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influence of turning radius for the turning and welding process is an-
alyzed. It is found that the result of the vehicle turning without any
turning radius will be the best from the global perspective.
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Abstract—Computing the degree of redundancy for structured linear
systems is proven to be NP-hard. A linear system whose model matrix
is of size is considered structured if some row vectors in the
model matrix are linearly dependent. Bound-and-decompose and 0-1
mixed integer programming (MIP) are two approaches to compute the
degree of redundancy, which were previously proposed and compared in
the literature. In this paper, first we present an enhanced version of the
bound-and-decompose algorithm, which is substantially (up to 30 times)
faster than the original version. We then present a novel hybrid algorithm
to measure redundancy in structured linear systems. This algorithm uses
a 0-1 mixed integer feasibility checking algorithm embedded within a
bound-and-decompose framework. Our computational study indicates
that this new hybrid approach significantly outperforms the existing
algorithms as well as our enhanced version of bound-and-decompose in
several instances. We also perform a computational study that shows
matrix density has a significant effect on the runtime of the algorithms.

Note to Practitioners—People have long realized the importance of
having sensor or measurement redundancy in a system as this redundancy
safeguards the system against sensor failures or measurement anomalies,
so much so that the degree of redundancy is a reflection of the system’s re-
liability or fault-tolerance capability. Because of dependence relationship
among the system’s components or subsystems, computing the degree of
redundancy is not a straightforward matter for practical systems which
embed certain structure. Our paper presents an enhanced version of an
existing method as well as a novel hybrid algorithm to calculate degree
of redundancy, which are significantly faster than the existing methods
in many cases. These algorithms are a step forward in addressing this
challenging problem.

Index Terms—Degree of redundancy, mixed integer programming,
bound-and-decompose, NP-hard, structured linear model.

I. INTRODUCTION

This paper presents new algorithms for evaluating the degree of
redundancy in linear systems, which are more efficient than existing
methods in several cases. In the engineering literature, a linear model
of the following format has been a popular choice for establishing con-
nections between sensor measurements and system states , through
a system matrix :

(1)

where and are vectors, is a vector, is an
matrix ( and , where denotes the rank of . The
last term is the residual term, including measurement noises as well
as higher-order nonlinear effects neglected by the above model due to
the linearization. Equation (1) is, in fact, the observation equation used
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in a typical linear state-space model [1] and the Kalman filter [2]. In
practice, we almost always have . For this reason and for
simplicity of the presentation, we assume throughout this
paper. However, one should note that from a theoretical perspective,
with slight modifications, all the algorithms in this paper can also be
applied in the case where .
In equation (1), the number of measurements, , should be greater

than the number of states, ; otherwise, one will run into an ill-posed
system where there is no unique estimation of the states. Since there
are more measurements than system states, loosely speaking, those be-
yond the smallest number of measurements necessary for uniquely es-
timating are considered redundant. The degree of redundancy of the
matrix , denoted by , is formally defined in the literature (see,
for example, [3]) as follows:

(2)

where is a reduced matrix after deleting rows from the original
matrix, and is the rank function. Based on (2), the redundancy

degree of the linear system is the minimum number of sensor failures
(or measurement outliers) which should happen before the identifia-
bility of any state is compromised.
Researchers consider themeasurement redundancy as an index of the

system’s reliability [3]–[5] and this explains the importance of quanti-
tatively calculating it.When the system has no intrinsic structure, math-
ematically it means that any row vectors of are linearly indepen-
dent and . In this case, is called unstructured. But,
when there exists some intrinsic structure in the system, some row
vectors of are linearly dependent and is called structured. In this
case, is smaller than but evaluating it quantitatively is no
longer a straightforward task. Vardy [21] proved that the minimum dis-
tance problem in binary coding, which can be reduced (in polynomial
time) to the problem of finding for a special structured matrix
, is NP-hard. This implies that a polynomial-time algorithm for the

problem of finding the degree of redundancy of a general structured
matrix unlikely exists [9].
Structured linear systems are pervasive in engineering applications.

