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Fault Tolerance Analysis of Surveillance
Sensor Systems

Elif I. Gokce, Abhishek K. Shrivastava, and Yu Ding, Senior Member, IEEE

Abstract—A surveillance sensor system is a network of sensors
that provides surveillance coverage to designated geograph-
ical areas. If all sensors are working properly, a well-designed
surveillance system can supposedly provide the desirable level
of detection capability for the locations and regions it covers. In
reality, sensors may fail, falling out-of-service. Motivated by the
need to determine the ability of a surveillance sensor system to
tolerate the failure of sensors, we propose a fault tolerance capa-
bility measure to quantify the robustness of surveillance systems.
The proposed measure is a conditional probability, characterizing
the likelihood that a surveillance system is still working in the
presence of sensor failures. Case studies of the surveillance sensor
system in a major US port demonstrate that this new measure
differentiates different surveillance systems better than using the
sensor redundancy measure, or the reliability measure.

Index Terms—Detection capability, multi-sensor combination,
sensor fault, sensor network, surveillance for ports and water-
ways.

ACRONYMS

AGP art gallery problem

CCTV closed-circuit television

FAP false alarm probability

FTC fault tolerance capability

HSC Houston ship channel

MDP misdetection probability

RL redundancy level

NOTATION
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set of surveillance points

set of sensors monitoring surveillance point

size of set

set of surveillance points monitored by sensor

set of working sensors,

set of failed sensors, equals

cost of misdetections at surveillance point

cost of false alarms at surveillance point

misclassification cost at surveillance point , when
monitored by sensors

threshold misclassification cost for a working
sensor system

measure of sensor’s capability at surveillance
point

I. INTRODUCTION

W E in this paper address the question of how to quan-
tify the capability that a surveillance sensor system tol-

erates the failure of sensors. A surveillance sensor system is a
network of sensors that provides surveillance coverage to des-
ignated geographical areas. Ideally, if all sensors are working
properly, a well-designed surveillance system can supposedly
provide the desirable level of detection capability for the lo-
cations and regions it covers. In reality, sensors may fail and
become out-of-service. This raises the question how robust a
surveillance sensor system remains in the presence of sensor
failures.
We in this paper consider surveillance sensor systems de-

signed to monitor restrictive security areas in ports and water-
ways. But the features of the system, and the research question
we mean to address, extend to other surveillance sensor systems
as well. In the sequel, we use the surveillance sensor system
at the Houston ship channel (HSC), which has been studied in
previous publications [1], [2], to explain the basics of such a
system, and some related terminologies and symbolism. Refer
to Fig. 1 of [2] for a graphical illustration of the HSC system.
The HSC surveillance system comprises multiple types

of sensors, including closed-circuit television (CCTV), night
vision enabled CCTV, infrared cameras, and radars. Het-
erogeneity among sensors commonly exists in surveillance
systems, providing surveillance under very different lighting
and ambient conditions (such as day versus night, presence
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of precipitation or not). The set of sensors is denoted by
.

The HSC system covers a long, curved strip along the ship
channel. It is customary to designate a set of discrete points
along this strip as the so-called surveillance points, at which sen-
sors continuously monitor activities, and would trigger alarms
when probable foul plays are detected. Choices of the surveil-
lance points can be made by either the owner of the surveillance
system (that is, the US Coast Guard), or in consultation with ten-
ants occupying the area along the channel (such as Shell Oil).
The set of surveillance points is denoted by .
To provide surveillance coverage along the ship channel, all

the sensors are either installed on a sensor tower or on top of a
nearby building, ensuring an unobstructed line of sight between
a sensor and a surveillance point. Multiple sensors of various
types can be installed at the same location (on a single sensor
tower, for example). One sensor can monitor multiple surveil-
lance points. On the other hand, a surveillance point is usually
monitored by more than one sensor. Denote by the number of
surveillance points that sensor monitors, by the subset
of sensors monitoring surveillance point , and by the
number of sensors in .
To get a real sense of the system composition, consider the

sixteen layouts of the surveillance sensor system presented in
[1]: the number of sensors can be as many as ; three dif-
ferent sensor types are used; the number of surveillance points
is either 42 (single bank), or 84 (both banks); ranges from
two to seven, and the average number of points a sensor moni-
tors is about six.
Even when there is a clear line of sight between a sensor and

a surveillance point, it does not guarantee that all events taking
place at the surveillance point can always be detected and clas-
sified correctly. This detection function of a surveillance system
is complicated, involving automated recognition algorithms or
human operator’s decisions or both. We here choose to con-
sider the whole detection and surveillance process as a black
box, and characterize its capability by a misclassification cost
, which combines the effects of both missed detections and

false alarms. The misclassification cost for point under
the surveillance of sensor is then given by

,
where , and are the prior probabilities
of the presence, and absence of any suspicious event at point
, respectively. In the case where people consider that misde-
tections greatly outweigh the risk of false alarms, implying that

, then deteriorates to simply the misdetection

cost, whereas in the case where , the misclassification
cost becomes the commonly known misclassification error rate.
Understandably, the detection probability, as well as the false

alarm probability, are affected by a number of factors, such as
the distance between the sensor and the surveillance point, and
can vary under different ambient conditions. Considering that
both the sensor towers and the surveillance points, once the
system is built, are stationary, and that we can select one fixed
ambient condition (out of a finite number of such conditions) for
our study, we believe it is justifiable to treat these probabilities
between sensor and point as constants.

