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Abstract: Strengthening the United States’ ability to prevent adversaries from smuggling nuclear materials into the country is a
vital and ongoing issue. The prospect of additional countries, such as Iran, obtaining the know-how and equipment to produce these
special nuclear materials in the near future underscores the need for efficient and effective inspection policies at ports and border
crossings. In addition, the reduction of defense and homeland security budgets in recent years has made it increasingly important to
accomplish the interdiction mission with fewer funds. Addressing these complications, in this article, we present a novel two-port
interdiction model. We propose using prior inspection data as a low-cost way of increasing overall interdiction performance. We
provide insights into two primary questions: first, how should a decision maker at a domestic port use detection data from the foreign
port to improve the overall detection capability? Second, what are potential limitations to the usefulness of prior inspection data—is
it possible that using prior data actually harms decision making at the domestic port? We find that a boundary curve policy (BCP)
that takes into account both foreign and domestic inspection data can provide a significant improvement in detection probability.
This BCP also proves to be surprisingly robust, even if adversaries are able to infiltrate shipments during transit. © 2013 Wiley
Periodicals, Inc. Naval Research Logistics 60: 433–448, 2013
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1. INTRODUCTION

Over the past decade, as terrorist activities have spread
throughout the world, the United States has become increas-
ingly concerned about unsecured special nuclear materials
(SNM), for example, plutonium and highly enriched uranium
(HEU). Agencies such as the Department of Homeland Secu-
rity fear that these materials may be used to build relatively
simple but effective nuclear explosive devices [21]. To pre-
vent adversaries from smuggling SNM into the U.S., the U.S.
government has not only equipped its own ports with radi-
ation detection equipment, but also helped install radiation
detection equipment at foreign countries, through a number
of global initiatives [1]. With the possibility of having radi-
ation detection data at both a foreign port and a domestic
port, this article intends to provide insights into two primary
questions: First, how should a decision maker at a domes-
tic port use detection data from the foreign port to improve
the overall detection capability? Second, what are potential
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limitations to the usefulness of prior inspection data—is it
possible that using prior data actually harms decision making
at the domestic port?

To investigate these issues, we consider a two-port,
seaborne container inspection problem. The port of origin (or
embarkation) is a foreign port, the port of entry (or debarka-
tion) is a domestic port, and in between, the containers travel
on a container ship. This transportation and inspection set-
ting is illustrated by the upper graph in Fig. 1. At each
port, the container goes through a layered inspection sys-
tem, different varieties of which have been described in the
literature [9, 10, 23]. In this article, we consider an inspec-
tion system comprised of four detection components: the
intelligence-based-automated target system (ATS), radiogra-
phy equipment (such as X-ray machines), passive radiation
detection equipment [radiation portal monitors (RPM)], and
manual inspection (namely, opening up a container and doing
item-by-item manual search). This part is illustrated in the
lower graph in Fig. 1. The details of this layered inspection
system are described in Gaukler et al. [10]. For this article to
be self-contained, we will provide a brief review of how the
single-port inspection system is modeled in Section 2.

© 2013 Wiley Periodicals, Inc.
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Figure 1. Two-port inspection network. ATS: automated target system; r: radiography; P: passive detection; M: manual inspection; S: suc-
cessful detection; L: loading to a ship, or leaving the system; HR: high risk, LR: low risk. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

As the containers go through the layered inspection sys-
tem at the foreign port, there are three pieces of detection-
related data: the ATS score, the radiography output, and the
gross radiation count from the passive detector (RPM). The
ATS score is a risk assessment of the containers based on
their manifest, documents, and other intelligence informa-
tion. Here, we will consider the situation where the radi-
ography output and the gross radiation count are shared
between the two port inspection authorities. We note that it
is not reasonable for ATS scores to be shared in this fashion
because as additional intelligence information is entered into
the system, ATS scores are continually updated throughout
the container’s or vessel’s voyage. Hence, the ATS score at
the time the container arrives at the domestic port contains
the most up-to-date, and presumbly most useful information.
Therefore, the container inspection history, or prior detection
data, which we will frequently refer to later, consists only of
the container’s radiography data and the gross radiation count
obtained at the foreign port.

