. The distribution of the number of objects m in the case of γ2 = 0
is mostly a misspecification of the real image. In this case we have a sample

(a) γ2 posterior (b) γ2 posterior

Fig. 3. Trace plot of the last 104 MCMC sample values from the posterior of γ2 for the
two different simulated images: (a) for the first image where γ2 = 40 and (b) for the second
image where γ2 = 10. The MCMC for both cases converges to right skewed distributions
with different medians.
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(a) γ2 = 0 (b) γ2 random

Fig. 4. Distribution of the number of objects, m, considering (a) γ2 = 0 and (b) γ2

random. Considering an area interaction penalty in our application will improve the con-
vergence of the MCMC algorithm to the right number of objects.

of up to 18 objects, which is almost twice the original number of objects. An
obvious overestimation of the number of objects in the posterior distribution
occurs when we do not penalize the overlapping. On the other hand, when
we choose γ2 as a random variable 90% of the posterior simulated number
of objects represent the true number of objects. Treating γ2 as unknown, in
comparison with γ2 = 0, yields a better fit and improves classification. For
the case where γ2 is fixed at a value different from zero, the answer depends
on how close the original and the assumed value of γ2 are. If we fix the
value of γ2 in the range determined from the MCMC updates, the results on
the number of particles and shape analysis are not very different from the
original values. Nevertheless, values outside the range can change the results
dramatically. The same observations are true for the second simulated image
[Figure 2(b)] as well.

6.2. Split and merge moves. Another feature of our proposed method
is the split and merge type of move. We can see the merge and split step
in action in Figures 5 and 6, respectively. In the absence of this type of
move, it would have required a large number of MCMC iterations to arrive
at the configurations shown. We present the two different move steps that
occurred in the two simulated images. The 1000th and the 1500th MCMC
iteration is given for the first image. In addition to different changes that
have occured, there is an obvious merge move step, wherein the seventh
and eighth objects in Figure 5(a) are merged to form the seventh object in
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(a) 1000th iteration (b) 1500th iteration

Fig. 5. Merge step in action: object configuration (a) before merge (b) after merge. We
chose MCMC movements with low acceptance probability ratio to show the success of our
method. There is always a chance for the algorithm to be trapped into local minima if we
do not use the right MCMC moves and proposals.

Figure 5(b). Similarly, we show the split move in action using example 2.
Snapshots taken at the 1400th and the 1700th MCMC iterations for example
2 are given in Figure 6(a) and (b). Not only an obvious split step has occurred
but also we can see the different deviations of the boundaries which are
related to the object representation parameters.

6.3. Implementation details. All the simulations and the algorithms were
implemented in MATLAB, running on a Xeon dual core processor clocking
2.8 GHz with 12 GB RAM. MCMC chains are initialized by using classi-
cal image processing tools. All the five templates are randomly assigned to

(a) 1400th iteration (b) 1700th iteration

Fig. 6. Split step in action: object configuration (a) before split (b) after split. It is
obvious that other MCMC movements have occurred as well since shape parameters such
as location, size and rotation have changed.
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complete template specification. The simulation time for the two examples
is approximately two hours for 12,000 iterations. Convergence of the chains
was observed within the first 1000 iterations. However, we point out that
the computational time of the proposed method depends on the size of the
image, the number of the objects and the complexity of overlapping, and
burn-in time which strongly depends on the initial state of the chain.

In order to accelerate quick mixing, we take advantage of several classi-
cal image processing tools. Notable among these are the watershed image
segmentation and certain morphological operator based image filtering tech-
niques such as erosion, dilation etc. [Gonzalez and Woods (2007)]. For exam-
ple, we use watershed segmentation to decompose the image into subimages
that have approximately nonoverlapping regions (in terms of objects). A re-
peated application of the erosion operator on the subimages, in conjunction
with connected-component analysis and dilation operation, gives us an ap-
proximate count of number of objects and their morphological aspects. Such
information can be used to initialize the chains and to construct proposal
distributions required by the MCMC sampler. In addition, the region-based
approach allows one to exploit distributed and parallel computing concepts
to reduce simulation time and make the algorithm scalable. Further details
are not presented here since morphological preprocessing is not the subject
of the present work. We point out above that choices affect simulation time
and may improve mixing but otherwise are not necessary for our proposed
method to work. In addition, simulation time and effort required by the
MCMC method required are relatively small compared to the time, effort
and resources required to produce the NPs and finally obtain the TEM
images which can exceed weeks.