When we say a sensor is working, the sensor functions with
designed detection and false alarm probabilities. When we say
that a sensor has failed, it refers to the situation when the sensor
is incapacitated, so that this sensor can be removed from the
system. In the example of a CCTV, a failed sensor simply sends
back all-white, all-black, static-noise images, or a stationary
image not reflecting the activities happening at the surveillance
point.
The system of surveillance sensors is considered working if

all the surveillance points are provided surveillance with a mis-
classification cost lower than a prescribed threshold; otherwise,
the system is considered failed. Based on this definition, it is
not surprising to see that a surveillance sensor system may still
be working when certain sensors have failed. The question we
intend to answer is whether we can, and how to, use a simple
measure to rank the capability of a surveillance sensor system
in tolerating sensor failures (hereafter called fault tolerance ca-
pability, or FTC).
In the remainder of the paper, we first argue, through re-

viewing the existing work, that a new FTC measure is indeed
needed for quantifying the robustness of surveillance systems.
Following this, we will propose a FTC measure, and argue why
this new measure is sensible to use. We then present structural
results that allow this new measure to be computed efficiently.
The next section presents a case study using the sixteen surveil-
lance sensor layouts in [1], supporting the claims we make thus
far. Finally, we end the paper with some concluding remarks.

II. EXISTING WORK

The concept of fault tolerance is closely related to the con-
cept of reliability [3]. Each sensor has its own reliability, i.e.,
the probability that a sensor will remain in the working condi-
tion. A sensor’s reliability can be assessed by extensive testing
(by the sensor’s vendor), or pooling empirical data on those that
had been in service under comparable conditions. Obviously, an
individual sensor’s reliability falls short of providing a compre-
hensive picture at the system level.
Reliability engineers specialize in aggregating all compo-

nents’ reliability to model a multi-component system. This
activity can certainly be done for a network of sensors, which
means to sort through different combinations of sensor failures,
compute the system failure probability under each circum-
stance, and then take the weighted average of all plausible
circumstances to yield a final probability measure as the
system’s reliability [4]–[6]. Here we argue that the FTC mea-
sure we conceive is not the same as reliability. Reliability is an
unconditional probability, while FTC means to articulate the
robustness of a system in states in which some sensors have
failed. Intuitively speaking, system reliability is the combined
effect of FTC and the individual sensors’ reliability. Later in
Section III, we will show an example where, although the sen-
sors’ prior reliability levels are all the same, the system’s FTC
can be different by changing how the sensors are deployed. The
benefit of devising and using such a system-articulating FTC
measure is to compare and select a robust design of the system.
Another relevant, and also relatively large, body of litera-

ture exists on sensor fusion, or more specifically, fault-tolerant
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sensor fusion, for example, [2], [7]–[11], among others. This
line of research is to devise robust procedures to combine obser-
vations or decisions from individual sensors in the possible pres-
ence of erratic sensor outputs. This type of work is also closely
related to the field of robust statistics, where robust estimators
are developed to provide estimations less sensitive to outliers
[12], [13]. The difference between the fault-tolerant sensor fu-
sion and the FTC measure can be understood as follows. Ex-
isting methods of sensor fusion do not provide system-level
characteristics for cases where multiple surveillance points are
observed by multiple sensors as they are most appropriate to
characterize individual surveillance points where a surveillance
point is observed by multiple sensors. Further, a sensor fusion
can be donewithout necessarily knowing explicitly the fault-tol-
erance capability of the fusion procedure. In fact, many sensor
fusion methods did not present a FTC analysis.
People did study, for some sensor fusion algorithms