Given the obvious significance of detecting illicit nuclear
materials, there has been a rich body of literature investigating
related problems. The current literature and practice, how-
ever, primarily focus on proposing and analyzing inspection
policies at a single port, using detection data obtained at the
very same port. The current research can be largely grouped
under two categories: the tactical problem, which is to find
the optimal inspection policy under delay time and/or budget
constraints [7, 9, 10, 14, 23, 24], and the strategic problem,
which is to decide the locations of inspection stations and
detectors along a long border, assuming that the inspection
policy at each station is given [6, 16, 17]. We are not aware
of any tactical problems that involve the use of container
inspection history. The strategic problem naturally involves
multiple ports/locations. But the current treatments [6,16,17]

assume that each location conducts their inspection indepen-
dently without considering the possibility of carrying over
detection data already obtained from upstream locations.

Our research focuses on a tactical problem but involves
the use of detection data at two ports. Our conjecture is that
the container inspection history is valuable and should be
used for making the final inspection decision at the domestic
port. In this article, we explore several possible ways of using
the prior detection data and evaluate their relative effective-
ness. We recommend one particular scheme which we believe
offers sensible improvement and is also robust in the presence
of possible infiltration, that is, when an adversary breaches
a container while it is in transit from the foreign port to the
domestic port.

The article unfolds as follows. Section 2 provides a brief
overview of the layered inspection system employed at each
single port. Section 3 presents the modeling details, model
formulation, and solution of the two-port inspection prob-
lem. Section 4 analyzes the proposed way of using the prior
detection data and compares its performance with a possible
alternative as well as the single-port inspection system, which
ignores the container inspection history. Section 5 studies
how the proposed method may perform in the presence of
infiltration. Finally, we conclude the article in Section 6.

2. OVERVIEW OF THE LAYERED INSPECTION
SYSTEM AT A SINGLE PORT

Figure 2 shows the container inspection practice com-
monly used at many US ports [3, 22]. A container goes
through the intelligence-based ATS screening first, and if it
is flagged as “high-risk,” it will go through a more stringent,
time-consuming manual search process. If the container is
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Figure 2. Standard version of the single port inspection with no
radiography machines. Notations follow those in Fig. 1.

deemed “low-risk,” then it will go through a passive radiation
detection step, where gross radiation particle counts (usually
gammas) are collected by a detector while the container is
in the inspection station for about 30 to 60 s. These particle
counts are used to decide whether the container needs to be
escalated to a manual search. A threshold policy is used to
make that decision, and the threshold is usually decided based
on the distribution of the background radiation, the distribu-
tion of the elevated radiation when SNM of a certain quantity
is present, and a tradeoff between the resulting probabilities
of missed detections and false alarms.

Figure 3 provides a simple illustration of how the detection
probability and false alarm probability are calculated. In the
figure, � denotes the gamma emissions stemming from the
natural background, approximated as a Normal distribution,
and � denotes the gamma emissions when SNM is present,
which includes both the SNM emission and the background
radiation. In practice, a high false alarm probability translates
to a long delay time at ports, so in the latter sections of this
paper, the criterion of false alarm is replaced by the expected
delay time.

A number of recent papers have aimed at improving this
standard version of container inspection systems. A chief
complaint about the current system, made in Gaukler et
al. [9, 10] for instance, is that the ATS scores are not reli-
able enough to identify high-risk containers, and the passive
detectors are inherently incapable of detecting the existence
of small quantities of SNM. This is a particular concern when
the SNM in question is HEU, which is not a very bright
material, that is, it emits a relatively low level of radiation.
Shielding the SNM by surrounding it with high-density mate-
rials like metals for example, further reduces the emissions
from a particular container. To help increase the detection
odds, it has been suggested to further classify the containers
according to their contents and then subject those which have
high-density materials (high-Z materials) to more stringent
manual inspection, while letting containers with low-Z mate-
rials go through the passive detector [9,10]. The rationale for
this proposed change is that containers with high-Z materials

provide a significant amount of shielding to SNM. Hence,
should such materials be hidden in the container, the con-
tainer will likely pass the passive detector with a very low
probability of being stopped. On the other hand, containers
with low-Z materials do not provide much shielding so that
there is a reasonable chance for the SNM to be detected by
passive RPM.