Some instances reported in the literature include wireless sensor net-
works [6], distributed (wired) sensor systems in multistation assembly
[7], and sensor systems in electric power networks [8]. Take the mul-
tistation assembly process in [7] for example: it is a three-station as-
sembly process, where four parts are assembled in a sequential manner.
There are a total of sensor measurements distributed over the
three stations, and their outputs constitute the vector . The process
variables under monitoring are the deviations of fixture locators from
their nominal positions. The fixture locators are the mechanical devices
holding a part in space during an action of assembly, so their posi-
tioning precision affects the quality of the final assembly. Each pair of
fixtures provide constraints in three degrees of freedom for a given part.
So there are a total of 12 degrees of freedom associated with the four
parts; they are included in the vector , and thus, . By a simple
analysis using rigid body transformation, followed by linearization, a
model in the format of (1) can be obtained; for details, please see [7].
On the surface, people could mistake the total degree of redundancy

in this assembly system as . This turns out to
be wrong. The resulting matrix for this multistation assembly indeed
embeds structure due to the particular sequence in which parts are tran-
sitioned and how sensor measurements are distributed over the three
stations. The actual redundancy in this case is only 4, a value signifi-
cantly smaller than 14. What this implies is that without knowing the
precise degree of redundancy of the sensor system, one can be overly
optimistic about the system’s ability to tolerate potential sensor fail-
ures, and therefore face undue delays in terms of sensor repair or re-

placement.Moreover, in a statistical analysis, using as the degrees
of freedom for noise variance estimation will underestimate the vari-
ance and falsely boost the power of statistical inference that the sensor
system provides.
For this 26 12 example, computation is not much of a problem. But

for an assembly process with, for instance, ten or more assembly sta-
tions, which is quite typical in industry, the size of matrix can easily
get to a few hundred, or even thousands, of rows and columns. Due to
the relevance of structured model matrices in engineering systems, it
is important to devise efficient methods to quantitatively evaluate the
degree of redundancy for large-scale systems.
The simplest algorithm for finding the degree of redundancy is the

exhaustive rank testing [3]. The idea is to increment by one at each
iteration starting from , and for each find the rank of all
possible submatrices until a submatrix whose rank is smaller
than is found. As discussed in [10], this algorithm is very ineffi-
cient, and therefore, is discarded in the rest of this paper. Cho et al.
[7], [9] presented a bound-and-decompose algorithm to calculate the
degree of redundancy, which uses results from matroid theory to de-
compose the problem into smaller problems. In this paper, we denote
this algorithm by BDOLD. As we will discuss in Section II, solving
the smaller problems in the BDOLD algorithm involves rank testing of
certain submatrices of . In previous implementations of BDOLD in
the literature [7], [10], this rank testing was performed using singular
value decomposition (SVD) [12]. We will denote this implementation
by BDOLDSVD. BDOLD is efficient for the problems in which has
a border block diagonal (BBD) form (see Section II) with reasonable
block sizes and a narrow border (hence the algorithm can do significant
decomposition), and is not so efficient otherwise (see Section II). Re-
cently, Kianfar et al. [10] tackled the problem from a different angle.
They formulated the problem as a 0-1mixed integer program (MIP) and
solved it using the branch-and-cut method embedded in the commer-
cial optimization solver CPLEX [11]. They showed that in several in-
stances MIP outperforms BDOLDSVD, especially in instances where
BDOLDSVD cannot do significant decomposition. However, as the
size of instance increases MIP reaches its performance limit. In fact,
there are instances in [10] which are neither solved by BDOLDSVD
nor by MIP within a 10-h time limit. Note that the MIP algorithm does
not exploit BBD form of the matrix, which arises frequently in the
real-world structured linear systems.
In this paper, we first present an enhanced version of the BDOLD