[14]–[16], how many anomalous sensors such a procedure
can tolerate while still yielding the correct outcome. This
measure manifests in the form of the degree of sensor redun-
dancy. In robust statistics, the related robustness concept is
called the breakdown point [17], which has been shown in [18]
to be equivalent to the degree of redundancy. Depending on
the form of system models, computing the degree of sensor
redundancy invokes either graph theory, if the sensor network
can be modeled as a graphic network [4], [14], [16], or matrix
or matroid theory, if a robust estimation pertinent to a linear
model is of concern [6], [15], [18], [19]. In both cases, the
minimum cut of an appropriate algebraic structure (being a
graph or a matrix) needs to be found. On this ground, this line
of work is connected with reliability theory, where finding the
minimum cut is a frequent exercise.
Applying the redundancy concept to a surveillance system is

not new; modifying the art gallery problem (AGP) [20] to allow
redundant guards is a complimentary problem. AGP seeks to
find the minimum number of guards that have a direct line of
sight to every point in a polygon-shaped art gallery, and the re-
dundancy-allowing AGP is to increase the minimum number of
guards allowed so that there may be multiple lines of sight to
certain points in the gallery. For the surveillance system, the
concept of redundancy works as follows. At any given surveil-
lance point, the redundancy level is one less than the minimum
number of sensors that when failed would result in surveillance
failure at the point, i.e. result in the misclassification cost asso-
ciated with this point to be larger than the prescribed threshold.
Redundancy levels at different surveillance points can then be
computed individually. For the whole system, all the individual
redundancy levels need to be aggregated to represent the whole
system. It is not uncommon that the minimum redundancy level
is chosen as the (worst-case) fault tolerance representation of
the whole surveillance system.
This redundancy measure has a couple of limitations. It is a

deterministic measure, not taking into account the uncertain na-
ture of detection and surveillance. This deterministic measure
mayworkwell in the art gallery problem, where once a clear line
of sight is established, the detection probability is 100%, and
false alarms rarely happen. But practical surveillance systems

are more complicated than the AGP’s. Moreover, a redundancy
measure is also an integer number, often spanning a very narrow
range, say, one to three (especially true, if the system-wide re-
dundancy is the minimum redundancy of all points). For this
reason, the redundancy measure works poorly at discriminating
different systems and their robustness, defying the original mo-
tivation of devising such a measure.

III. MEASURES OF FAULT TOLERANCE CAPABILITY

A. Redundancy Measure

Consider a subset of sensors that are working ac-
cording to their designed detection and false alarm probabilities;
or equivalently, is the set of the failing sensors whose
presence can be excluded from the system. Denote by the
maximum allowed level of misclassification cost at surveillance
point , meaning that, when the sensor system produces a mis-
classification cost smaller than for all , the system is
considered working, and otherwise failed.
Denote by the misclassification cost at point , under

surveillance of the sensors in . Similar to the definition of
, we can have

(1)
where , and are the detection, and false alarm prob-
abilities associated with point , respectively, but modified to fit
the multi-sensor circumstance. Determining and
needs to take as inputs the and of individual
sensors. But it also is necessary to consider the specific sensor
fusion algorithm involved. Consider, for instance, multiple sen-
sors monitoring the same location, and reporting individually
“event” or “no-event” on their own. The final fused decision
could be to report “event” whenever any one of the sensors re-
ports “event,” customarily known as the “1-out-of- ” rule, or
report “event” only when all sensors report “event,” customarily
known as the “ -out-of- ” rule. The detection and false alarm
probabilities of combining the sensors in are going to be dif-
ferent under different decision fusion rules, even if all other con-
ditions are held the same.
Under the setting described above, in particular, given

a sensor fusion algorithm, we first present the redundancy
measure.
Definition 1: The redundancy level (RL) at surveillance point

is

(2)
Thus, the redundancy level at a surveillance point is one less

than the minimum number of sensors that when failed would
result in the misclassification cost associated with this point to
be larger than the prescribed threshold.
If aggregating the redundancy levels for individual surveil-

lance points by considering the worst-case scenario, the system-
wide redundancy measure is defined as follows.
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Fig. 1. Redundancy level of a surveillance sensor network at the Houston ship channel. The numbers underneath the figure are the degree of redundancy. T1, C1,
etc. represent the sensor types.

Definition 2: The redundancy level (RL) of a surveillance
system is

(3)
The system-wide redundancy measure is the same as using

the smallest redundancy levels among all the surveillance
points, namely . But note that the failed
sensors in , defined at the system level, can come from
different surveillance points.
We apply this redundancy concept to a surveillance sensor

system used in [1], using the sensor fusion rule described in
[2] that is designed to minimize the misclassification cost.
Fig. 1 illustrates, using markers of various shape combinations,
the redundancy levels associated with each surveillance point
during daytime; the dashed vertical line marks along the ship
channel indicate the locations of the sensor towers. Considering
all points together, the smallest individual redundancy level is
1, which becomes the system’s redundancy. The redundancy
levels characterize individual points with reasonable degree
of discrimination. But the system level redundancy measure
has much less discriminatory power. It is easy to imagine
that another surveillance system, with very different sensors
and layouts, may produce the same system-wide redundancy.
It then becomes impractical to differentiate different system
designs using the redundancy level; it is too simple a measure
for a complex system like this.