7. Application to gold nano particles. Using the MCMC samples, we
can obtain the distribution of the particle size, which is characterized by
the area of the nanoparticle and the distribution of the particle shape. The
aspect ratio, defined as the length of the perimeter of a boundary divided
by the area of the same boundary, can be derived from the combination of
size, shape and the pure parameters. The statistics of size, shape and aspect
ratio are widely adopted in nano science and engineering to characterize
the morphology of NPs, and are believed to strongly affect the physical
or chemical properties of the NPs [El-Sayed (2001), Nyiro-Kosa, Nagy and
Posfai (2009)]. For example, the aspect ratio is considered as an important
parameter relevant to certain macro-level material properties because phys-
ical and chemical reactions are believed to frequently occur on the surface
of molecules so that as the aspect ratio of a nanoparticle gets larger, those
reactions are more active.

We apply our method to three different TEM images. The parameters that
maximize the posterior distribution (MAP) obtained from the (MCMC) are
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presented in detail. Our classification results of particular type are verified by
our collaborators with domain expertise; this manual verification appears the
only valid way for the time being. More than 95% of the NPs in those images
are classified correctly. This also includes the particles in the boundary as
well as having overlapping regions. For completely observed objects, there
is almost 100% correct classification.

We start our application with the image in Figure 1(a). Morphological
image processing operations, such as watershed transformation and erosion,
can be used to get an approximate count of the number of NPs in the
model [Gonzalez and Woods (2007)]. They also can be used in initializing
the MCMC chains and in constructing proposal distributions required by
the MCMC sampler. The morphological image processing we used in this
dissertation has the following steps: (1) image filtering and segmentation,
(2) determining the number of objects, (3) estimating location, size and
rotation parameters. We first transform the image from grey to a binary
image and then apply watershed transformation to partition the image into
subimages. In each binary subimage we apply erosion and dilation operations
to find initial values for the parameters inside of each subimage. Because
this morphological processing is not the subject of the present work, it is
not presented in more detail. After the initial values are obtained from the
preprocessing step, all five templates are randomly assigned for starting
template specifications. From the MCMC sampler described in Section 5 we
obtain a random sample of the posterior distribution for all the parameters
which characterize the NPs, namely, the shape T, the size s, the rotation
θ, the random pure parameter gr , the mean intensity µ and the variance
σ2. We use this posterior sample for inferring the model parameters and
extracting the morphological information of NPs with uncertainty in shape
size and classification. To better present our results, we chose to work with
the Maximum a posteriori (MAP) estimations of these parameters.

In Figure 7 we show the TEM image and MAP estimates of the parame-
ters for 20,000 MCMC sample. In Figure 8 we present the parameters of s,
gr and µ that correspond to the MAP estimate for all the number of objects,
m, corresponding to that value. Summary statistics of the shape parameters
are given in Table 1. From the table and the histogram it is clear that the
mean intensity is different from nanoparticle to nanoparticle, justifying our
assumption of different means in (3). We also obtain the posterior probabil-
ity of the classification for each of the objects. This probability depends on
the complexity of the shape of the object. For example, object 2 has been
classified as an ellipse with probability 0.98, whereas object 20 has been
classified as an ellipse with probability 0.68 (circle with probability 0.32).
In Table 1 (and in all the following tables of this chapter) we presented the
classification with the highest posterior probability of some of the nanopar-
tiles. In this example we successfully deal with the object overlapping and
objects laying on the boundaries.
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Fig. 7. Example 1: maximum a posteriori estimation using 20,000 MCMC samples. The
proposed method can deal successfully with overlapping and boundary objects since 11 out
of 22 nanoparticles in the image are in the boundaries.