algorithm, denoted by BDNEW. We also study the effect of using QR
factorization to perform the submatrix rank-testings in BDOLD and
BDNEW (the resulting new algorithms are denoted by BDOLDQR,
BDNEWSVD, and BDNEWQR). We will see that BDNEWQR
substantially outperforms all other versions. In particular, it is up to
30 times faster than BDOLDSVD. We next present a novel hybrid
algorithm to calculate , denoted by BDMIF, which uses a 0-1
mixed integer feasibility (MIF) checking algorithm embedded within
a bound-and-decompose framework. BDMIF capitalizes on benefits
of both bound-and-decompose and MIP. Our computational study
indicates that this new hybrid approach significantly outperforms MIP
and BDNEWQR (and hence other versions of BDOLD and BDNEW)
in several instances. We also report the results of a computational
experiment that shows, as the density of the blocks and border rows of
increases, the runtimes of the algorithms considered in this paper

substantially increase.
The remainder of this paper is organized as follows. Section II

reviews the algorithms previously introduced in the literature, i.e.,
BDOLD and MIP. Section III introduces BDNEW and the usage of
QR factorization for rank testing, which results in BDOLDQR, BD-
NEWSVD, and BDNEWQR algorithms. In Section IV, we introduce
the BDMIF algorithm. Section V presents our computational studies
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followed by discussions on merits and limitations of the studied algo-
rithms. We address our computational study on the effect of density in
Section VI and make some concluding remarks in Section VII.

II. RELATED WORK

We use the same notation used in [10]: for a
denotes the matrix obtained by removing from all rows

\ , and we define the operator as . The
problem of evaluating the degree of redundancy is to find the
minimum integer value such that there exists a ,
where and . Then, .
If the system matrix has a significant BBD structure as it is the case

in many practical applications, then the BDOLD algorithm introduced
in [7] has substantial computational benefits. Using a transformation
algorithm [7], [13], the rows and columns of the system matrix can be
rearranged into the BBD form so that we have

. . .

where the block is an matrix, and is an ma-
trix for . The matrices form the border. We have

and . The unwritten elements are zero.
Let denote the cogirth of the vector matroid defined over
columns of the matrix , i.e., the cardinality of the smallest min-
imal dependent set in the dual of this vector matroid (please refer to
[22] for more on the concepts of matroid and cogirth). Cho et al. [9]
showed that , and used matroid theory to model
the problem of finding the degree of redundancy as follows. Let
be a subset of , and define as the reduced BBD ma-
trix obtained by removing from the submatrices and for

. Let , and denote the number of
rows, the number of columns, the th row, and the th entry of

, respectively. The following decomposition property is proved
in [9]: For any , if ,
we have
(see [9] for details). This result provides the basis of the decomposition
in the BDOLD algorithm.

BDOLD Algorithm [7], [9], [10]

Step 0. .
Step 1. If , then and go to Step 2;
otherwise find that gives minimum number of matrices to be
rank-tested based on the decomposition property:

Step 2. Check the rank of all the matrices , where
, and ,

one by one until a is found such that .
If found (which means ), then and
stop. Else and go to Step 1.

In the rest of this paper, we refer to the value as
the “decomposition bound” because in the BDOLD algorithm as long
as is smaller than this value, no decomposition occurs in Step 2 (we
have , hence ). In the implementation of

the BDOLD algorithm in [7], [10], the rank of in Step 2 is
calculated using the rank function in MATLAB, which calculates the
rank using SVD [12]. In this paper, we implemented the same algorithm
in C++ and we denote it by BDOLDSVD.
More recently, Kianfar et al. [10] proposed the MIP approach for

the redundancy degree problem. They formulated the problem as a 0-1
mixed integer program (please refer to [14] and [15] for more on mixed
integer programming). This formulation is based on the fact that the
redundancy degree problem can be solved by finding the minimum
number of vectors that if deleted from , the remaining matrix has
a nonzero null space. Note that the null space of matrix is the set
of all vectors such that . The redundancy degree would be
one less than this minimum. The MIP formulation looks for a nonzero

such that the number of rows ’s, , for which
is minimized. The MIP formulation presented in [10] is as

follows:

(3)

(4)

(5)

(6)

(7)

Based on constraints (4), if for any , then the 0-1 variable
will get a value of 1 and if it will get a value of zero because

the objective is to minimize the summation of all ’s. In other words,
to get a nonzero null space, if , the row is to be deleted from
, and if , the row is to remain. Therefore, objective (3)

minimizes the total number of vectors out of all which
if deleted from , result in a matrix with a nonzero null space. For this
reason, will be the optimal objective value minus 1. To guarantee
that there is at least one that satisfies constraint (4), it is assumed that
all the row vectors of are scaled such that .
In other words, if , then . Constraints (5) and
(6) enforce to be nonzero (please refer to [10] for more details).
We observe that the MIP approach does not utilize any special struc-

ture in the matrix . In [10], the MIP formulation (3)–(7) was imple-
mented in AMPL [23] and the commercial solver CPLEX [11] was
used to solve it for the studied instances. It was shown in [10] that in
several instances, where the decomposition bound is large, MIP signif-
icantly outperforms BDOLD.

III. FASTER VERSIONS OF BOUND-AND-DECOMPOSE ALGORITHM

The most time-consuming operation in the BDOLD algorithm is in
its Step 2, where each time a matrix is formed, its rank should
be calculated and compared to . Each run of the algorithm includes
calculating the rank of a large number of submatrices and these
rank calculations are the time bottleneck of the BDOLD algorithm.
BDNEW, our new version of the bound-and-decompose algorithm,

differs from BDOLD in the value chosen for in Step 1. In Step
1 of BDOLD, the value of in the case where is greater than or
equal to the decomposition bound is calculated such that the number
of rank testings resulting from the decomposition is minimized (i.e., the
number of submatrices is minimized). Notice that the total run
time of Step 2 for each depends on not only the number of
matrices, but also the size of these matrices. Our computational exper-
iments showed that choosing , which mini-
mizes the size of matrices, instead of the value chosen in Step 1
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of BDOLD, which minimizes the number of matrices, reduces
the total time taken by Step 2. Therefore, is
the value we use in BDNEW.

BDNEW Algorithm

Step 0. .
Step 1. If , then and go to Step 2;
otherwise in order to have the
smallest submatrices in Step 2.

Step 2. Same as Step 2 of BDOLD.

Another issue of concern at Step 2 of both BDOLD and BDNEW is
how the ranks of submatrices are calculated. As mentioned in
Section II, in the previous implementation of BDOLD in the literature
[7], [10], the rank calculation is performed using SVD. In this paper, we
employ a substantially more efficient method for rank calculation. This
method is based on the QR factorization of the matrix. In principle, the
QR factorization (or QR decomposition) of a matrix is expressing that
matrix as the product of a matrix whose columns are orthogonal
unit vectors and an upper triangular matrix [12], [17]. In [18] and
[19], it has been shown that for any given matrix (where ),
there exists a permutation matrix such that the QR factorization

exhibits the rank of in the upper triangular matrix
. Such factorization, which can be used to determine the rank of , is

called rank-revealing QR factorization (RRQR factorization). The way
the rank of is exhibited in is as follows: The matrix resulting
from the RRQR factorization of will have a structure like

where is a matrix, , and is nonsingular. Then,
we will have (note that may be zero in which case

). In practice, due to numerical issues, typically will not
be exactly a zero matrix. Instead, one would look for a matrix such
that , i.e., for a small enough positive (
is the Euclidean norm of , which is equal to its maximum singular
value) [12], [16].
Theoretically, although the flop (floating point operation) count to

calculate the rank of a matrix (where ) using either SVD
or QR factorization is , the number of flops in the SVD based
rank calculation is approximately twice the number of flops in the QR
based algorithm [12]. Moreover, both QR and SVD are numerically
quite reliable [12].
In Section V, we will perform computational experiments to analyze

the performance of both BDOLD and BDNEW algorithms with both
SVD- and QR-based rank calculation. We will see that for all in-
stances, BDNEWSVD and BDNEWQR outperform BDOLDSVD and
BDOLDQR, respectively. Moreover, BDOLDQR and BDNEWQR
are significantly (up to 11 times) faster than BDOLDSVD and BD-
NEWSVD, respectively. As a result, BDNEWQR is always the fastest
among the four.