B. Probabilistic Fault Tolerance Measures

In light of the shortcomings of the redundancy measure, espe-
cially its inability to discriminate the networks of sensors at the
system level, we hereby propose a probabilistic FTC measure.
We define this FTC measure as a conditional probability, char-
acterizing the likelihood that a sensor system is still working in
the presence of sensor failures.
Definition 3: The fault tolerance capability of a surveillance

system is

Here, the condition implies that , namely
that at least one sensor has failed. Meanwhile, there is no need
to consider , because when all sensors have failed,
the probability that the system is still working is zero. Assuming
that a sensor’s failure is statistically independent from that of the
others, Corollary 1 provides a simplified expression for com-
puting this FTC measure.
Corollary 1:

(4)

where

if for all
otherwise.
if sensor fails
otherwise.

In the above expression, is a sensor’s (prior) reli-
ability, or equivalently, is the sensor’s failure prob-
ability. Thus, is the probability that all sen-
sors are working. is a logic function checking whether the
system’s working condition, , is satisfied.
Same as in the redundancy measure, this condition needs to be
verified for a specific sensor fusion rule.
Last, we define the reliability of a surveillance sensor system.

The reliability measure includes the case where all sensors are
working.
Definition 4: The reliability of a surveillance system is

It can be computed as follows.
Corollary 2:

(5)
The reliability expression bears resemblance with that of the
, except that the reliability is an unconditional probability,

giving too much weight to the situation where all sensors are
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TABLE I
PROBABILITIES OF DIFFERENT SENSOR FAILURE EVENTS

Fig. 2. Example of two sensors, and , observing a single surveillance point
; a square represents a sensor, and the circle represents the surveillance point.

working, whereas is a conditional probability, empha-
sizing the system working probability only after sensor failures
take place.While the reliability may serve as the ultimate bench-
mark of the likelihood that a surveillance system is working,
combining the effects from sensors and the system, is a
better measure to quantify the robustness of the system designs.
We would like to illustrate the difference between the three
measures presented above, using a simple two-sensor, single-
surveillance-point example, presented in Fig. 2.
In this example, let us suppose that the cost of misdetec-

tions (false negatives) significantly outweigh that of false alarms
(false positives), and the prior probability of an event is the same
as the condition of no event, so that checking the misclassifica-
tion cost at the surveillance point can be replaced with com-
paring the detection probability of a sensor or a sensor combi-
nation with the desired detection probability. Suppose the cost
coefficient , and set , which is equivalent to
setting the detection probability threshold at 0.97. So re-
turns 1 if, after removing the sensors in , the remaining
sensor(s) can still provide a detection probability greater than
0.97, and returns 0 otherwise.
The sensors are then characterized by two attributes: the

sensor’s own reliability , and its detection probability
. The two scenarios presented in Fig. 2 represent different

combinations of sensor reliability and detection probability.
Table I presents the probabilities under different sensor failure
events as well as the outcome of , indicating whether the
system is still working, under the corresponding failure event.
These quantities are the ingredients for computing the FTC,
and reliability measures using (4) and (5), respectively. The
redundancy level is also computed, using (2). The results are
included in Table II.
The interpretation of the probabilistic measures can be un-

derstood as follows. Take Scenario 1 as an example. Suppose
there are 100 randomly selected cases of the sensor network
in Scenario 1. On average, there will be 76 cases of no sensor

TABLE II
DIFFERENT MEASURES OF FAULT TOLERANCE IN THE TWO-SENSOR EXAMPLES

failure, 19 cases of sensor failed; four cases of sensor failed,
and one case of both failed. Among the 19 cases of sensor
failed, the system is still working in none of these cases be-
cause is too low. For the four cases where failed,
the system is still working in all of them because provides
the required level of detection. For the single case of both sen-
sors failed, the system also failed. So, for the 24 sensor failing
cases, the system is still working in four of them, translating to
a 17% or 0.17 FTC (rounded to the second decimal). The re-
liability of the system also considers the 76 cases when both
sensors are working, under which the system also works, trans-
lating to a total of 80 system working cases out of 100 cases
(i.e., ).
Scenario 2 is where we swap the two sensors’ reliabilities. It

turns out the of the system drastically increases from 0.17
to 0.79 by this simple action. This result appears to make sense
because, in the previous scenario, the more capable sensor is
less reliable, while here, the more capable sensor is more reli-
able; pairing capability with reliability apparently makes a big
difference.
The reliability of the system also increases to 0.95, due to the

new design of the system, because all the prior reliabilities of
the sensors are unchanged. The increase demonstrated by the
system reliability measure is, however, much less pronounced
than the FTCmeasure. The decrease in the system failure proba-
bilities, from 0.20 for Scenario 1 to 0.05 for Scenario 2, appears
more pronounced, having reduced to one-fourth. However, this
change is much less pronounced compared to the FTC mea-
sure, especially when the absolute differences are compared.
This change in the system reliability or failure probability is less
pronounced because the inclusion of the 76% cases of no sensor
failures dilutes the effect coming from the system change. We
would like to note this stronger indicator as one merit of using
the .
It turns out that, in both Scenarios 1 and 2, the system’s reli-

ability is the same as the reliability of the more capable sensor,
namely that whenever the capable sensor works, the system
works. Although this makes intuitive sense, it does cast a little
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doubt on how much additional value is added by this system re-
liability as a new measure.