(a) s (scale) (b) µ (foreground intensity)

(c) gr (random pure parameter)

Fig. 8. Distribution of the MAP estimates for shape parameters in example 1. Specifi-
cally: (a) the scale, (b) the mean intensity for different objects and (c) the pure parameters
for ellipse.
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Table 1

MAP estimates of the parameters for the first six objects in example 1

Object Shape (T ) Center (x, y) Size (s) Rotation (θ) gr Mean (µ)

1 E (39.68,32.72) 51.49 −0.21 1.14 50.64
2 E (105.92,105.92) 49.41 1.41 1.22 74.67
3 E (175.79,41.29) 47.20 1.36 1.12 62.55
4 E (25.87,221.72) 28.86 0.61 1.15 71.58
5 E (39.89,297.00) 49.98 0.83 1.13 64.58
6 C (116.07,362.30) 51.82 NA NA 73.76

Our second application deals with a more complex image shown in Fig-
ure 9. In this image at least 6 overlapping areas and at least 6 nanoparticles
laying in the boundary are observed. More specifically, nanoparticles 1, 2,
3, 14, 15, 16, 18, and 19 lay in the boundary of the image while pairs 2–4,
3–4, 9–10, 10–11, 17–18, and 10–12 overlap. In this example, the overlapping
is more complex and existing methods fail to represent the real situation.
A number of nanoparticles are overlapped together forming a groups such as
nanoparticles 9–10–11–12. MAP estimate values for all the parameters are
obtained after 20,000 MCMC iterations. Complex shapes have been classi-
fied accurately; see Figure 9. For example, nanoparticle 18 has an incomplete
image and it has been classified as a circle with posterior probability 0.77.
The MAP estimates of the parameters drawn from MCMC, namely, shape
T, size s, rotation θ, random pure parameter gr and mean intensity µ are
presented for the first six objects in Table 2. In this application, 11 out of the
17 objects are ellipses (E) and 6 are circles (C) and one is a triangle (TR).
We also present the histogram of the MAP estimates of parameters s, gr and

Fig. 9. Example 2: maximum a posteriori estimation using 20,000 MCMC samples. Our
method has distinguished the nanoparticles even in the case when they overlap in groups
such as 9–10–11–12 nanoparticles.
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Table 2

MAP estimates of the parameters for the first six objects in example 2

Object Shape (T ) Center (x, y) Size (s) Rotation (θ) gr Mean (µ)

1 E (13.97,256.78) 37.48 −1.51 1.2960 39.185
2 C (27.44,275.96) 41.04 NA NA 42.969
3 E (37.56,314.44) 38.02 −0.29 1.2175 52.569
4 E (106.40,321.61) 47.44 −1.17 1.1591 60.605
5 E (93.20,413.87) 44.33 −0.36 1.1612 51.080
6 E (146.67,406.42) 49.63 −1.76 1.1621 44.617

µ in Figure 10. Summary statistics of various shape parameters are given
in Table 2. We see from the table that our proposed algorithm captures
triangles, circles etc. quite accurately.

(a) s (scale) (b) µ (foreground intensity)

(c) gr (random pure parameter)

Fig. 10. Distribution of the MAP estimates for nanoparticle parameters in example 2.
Specifically: (a) the scale, (b) the mean intensity for different objects and (c) the pure
parameters for ellipse.
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Fig. 11. Example 3: maximum a posteriori estimation using 20,000 MCMC samples.
The proposed method has successfully classified the shape of all nanoparticles in the image
counting also for uncertainty.

Our next application deals with an image with 76 nanoparticles with 4
shapes; see Figure 1(b). In this image, few objects have overlapping areas
and at least 10 nanoparticles are laying in the boundary. Some objects do
not have very clear shape like objects 29 and 31.