IV. BDMIF: A HYBRID ALGORITHM

In Step 2 of the BDNEW algorithm, for each and ,
where , one solves the problem of whether
or not. The way this problem is solved in BDNEW is by an exhaus-
tive rank testing, i.e., the rank of all possible reduced matrices ,
which are obtained by removing rows from , are calculated. As
exhaustive rank testing is an inefficient method, its repeated use on all
matrices is a major drawback of the BDNEW algorithm (obvi-
ously BDOLD has the same drawback too).

In this section, we propose a new algorithm (BDMIF) which
replaces the exhaustive rank testing of each submatrix with
solving a mixed integer feasibility (MIF) problem. A MIF problem is
the problem of finding out whether the mixed integer set defined by
a collection of linear constraints contains a feasible point or not. Our
BDMIF algorithm is a hybrid algorithm in which MIF problems are
repeatedly solved within a bound-and-decompose framework. As a
result, BDMIF makes it possible to simultaneously exploit both the
decomposable structure of a BBD matrix and the superiority of
MIP over the exhaustive rank testing.

BDMIF Algorithm

Step 0. .
Step 1. If , then and go to Step 2;
otherwise in order to have a minimum
size MIF problem in Step 2.

Step 2. Do the following for all the matrices ,
where and , one by one:
• normalize all the row vectors, i.e., ;
• solve the MIF problem defined as follows:

(8)

(9)

(10)

(11)

(12)

until a is found for which the MIF (8)–(12) has a feasible
solution. If found (which means ), then
and stop. Else and go to Step 1.

It is observed that in Step 2 of BDMIF algorithm, the MIF problem
(8)–(12) defined for is solved to see whether
or not. Constraints (9)–(12) of this MIF are the same as constraints
(4)–(7) of the MIP model written for the matrix instead of and
their role is the same as explained in Section II and [10]. Constraint (8)
forces the total number of variables that have nonzero values to be
equal to . Based on constraints (9)–(12), this means that if the MIF
problem (8)–(12) has a feasible solution, then there exists a nonzero
vector such that for vectors out of all

. This implies that . On the other
hand, because , and at iteration of
BDMIF, we already know that . Therefore,

.
We solve the MIF problem (8)–(12) using CPLEX solver [11]. Since

CPLEX only solves MIP problems, i.e., it needs an objective function
to optimize, we use a constant objective function such as “ ”
along with constraints (8)–(12) to solve the MIF. Clearly, the MIP
solver stops after finding the first feasible solution to (8)–(12).
The choice of in Step 1 of BDMIF is similar to that in Step

1 of BDNEW. This makes the size of the MIF problems in Step
2 as small as possible (note that the number of all variables and the
number of constraints (9) and (10) depends on ). The smaller the
MIF problem is, the faster it is solved using CPLEX. Of course, the
smallest may not result in the smallest number of sets (hence
MIFs), however, in our computational experiments we found that it is
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TABLE I
CHARACTERISTICS OF INSTANCE CATEGORIES AND AVERAGE OF

INSTANCES IN EACH CATEGORY

always better to minimize the size of MIFs rather than the number of
them.

V. COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we present the results of our computational ex-
periment to compare the performance of our proposed algorithms
(BDOLDQR, BDNEWSVD, BDNEWQR, and BDMIF) with the
existing algorithms (BDOLDSVD and MIP).
To make a fair comparison between the algorithms, we used a

common implementation platform. We implemented all the existing
and new algorithms in C++. We used dgesdd and dgeqp3 routines
of CLAPACK 3.2.1 to perform the SVD and RRQR factorizations,
respectively, in BDOLDSVD, BDNEWSVD, BDOLDQR, and
BDNEWQR. CLAPACK is the implementation of the well-known
subroutine library LAPACK (Linear Algebra PACKage) in C language
and has one of the most efficient implementations of SVD and RRQR
factorization (see [20] for details). The MIP formulation was solved
in C++ using the CPLEX 12.0 C++ concert technology [11] (which
is a C++ library to model and solve optimization problems including
integer programming). The BDMIF algorithm was also implemented
in C++ and CPLEX 12.0 C++ concert technology was used to solve
the MIF problems within the algorithm.
The results of our computational experiments are shown in

Tables I–III. Each row of these tables corresponds to an instance
category. Nine instance categories, each containing five random
instances with similar structural characteristics were generated. The
randomness is in the values of the matrix entries. The characteristics
(size, number of blocks, and number of border rows) of each category
are shown in Table I. The characteristics of instance categories 1
and 2 are based on the multistation assembly applications reported
in [9]. For instance categories 3 to 7 and 9, the characteristics are
inspired by the instances in [10]. The instance category 8 is of a
much larger size than the instances in [10]. All instances are available
at http://ise.tamu.edu/people/faculty/kianfar/dol/RedundancyDegree-
Instances.zip. For each instance category, Table I also shows the
decomposition bound for instances in the category. The last column of
Table I is obtained after completing the algorithm runs and shows the
average of values of the five instances in each category.
Instances in category 1 correspond to the assembly example that we

explained in Section I. Using the existing methods, including the ex-
haustive rank testing (doable for this small sized problem), the degree
of redundancy in these instances can be determined as 4, which, as we
mentioned earlier, is strikingly different from the rough estimate, had
someone used . Our new algorithms of course produce the same

TABLE II
RUNTIMES OF ALGORITHMS FOR INSTANCE CATEGORIES

TABLE III
RUNTIMES OF ALGORITHMS FOR INSTANCE CATEGORIES

redundancy value. As will be mentioned shortly, our BDNEWQR al-
gorithm is the fastest among all in calculating the degree of redundancy
of instances in this category because they are of a small size.
For each instance category, Tables II and III show the average so-

lution time of each algorithm over the five instances in the category.
The bold numbers indicate the fastest algorithm in each category. All
the algorithms were run on a PC which has two Intel Xeon E5620 2.40
GHz processors and 12 GB of RAM. A time limit of 10 h was im-
posed on the running time of each instance. The cells containing “
hours” mean that the run time of the algorithm for all five instances in
the category reached 10 h without finding the degree of redundancy.
All instances except those in category 9 are completely solved within
10 h by at least one of the algorithms. Therefore, the exact values of

for all instances in each of categories 1 to 8 are obtained and
the average of instances in each category is reported in Table I.
None of the four algorithms was able to find for any of the five
instances in category 9 within 10 h. As a result only upper and lower
bounds are reported for them which will be explained in more detail at
the end of this section.
Based on Tables II and III, we make the following observations

regarding the efficiency of our new algorithms versus the existing
algorithms. First of all, in Table II, we observe that for all instance
categories our BDOLDQR and BDNEWQR are significantly (up to
11 times) faster than BDOLDSVD and BDNEWSVD, respectively.
This signifies the superiority of using QR factorization over SVD
for rank calculation at Step 2. We also observe that for all instance
categories BDNEWQR and BDNEWSVD are faster than BDOLDQR
and BDOLDSVD, respectively. As a result, BDNEWQR is always
fastest among the four versions of the BD algorithm studied here.
For example, in instance category 2, BDNEWQR is 30, 10, and
3 times faster than BDOLDSVD, BDNEWSVD, and BDOLDQR,
respectively.
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Moreover, going to Table III we observe that except for very small
instances (categories 1 and 2), BDMIF is consistently faster than BD-
NEWQR. BDNEWQR’s performance is better than that of BDMIF on
small instances because when submatrices are very small, rank
testing with QR factorization is faster than solving the MIF problem in
BDMIF using CPLEX. But as the submatrices get slightly larger, MIF
performs much faster than rank testing. Since the solution times for
small instances are less than a minute anyway, using BDMIF instead
of BDNEWQR in general is a sound recommendation.
When comparing MIP with BDMIF we see that in instances where