IV. COMPUTING THE FAULT TOLERANCE CAPABILITY

As noted in Section III, there could be many sensor fusion
rules (for example, a -out-of- rule, where is between 1
and ). The fault tolerance measure defined and discussed in
Section III characterizes a surveillance system’s fault tolerance
capability under a specific decision rule. The study of decision
rules falls in the large body of literature on sensor fusion as we
reviewed in Section II. That topic is not the focus of our paper.
Here, we assume that the sensor fusion rule is given, and more
specifically, choose to use the rule presented in [2], for two rea-
sons: (a) the rule in [2] is designed to minimize the misclassifi-
cation cost; and (b) when compared to a good number of other
decision rules, including the -out-of- rule with an optimized
, the rule in [2] appears to be superior. This superiority is par-
ticularly observed when the sensors to be fused are heteroge-
neous, which is something that frequently happens in surveil-
lance settings.
To compute the probabilistic fault tolerance and reliability

measures using (4) and (5), the part of checking the logic func-
tion presents a technical challenge. Because a surveillance
point can be observed by multiple sensors, and each sensor can
observe multiple surveillance points, the sensor network looks
like an intertwining bipartite graph that is not so easy to be dis-
sected to isolated pieces. Presumably, one would need to sort
through all possible to decide, for each , whether

or . When the sensors in are plenty,
the total number of subsets one needs to exhaust can be a large
quantity; for instance, when as in some instances of
the surveillance system in [2], the number of subsets is about
2 trillion.
Computing the redundancy measure is considerably simpler

because . One can compute the indi-
vidually, and then select the smallest value as . Computing
the individual is affordable because the number of sen-
sors per point is generally a single-digit number. A similar rela-
tionship, unfortunately, does not exist for the FTC and reliability
measures. One can construct simple examples to show that the
system-wide could be larger or smaller than the smallest
of the .
We in this section present a structured search to avoid the

complete enumerations for computing the FTC and reliability
measures. Readers going through the simple two-sensor exam-
ples in Section III probably have already considered that not all
the sensors are equivalent; the capable sensors appear, in the
mission of ensuring a working surveillance system, to matter
much more than the inferior ones. Our basic idea for reducing
the number of sensor subsets one needs to evaluate for checking

is intuitive: devise a quantitative index ranking sensors’ or
sensor combinations’ capabilities; and only check under
the failure of much smaller subsets of sensors or sensor com-
binations whose capability is low, and to see whether their re-
moval will cause the whole system to fail. Once a (failed) subset
of sensors is found to cause the system to fail, then any subset
formed by replacing one or more sensor with a more capable
one, or adding sensors to the set, will also cause system failure.

In the two-sensor example, each sensor’s capability is simply
characterized by its detection probability. The index to use for
an actual system is necessarily more complicated in two aspects:
(a) both detection and false alarm probabilities need to be con-
sidered; and (b) the index can be applied to not only a single
sensor but also a multi-sensor combination, and represents the
combined capability of the sensor combination.
The second aspect suggests that the sensor ranking index we

are seeking depends on the specific sensor fusion rule used.
In fact, when working out their sensor fusion rule, [2] have
already devised an index testifying the sensor’s capability.
Next we will explain the index, and show that it fits our use in
computing the FTC and reliability measures. In explaining the
sensor ranking index, it becomes obvious that we will have to
repeat certain notations and expressions from [2] to make this
paper self-contained.

A. Sensor Ranking Index, Structural Properties, and Algorithm
Development

Denote by the actual occurrence of events at surveillance
point , and by the decision of sensor (or the decision
from the sensor algorithm-operator combo) observing point .
Both the occurrence and the decision are binary, with 1 repre-
senting the occurrence of an event, and 0 representing no event
occurred. As such, we can express

, and .
Denote by the vector of a realization of

. The fusion algorithm takes all the values
in , and returns a 0 or 1. Denote this sensor fusion outcome
by . Using this set of notations, the misclassification cost
can be expressed as

(6)

where is the set of for which the fused
outcome is 1, and is the set of for which
the fused outcome is 0. The argument in is , meaning
that this sensor fusion considers the decisions from all sensors
involved. The optimal fusion rule in [2], denoted by , is
obtained by minimizing . This optimal fusion rule can be
obtained through the following condition. if