Different shapes are captured with different templates with the proposed
method. In addition to the circles and ellipses which were successfully cap-
tured in the previous images, the triangles and squares are also captured
accurately. Nanoparticles denoted by 29 and 31 are classified correctly, even
if they have vague shapes; see Figure 11. In this example, out of 76 nanopar-
ticles, 47 are classified as a circle, 23 as an ellipse, 4 as a triangle and 2 as a
square. Distribution of the various parameters of the identified objects are
shown in Figure 12. In Table 3 we present all the triangular shapes in order
to compare the pure parameter h1. As we can see from the table, triangu-
lar shape nanoparticles 4 and 12 are closer to the equilateral triangle, with
value close to h1 = 2.33, while triangular shape nanoparticles 51 and 57 have
wider sides, since their h1 < 2.3.

In this image we can see more than 85% percent of the nanoparticles
are in the same shapes like circular or slightly tilted like ovals. Normally
when we do shape controlled synthesis, we called it nano spheres or circular
nanoparticles. Approximately five to ten percent of the other shapes or slight
changes we usually neglect because in solution synthesis routes it is very
difficult to synthesis 100% of the same size and same shapes. However, if
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(a) s (scale) (b) µ (foreground intensity)

(c) T (shape classification)

Fig. 12. Distribution of the MAP estimates for shape parameters in example 3. Namely,
the distribution of: (a) the scale, (b) the mean intensity for different objects and (c) the
shape classification.

we consider critically the reason of shape evolution or statistical analysis of
different shapes, then this small difference might be considered. We classify
this particular example as spherical gold nanoparticles having almost the
same size and shapes.

Table 3

MAP estimates of the parameters for the first six objects in example 3

Object Shape (T ) Center (x, y) Size (s) Rotation (θ) gr Mean (µ)

1 E (−3.11,68.18) 12.43 −1.57 1.29 66.27
4 T (35.53,110.92) 25.82 1.38 2.32 49.33

12 T (306.90,225.73) 28.73 0.35 2.31 79.59
28 E (219.91,221.35) 24.09 1.53 1.14 68.19
51 T (365.75,352.49) 24.61 −1.46 2.25 63.29
57 T (422.15,139.28) 25.25 0.25 2.01 70.49
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Fig. 13. Objects identified by ImageJ in example 1. Out of the 22 particles, 4 are recog-
nized. Recognition rate= 18.18%.

As a part of the verification process, we compare the accuracy of our
method with that of the current practice used in nanoscience. In brief, the
current practice is largely a manual process with support of image processing
tools such as ImageJ Particle Analyzer (http://rsbweb.nih.gov/ij) and
AxioVision (http://www.zeiss.com/), which have been popularly used for
biomedical image processing. The results are shown in Figures 13 and 14.

The manual counting process, subject to the application of the above
imaging tools, is necessitated by the low accuracy of the autonomous proce-

Fig. 14. Objects identified by ImageJ in example 2. Out of the 19 particles, 6 are recog-
nized. Recognition rate= 35.58%.

http://rsbweb.nih.gov/ij
http://www.zeiss.com/
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dures. For three TEM images with overlaps among particles, our procedure
recognized 95% of the total articles compared to the 20–50% recognition
rate of the ImageJ. Considering frequent occurrence of overlaps in the TEM
images of nanoparticles, the existing software cannot be used as more than
a supporting tool. We have also applied our method to other images with
the same success, encouraging its applicability.

8. Conclusion. We adopted a Bayesian approach to image classification
and segmentation simultaneously and applied it in TEM images of gold
nanoparticles. The merit of our development is to provide a tool for nan-
otechnology practitioners to recognize the majority of the nanoparticles in
a TEM image so that the morphology analysis can be performed subse-
quently. This can evaluate how well the synthesis process of nanoparticles
is controlled, and may even be used to explain or design certain material
properties. Several factors like kinetic and thermodynamic parameters, flux
of growing material, structure of the support, presence of defects and im-
purities can affect the morphology of NPs. In the future, we are planning
to perform a factorial type experiment to identify the significant factors for
morphological study. These significant factors can be properly controlled to
develop NPs of required shapes.