the decomposition bound is small, i.e., when the BDMIF algorithm can
do significant decomposition (instances 6 to 8), BDMIF significantly
outperforms MIP (e.g., for instance category 6, BDMIF is more than
285 times faster than MIP). It is interesting to see that our BDMIF
algorithm is the only algorithm out of the four algorithms that can solve
the large instances in category 8 within the 10-h time limit (the average
BDMIF runtime on this category in only 1.7 h). However, when the
decomposition bound is large (instances 3 to 5), MIP performs better
than BDMIF and BDNEWQR because for such instances the latter two
algorithms cannot perform significant decomposition. This is the same
observation made in [10] while comparing BDOLD and MIP.
None of the algorithms are able to solve any instance in category 9

within 10 h. On one hand, these instances have large decomposition
bound for BDMIF to be effective, and on the other hand, they are too
large for MIP to be effective. It is important to note that although the
algorithms cannot solve the problems, they provide upper and lower
bounds on the degree of redundancy. MIP provided upper bounds of
either 33 or 34 for the five different instances in category 9. This upper
bound is the value of objective function (3) for the best integer solu-
tion found in 10 h by the MIP algorithm. However, the lower bound
obtained by MIP for all instances in category 9 was the trivial bound 1.
BDMIF can only provide lower bound. This lower bound was 2 (better
than the MIP lower bound) for one of the instances in category 9 and
the trivial 1 for the other four instances.

VI. EFFECT OF DENSITY

During our study we observed that the density (percentage of
nonzero entries) of blocks and border rows of the instance has a major
effect on the runtime of all algorithms. In this section we present the
results of a computational experiment performed in order to acquire
insight into the effect of density on the runtimes of BDNEWQR,
BDMIF, and MIP (we discard BDOLDSVD, BDNEWSVD, and
BDOLDQR as their runtimes are dominated by that of BDNEWQR).
All our instances in this experiment have the structural characteristics
of category 4 in Table I, i.e., they are 316 144 instances containing
four equally sized blocks and eight border rows.
We considered various levels of block density and border density,

as shown in Tables IV–VI. For each combination of block density and
border density, we generated random instances with those block and
border densities. Tables IV, V, and VI show the average runtime of
BDNEWQR, MIP, and BDMIF, respectively, over the five instances in
each combination. It can be seen that as the border density or block
density increases, the runtimes of all three algorithms increase sub-
stantially. We point out that although here we only show the results for
matrices with structural characteristic of category 4, our computations
on matrices with other structures show a similar pattern regarding the
effect of density.
As a side note, observe that based on Tables IV–VI, the MIP al-

gorithm does better than BDMIF, and BDMIF does better than BD-
NEWQR on this instance structure as it was the case for category 4 in
Table III (the instances in category 4 of Tables I–III had block density
of 10% and border density of 40%).

TABLE IV
EFFECT OF DENSITY ON RUNTIME OF BDNEWQR

TABLE V
EFFECT OF DENSITY ON RUNTIME OF MIP

TABLE VI
EFFECT OF DENSITY ON RUNTIME OF BDMIF

VII. CONCLUDING REMARKS

We presented three enhanced versions of the BD algorithm for cal-
culating the degree of redundancy of a matrix, of which BDNEWQR
was shown to be the most efficient, being up to 30 times faster than the
existing version of BD algorithm (BDOLDSVD). We also proposed
the new hybrid algorithm BDMIF for calculating the degree of redun-
dancy of a matrix. BDNEWQR benefits from decomposing the matrix
into submatrices which are smaller than those in BDOLDSVD and also
using the QR factorization in calculating the rank of these submatrices.
BDMIF exploits solution of mixed integer feasibility problems within
a bound-and-decompose framework. We conclude with the following
remarks.
a) The BDNEWQR algorithm in all cases is significantly faster than
BDOLDSVD presented in [7], [10] and BDMIF outperforms
BDNEWQR except for very small instances, which have very
short runtimes anyway. However, BDMIF is slower than MIP in
instances where the decomposition bound is not small.