(7)

such that

Procedural details are omitted because they can be found in
[2]. When presenting the above condition in their original ex-
pression, [2] had used an auxiliary variable , which equals 1
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if
, and 0 otherwise. We believe that a

sensor with a false alarm or misdetection probability greater
than 0.5 is not fit for use for surveillance purposes. As amatter of
fact, we seldom encountered surveillance systems that used such
inferior sensors. So here we assume that a sensor’s false alarm
and misdetection probabilities are both smaller than or equal to
0.5. Therefore, we have that

, and .
Consequently, is always 1. With this result, we attain the
above simplified result from the original expression in [2]. [2]
interpreted the result in (7) as “ can be considered as a
performance threshold determined by the sensor system and the
surveillance task. On the left hand side, represents the capa-
bility of sensor (i.e., false alarm rate and detection power).”
We add two additional remarks regarding . (a) First, the

larger is, the better. Considering only sensors whose false
alarm and misdetection probabilities smaller than 0.5, we have

. (b) Because of the product in front of in (7), the
above condition applies to a multi-sensor combination. The
will serve as our sensor ranking index that helps the computing
of FTC and reliability measures.
Now, suppose that sensor failed. So is the set

of sensors after excluding sensor . Then represent the sensor
outputs associated with point after the exclusion of sensor
by . More-

over, create two artificial decision vectors and , such that
, and , . Lemma 3 pro-

vides the optimal fusion when . See
the Appendix for the proof.
Lemma 3: If , then

, and .
Lemma 3 can be understood as follows. If the fused decision

does not change compared to the decision that could have been
made by including sensor , then it means that the fused deci-
sion using the sensor from can be attained by arbitrarily
inserting any output for sensor . Consequently, under this cir-
cumstance, using the decision vector does not alter the mis-
classification cost for point .
Next, we consider the relation between and

when . From the definition of , it is clear
that because , and because

. Also, because all , we have

Using the sensor fusion condition in (7), the above inequality
suggests that, if , then , or in other
words, for all , , and .
Lemma 4: When , then , and

. Also .
Lemma 4 describes the situation where the output of sensor
matters. Under this circumstance, it is quite understandable

that a failing sensor could increase the misclassification cost
.

As we mentioned before, not all sensors are equally impor-
tant. Some sensors matter in the final fused decision (Lemma

4), thereby affecting the misclassification cost, while others do
not matter at all (Lemma 3), the exclusion of which leaves the
misclassification cost unchanged. Apparently, a sensor of large

(capable sensor) is more likely to matter, while a small
identifies a less capable sensor whose failure is more likely to
be tolerated.
Combining Lemma 3 and Lemma 4, we conclude that

; that is, the misclassification cost is
non-decreasing in the number of sensor failures. Therefore, if
the failure of a subset of sensors results in a misclassification
cost larger than the prescribed for some surveillance point ,
then the failure of any subset of sensors that contains this subset
will surely also lead to a misclassification cost larger than .
Based on the above understanding, we outline the procedure

for computing the FTC and reliability measures as follows. The
procedure is to find all the sets of sensors and sensor combina-
tions whose removal (i.e. failure) still retains a , and
then compute and using the sets found.

Algorithm: Computing , and

1) Re-index the sensors such that
for .

2) Let be the set of -sensor combinations, and set
.

3) Let ; this step investigates a single sensor failure.
• For , run the following.

Let .
If , then , and

.
Else break the for-loop.

• If , then , , and
Stop; otherwise, continue.

4) Let , and set . The next step adds one
sensor at a time to an existing -sensor combination
(from ) to make a new -sensor combination, and
then check whether the -sensor failure can be tolerated
by the system.

5) For , select ; and for
, run the following.

• Let ; this makes a -sensor
combination.

• If , then , and
; otherwise, break the inner

for-loop indexed by .
6) If , compute and using the
sensor sets included in , and Stop;
otherwise, go to Step 4.

The above algorithm ranks the sensors from the inferior to
superior according to their value. Then in Step 3 and Step
5, when sorting through all individual sensors (the for-loop
indexed by ), we will check whether, when an inferior sensor is
removed, the system will stop working. If yes, then there is no
need to check any other superior sensors, because we know the
removal of a superior sensor will definitely cause the system to
fail.
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B. Applicability and Efficiency of the Algorithm

The structural properties and the subsequent algorithm pre-
sented in the previous subsection were derived based on the
choice of a specific sensor fusion rule and the associated ranking
index. So a natural question is what happens if a different sensor
fusion rule is used, or given a different sensor fusion rule, can
the sensor ranking index presented above still be used?
We believe that our choice of the decision fusion rule is rep-

resentative of a class of (popular, good performing) decision fu-
sion rules, inherently possessing a sensor ranking index with the
following two properties:
1) Ordering property: If a certain sensor subset causes
system failure, then replacing any sensor in this combina-
tion by a superior sensor will cause system failure.