From the experimental point of view, several improvements of existing
techniques will be helpful to characterize the shape of the NPs. One is TEM
tomography that allows to image an object in three dimensions, by auto-
matically taking a series of pictures of the same particle at different tilt
angles [Midgley and Weyland (2003)]. Another improvement of TEM is en-
vironmental HRTEM that is able to image nanoparticles, with atomic lattice
resolution, at various temperatures and pressures [Hansen et al. (2002)].

From the modeling point of view, we used marked point process to repre-
sent the NPs in the image, where points represent the location of NPs and
marks represent their geometrical features. More specifically, we treated the
NPs in the image as objects, wherein the geometrical properties of the ob-
ject were largely determined by templates and the interaction between the
objects was modeled using the area interaction process prior. By varying
the template parameters and applying operators such as scaling, shifting
and rotation to the template, we modeled different shapes very realistically.
In our current applications, we chose circle, triangle, square and ellipse as
our templates. Other templates can be also constructed in the same frame-
work. To solve the intractability of the posterior distribution, we proposed
a complex Markov chain Monte Carlo (MCMC) algorithm which involves
Reversible Jump, Metropolis–Hastings, Gibbs sampling and a Monte Carlo
Metropolis–Hastings (MCMH) for the intractable normalizing constants in
the prior. The first steps deal with simulating from a pseudo posterior dis-
tribution without involving the random normalizing constant. A generalized
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Metropolis-within-Gibbs sampling with a reversible jump step is used to
simulate from a pseudo posterior distribution given the number of objects.
Additionally, a reversible jump MCMC with the use of birth-death and
merge-split moves is invoked on moving from a state with a different num-
ber of objects. Finally, we simulate from the intractable normalizing constant
posterior using Monte Carlo Metropolis–Hastings where the acceptance ra-
tio of the sample taken from the pseudo posterior is estimated by simulating
from an auxiliary variable. We reported the posterior summary statistics of
the shapes and the number of objects in the image. We successfully applied
this algorithm to real TEM images, outperforming convention tools aided
by manual screening. Our proposed methodology can help practitioners to
associate morphological characteristics to physical and chemical properties
of the NPs, and in synthesizing materials that have potential applications
in optics and medical electronics, to name a few.

APPENDIX A: SWAP MOVE

Two new variables (uTj
= grTj

, vTj
= grTj

) are introduced to make it clear

that the pure parameters have a different meaning from template to tem-
plate. For all the shapes, we provide a general algorithm: Let ψk

j = (T k
j , sT k

j
,

cT k
j
, θT k

j
, uT k

j
) denote the current state and ψ∗
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From this bijection it is clear that the Jacobian is equal to identity matrix,

J = I , and |J |= 1. In summary, the RJ-MCMC algorithm is as follows:

• Select model MT ∗
j
with probability q(Tj , T

k
j ) = π(Tj).
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j
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).
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• Compute the M–H ratio:
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where J is the Jacobian.
• Set ψt+1

j = ψ∗
j with probability α and ψt+1

j = ψt
j otherwise.

APPENDIX B: BIRTH, DEATH, SPLIT AND MERGE MOVES

Let Pr(birth), Pr(death), Pr(split) and Pr(merge) be the probabilities of
proposing a birth, death, split or a merge move, respectively.
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B.1. Birth and death pair of moves. In the birth step a new object ηm+1

is proposed with a randomly assigned center. In this step we increase the
dimension of the parameters by Qm+1, all the parameters which describe the
proposed object (ηm+1, µm+1, σ

2
m+1). All these new parameters are sampled

from the prior distributions of the Qm+1 parameters. The introduction of
these kind of auxiliary variables leads again to a Jacobian equal to 1 and
the M–H ratio is

min

{

1,
p∗(ηm+1, µm+1, σ

2
m+1,ηm,µm,σ

2
m|y)

p∗(ηm,µm,σ
2
m|y)π(ηm+1, µm+1, σ

2
m+1)

q((m+1)→m)

q(m→ (m+1))

}

.(10)

The death proposal chooses one object, ηj , at random and removes it
from the configuration. The M–H ratio for this move is similar to (9).