b) The success of BDMIF is because it combines the power of
BDNEW in exploiting the BBD form of the matrix and the power
of MIF checking to detect the degree of redundancy of smaller
submatrices. Even when BDMIF is not able to completely solve
the problem in a given time, it provides a lower bound on the de-
gree of redundancy.

c) Nevertheless, if the instance size and the decomposition bound
are large, neither BDMIF nor MIP can solve the instance effi-
ciently. As a result, although BDMIF is a step forward, the chal-
lenge of solving large instances with large decomposition bound
remains.
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d) Our computational study on the effect of density suggests that
spending reasonable effort to transform a given matrix to the
sparsest possible form may have a large effect on reducing the
runtime of the algorithms used for finding the degree of redun-
dancy. This is a valuable direction for future research.
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On Deciding the Existence of a Liveness Enforcing
Supervisory Policy in a Class of Partially Controlled

General Free-Choice Petri Nets

N. Somnath and R. S. Sreenivas, Senior Member, IEEE

Abstract—If there are transitions in a Petri net (PN) that cannot be pre-
vented from firing by a supervisory policy, then we have a partially con-
trolled PN. The existence of a liveness enforcing supervisory policy (LESP) in
a partially controlled ordinary PN is undecidable. Consequently, there can
be no algorithms that synthesize an LESP for an arbitrary ordinary (gen-
eral) PN. In contrast, we identify a class of general free-choice PN (FCPN)
structures, which strictly includes the class of ordinary FCPN structures,
where the existence of an LESP in any marked member of the class is
decidable.

Note to Practitioners—Every computer user has encountered situations
where an unresponsive program enters into a state of suspended animation
for perpetuity. A scheduling policy that can guarantee livelock-freedom is
highly desirable in this, and other instances of concurrent systems. The re-
sults of this paper show that if the concurrent system is modeled as a Petri
net that belongs to the class identified in this paper, then it is possible to
determine if there is a policy that avoids livelocks, which paves the way for
algorithm-development for livelock-avoidance.

Index Terms—Petri nets (PNs), supervisory control.

I. INTRODUCTION

A Petri net (PN) where are all arc weights are unitary is an ordinary
PN, and a PN without restrictions on the arc weights is a general PN
(see [1, Sec. 5.3]). A PN is a free-choice Petri net (FCPN) if each arc
from a place to a transition is either the unique output arc of the place or
is the unique input arc to the transition. Applications of FCPNs include
the modeling of product-flow in manufacturing environments [2] and
flow of control in processor networks [3].
A PN is live if, irrespective of the past transition firings, every tran-

sition in the PN can fire at some point in the future. A system modeled
by a live PN does not experience livelocks. A PN model that is not live
can be made live with the help of a supervisory policy that prevents
the firing of a select group of transitions at each marking. This paper
is about liveness enforcing supervisory policies (LESPs) for general
FCPNs.
We identify a class of general FCPN structures where, for any

member in , the set of initial markings for which there is an LESP
is right-closed [4]. If a marking is present in a right-closed set, then
all markings that are larger than it are also present in the set. The class
strictly includes ordinary FCPN structures. As a consequence of the

results in [5], it follows that the existence of a supervisory policy that
enforces liveness in the class is decidable.
Eachmember of is identified by the following property—if a place

has multiple output transitions, at least one of which is uncontrollable,
then the weight associated with the arc that originates from the place
to an uncontrollable transition, must be the smallest of all outgoing arc
weights from the place, that is, if any output transition of this place is
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