2) Hierarchy property: If a certain sensor combination
causes system failure, then any set containing this set will
also cause system failure.

These properties make intuitive sense. Given a different deci-
sion fusion rule, one should check whether the presented sensor
ranking index can work with it, and then whether the two prop-
erties are satisfied.
The hierarchy property described above can be compared to

the concept of coherent systems in systems reliability. A system
is called coherent if, given the system has failed after the failure
of a set of components, the system remains failed in the event
of additional component failures. Thus, a surveillance system
equipped with a sensor fusion algorithm satisfying the hierarchy
property is a coherent system. The reliability of such a system
can be computed by finding the minimal cuts, i.e., the min-
imal sets of components (or sensors, for a surveillance system)
whose failure results in system failure. The hierarchy property
can be understood as saying that any set containing a cut set is
still a cut set; this is a well-established understanding from the
system reliability literature. And the algorithm in Section IV-A
essentially accomplishes the same task, but more efficiently by
also using the ordering property of the sensor fusion algorithm,
stated above.
Not all sensor fusion rules use a sensor ranking index. The

commonly used version of the -out-of- rule does not differ-
entiate individual sensors. More importantly, for a fixed , the
-out-of- rule does not guarantee to produce the smallest mis-
classification cost. It is possible that -out-of- (after one
sensor failure) produces a smaller misclassification cost than
-out-of- .When this happens, the non-decreasing property im-
plied by Lemmas 3 and 4 breaks down, and the hierarchy prop-
erty expressed above will not hold.
A revised version of the -out-of- rule is the optimal- rule,

which is to, instead of using a fixed , exhaust all choices of
between 1 and , and select that minimizes the misclassi-

fication cost. Following this rule eliminates the cause of viola-
tion of the non-decreasing property mentioned above. Then, this
optimal- rule can be paired with the presented sensor ranking
index for the purpose of selecting which subset of sensors
to make the final fusion. As a result, those sensors matter,
while the other sensors do not. So the structured search
algorithm works.

TABLE III
TEST INSTANCES FROM [1]

The remaining question regarding algorithm efficiency is
whether the structured search always sorts through only a small
number of sensor combinations. Without any other practical
constraints, the answer is probably no. In theory, people could
construct examples where the search needs to exhaust a large
number of sensor combinations. On the other hand, however,
we believe the structured search will be very efficient for
practical surveillance systems.
What we noticed in typical surveillance systems is that (a)

albeit different, sensors are generally capable, so it is unlikely
that people can remove a bunch of sensors while the system’s
misclassification cost remains unchanged; and (b) the degree of
redundancy is not high. These two features should not come
as a surprise. Given the critical role that surveillance systems
play, people would expect their designer to be thoughtful when
choosing the types and number of sensors. And these sensors
are expensive, especially considering the cost not only of the
sensors but also of installation and operation. These two features
of surveillance systems ensure that the number of sensor sets in

is small; so one would expect to stop at a
relatively small as well as a small . Empirically, as shown in
the subsequent section, the above algorithm often returns around
0.5% of the total sensor combinations for computing and

.

V. CASE STUDY

We show in this section how the fault tolerance measures
are applied to a surveillance sensor system on the Houston ship
channel. [1] generated optimal surveillance system layouts for
16 different realistic instances of the surveillance system. We
use these 16 instances in our study. Table III summarizes the
information of the 16 instances, where denotes the instance
number.
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Fig. 3. , , and measures for each of the 16 surveillance system instances, with the horizontal axis as the system instance.

Fig. 4. Redundancy levels of the surveillance points in the surveillance system instance # 5.

As in [2], we use the misdetection probabilities (MDP) and
sensor failure probabilities given in [1]. The false alarm prob-
abilities (FAP) and the cost coefficients were not specified in
[1]. [2] compared their decision fusion rule for various choices
of the false alarm probability, both fixed and varying with the
misdetection probability, as well as different choices of the cost
coefficients. As far as the decision fusion rule is concerned,
the conclusions were similar. The fault tolerance measures can
certainly be computed under any cost or probability settings,
using the same procedure. But for simplicity of presentation, we
choose to present the results under FAP=MDP and .
Regarding the system working requirement, we set
(or ), because [1] generates the surveillance

system layouts based on the assumption that the surveillance
system should detect an intrusion at each surveillance point with
an average probability of 0.97.
The procedure presented in Section IV helped remarkably in

reducing the time for computing and . For the
16 cases, on average, 99.47% of the sensor combination sub-
sets were skipped for evaluation, or equivalently, only 0.53% of
the total sensor combinations, on average, are needed to com-
pute and . Among the 16 surveillance system
instances, the longest time required for computing the ,
using the proposed procedure, is 965 seconds (or 16.1 minutes).
For that case, only 0.02% of the sensor combinations were eval-
uated. Had all the sensor combinations been evaluated, and as-
suming that the time scales linearly, the computation time would
extrapolate to 55 days.
Comparison of the , , and measures are