B.2. Split and merge pair of moves. The details for the split and merge
move are more complicated than the move types described above. First we
restrict our attention only to the case where we merge two neighboring
objects or split one object into two neighbors. The distance between the
two neighbors can be approximated by a function of their individual size.
When we move from one state to another, we require that the proposed
objects have equal area with the existing. In order for the Markov chain
to be reversible we should ensure that every jump step can be reversed.
We can improve the acceptance rate of these moves with different proposed
algorithms, for example, Al-Awadhi, Jenninson and Hurn (2004), but that
is beyond the scope of this paper.

To facilitate the representation, we will denote by bold characters η, µ
and σ2 the current state in every move and η−(·), µ−(·) and σ2

−(·) the current

state values without the (·) objects.
Merge step: Lets suppose we have two objects and that their parameters

are (ηi, ηj, µi, µj, σ
2
i , σ

2
j ). In the merge step, we move to a new object with

parameters (ηh, µh, σ
2
h) = (xh, yh, sh, θh, Th, g

r
h, µh, σh). The equation which

links the sizes of the old objects (si, sj) with the new is sh =
√

s2i + s2j . Also,

xh and yh are chosen to represent the “weighted middle” point, taking in
account the size of each object as (xh, yh) = (

sjxj+sixi

si+sj
,
sjyj+siyi
si+sj

). All the

other parameters are chosen from one of the “parent” objects or at random.
In order to match the two dimensions, we introduce six auxiliary vari-

ables, (u1, u2, u3, u4, u5, u6), which not only would enable us to move from
state to state but also are interpretable: u1 =

√

(yj − yi)2 + (xj − xi)2 is
expressing the distance between two centers of the neighboring objects,
u2 = arctan((yj − yi)/

√

(yj − yi)2 + (xj − xi)2) is the angle created from the
union of the two centers (c1, c2), u3 = (s2i − s2j)/(s

2
i + s2j) is chosen such that

Ri =Rh

√

1+u
2 and Rj =Rh

√

(1− u)/2, u4 = θ2, u5 = T2, u6 = g22 .
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The acceptance ratio, α, in this case is the minimum of one and

p∗(ηh, µh, σ
2
h,η−(i,j),µ−(i,j),σ

2
−(i,j)|y)

p∗(η(i,j), µ(i,j), σ
2
(i,j),η−(i,j),µ−(i,j),σ

2
−(i,j)|y)

q(1→ 2)

q(2→ 1)

∏6
i=1 π(ui)

1
|J |,(11)

where |J | is the determinant of the Jacobian for the transformation and
q(1→ 2) is the split proposed probability and q(2→ 1) is the merge proposed
probability.

Split step: In the split step, we move from (x, y, s, θ, T , gr, u1, u2, u3,
u4, u5, u6) to (x1, y1, x2, y2, s1, s2, θ1, θ2, T1, T2, g

r
1 , g

r
2). In order to make

this move possible, we introduce six proposal distributions for the auxiliary
variables. We propose u1/2 from the prior of the size parameter, u2 from the
prior of rotation parameter, u3 from Unif(−1,1), u4, u5, u6 from the priors
of θ,T and gr , respectively. In order for this move to be reversible, we again
use the same transform that was used in the merge step. With the same
setting we can compute the M–H acceptance ratio.
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SUPPLEMENTARY MATERIAL

Templates and Metropolis–Hastings updates of (η,µ,σ)
(DOI: 10.1214/12-AOAS616SUPP; .pdf). Details in MCMC algorithm.
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