presented in Fig. 3. One can see that for all 16 surveil-

lance instances, confirming our previous argument that the re-
dundancy level is not a discriminating metric that can differ-
entiate well between system designs of different layouts and
sensor combinations. The and follow a sim-
ilar trend, but the exhibits a much more pronounced pat-
tern of change between different instances than be-
cause focuses on the situations when some sensors fail,
while gives more weight to the situation where all
sensors are working. There are also a few pairs of instances in
Fig. 3 where the and trends do not match. For
example, consider instances # 10 and # 11. Clearly, the for
instance # 11 is greater, but the of # 10 is greater.
This highlights the fact that a more reliable system is not nec-
essarily more robust, i.e., it may not continue to be the most
reliable system after a sensor has failed.
The surveillance system displayed in Fig. 1 corresponds to

instance # 1, which according to Fig. 3 is among the systems
of relatively low values. Instance # 5, on the other hand,
has the highest among the sixteen instances (0.89 in #
5 versus 0.69 in # 1). So we display in Fig. 4 the surveillance
system layout as well as the redundancy level associated with
each surveillance point in instance # 5. The sensor locations
in this system are the same as those in instance # 1 because,
once the sensor towers were built, it is costly to relocate them.
But people can change sensor installations on each tower. In-
stance # 5 does have different sensor installations at a number
of sensor towers. Instance # 5 also has two more sensors, for
which people selected more capable sensors with longer range
and lower failure rates. The different design made a remark-
able difference. Looking at the redundancy level at individual
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Fig. 5. Impact of individual sensors on the system’s fault tolerance capability.

surveillance points, instance # 5 has fewer points whose
are 1, and more points whose are 4 or 5. This in the end
translates to a more robust system overall.
We also analyze the impact of individual sensors on the

system’s fault tolerance capability. We choose instance # 12,
and observe the ’s change upon removing one sensor at
a time. With 40 sensors in the original system, .
Fig. 5 shows the decrease in after sensor reduction,
which is “old —new .” Together with this change
in is the value associated with each sensor. We observe
that some sensors hardly reduce at all, while some other
sensors can reduce by as much as 0.10 (that is, 15% of the
original ). This result echoes our arguments surrounding
the two lemmas, i.e., some sensors matter, and some others do
not. The figure also shows a strong positive correlation between
the index with the magnitude of reduction in , as we
indicated before.

VI. CONCLUDING REMARKS

We believe that the main contribution of this paper is two-
fold: (a) we propose a new fault tolerance capability measure
for surveillance sensor systems, and present an efficient algo-
rithm to compute it for practical applications; and (b) although
the concept of reliability is not new, we present a specific defini-
tion of for surveillance sensor systems, and address
its computation issue together with that for . We advocate
the use of the measure as the chief metric quantifying the
robustness of surveillance systems because of its ability to em-
phasize the system’s response in the presence of sensor failures.
What we did not do in this paper is optimize a surveillance

system for the highest possible . That objective is defi-
nitely worthy, but doing so warrants a separate effort of research.
When attempting to optimize the robustness of a surveillance
system, we believe the proposed measure, rather than the
redundancy or reliability measures, should be used as the perfor-
mance metric, due to its articulating reflection of the robustness
change in systems. Regardless of which measure is used in an
optimization, the fast computation algorithm for the measures
devised in this paper is helpful.

A byproduct of our research is the index, originally intro-
duced in [2], and its use in ranking sensors’ capability. A simple
rule of thumb in making a system more robust is to make a ca-
pable sensor more reliable, or pair a capable sensor with another
equally capable sensor.

APPENDIX

Proof of Lemma 3: According to Theorem 1 in [2], if
, then

and

Also, because
• the sensors in are statistically independent,
• , and
• ,

we have

Hence, , again from Theorem 1 in [2].
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Alternatively, if , then

and

Similar to the case where , we can show
that

which leads to .
To show the misclassification cost does not change, we first

present an alternative expression of (6). It is noted in [2] that, for
given , the false alarm cost is incurred only if , and
the misdetection cost is incurred only if . As such,

(8)

Using the notation of and , we can have

while on the other hand,

(9)

From the previous steps of proving this Lemma, we can also
have the following (trying either
, or ).

This concludes the proof.

Proof of Lemma 4: In the discussion leading to the lemma,
we have already shown that, if , then

and . So what remains to be shown is

that .
Given that and , simplifies as

Next, we want to show that the term inside the bracket is no
greater than the corresponding term in (9). To see this, consider

To see the inequality, simply try either , or
. The equality follows by using the same trick as in the proof
of Lemma 3 (recall the statistical independence assumption re-
garding sensors).
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