Such radiography technology that can obtain the Z-values
of materials inside a container does exist. Doing this usually
requires x-ray equipment, sometimes known as a Z portal
monitor [2], to scan the container. The grayness of the objects
in the returned image is proportional to the Z-value of an
object. Such systems are deployed, for example, at the San
Ysidro, CA border checkpoint [5].

Gaukler et al. [10] further propose a simple measure, called
“hardness” and denoted by hs , to characterize how hard it
would be for a given passive detector to detect SNM inside
a particular container type s (a container type here refers to
a categorization of containers that are laden with different
materials). For a given container type, the hardness measure
hs is chosen to be the misclassification error if the detection
threshold was set at the intersection point of the two prob-
ability density functions, and it corresponds to the area of
overlap between the two probability density functions; see
Area A in Fig. 4. This misclassification error is the smallest
possible among all choices of the detection threshold, had the
two probability density functions been given. It is therefore
chosen to characterize how hard (or easy) it is to detect the
presence of SNM for a given container type. A container with
a large hs is referred to as a “hard” container, whereas that
of a small hs is referred to as a “soft” container; the larger
this overlap area is, the harder the container, and the more
difficult it is for the passive detector to detect the SNM, if
there is any.

Figure 3. Detection probability, false alarm probability, and over-
lap of the probability density functions (pdf). tp is the threshold used
at the passive detection.

Naval Research Logistics DOI 10.1002/nav
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Figure 4. Determination of the hardness measure.

We can incorporate this new technology changes into the
current system by inserting a radiography step (denoted by
“R”) after the ATS but before the passive node; please see
Fig. 5 for the new system flow. This new system is labeled as
the hybrid inspection system by Gaukler et al. [10], meaning
that the decision is based on a hybrid of intelligence (via ATS)
and the container content information. In this hybrid inspec-
tion system, the two distributions in Fig. 4 are computed using
Monte Carlo N-Particle Code (MCNP) [15] simulations, a
software package developed at Los Alamos National Labo-
ratory and considered to be the de-facto industry standard for
performing nuclear transport calculations for radiation par-
ticles. Thus, once the radiographic image of the container
is obtained together with its geometry, MCNP simulates the
performance of a given passive radiation portal monitor, with
and without a particular quantity of SNM in the container. The
output from MCNP are the two distributions in Fig. 4, and it
is thus possible to compute the container hardness hs for that
particular container.

In the above description, we have used the concept of “con-
tainer type,” which was previously introduced in Gaukler et
al. [9,10]. The container type refers to a categorization of con-
tainers that are laden with different materials, and therefore,

Figure 5. Hybrid inspection system in a single port with the
radiography machines. Notations follow those in Fig. 1.

have different ability to shield any potentially existing SNM.
In principle, every single container could form its own con-
tainer type. In practice, however, containers of similar hard-
ness levels will be grouped together to form one container
type for simplicity, so that the total number of container types
will be relatively small.

Our subsequent model development in this article will
use this hybrid inspection system as a primary baseline. In
the analysis section (Section 4), we will again touch on the
implications of using prior detection data when the standard
version of the inspection system (in Fig. 2) is used in both
ports.

3. MODELING THE TWO-PORT PROBLEM

When considering a two-port inspection system, such as
the one shown in Fig. 1, the inspection decision at the for-
eign port is no different from a single-port system. What we
focus on in this article is how the new decision is made at the
domestic port, taking into account both the local (domestic)
and prior detection data.

Recall that the container inspection history includes the
radiography output and passive detector’s gross count data
obtained at the foreign port. This container inspection history
impacts the R node and P node at the domestic port. To reflect
that, we use the notation R(F,D) and P(F,D), respectively, to
make it explicit that the decisions associated with the two
nodes are now a function of the data from both ports, where
“F” refers to the foreign port information and “D” refers to
the domestic port information. We can therefore simplify the
two-port network by concentrating on the domestic port only,
using the above notation to indicate the carrying-over of con-
tainer inspection history (see Fig. 6); doing this differentiates
the inspection process associated with this layout from a pure
single-port circumstance (in Fig. 5).

3.1. Modeling Passive Detection

We first describe the passive detection stage, because the
decision at the radiography stage is based on the perceived
performance of passive detection.

Figure 6. Inspection process at the domestic port with the histor-
ical detection data carried over.
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In the nuclear engineering literature (for example, Fetter
et al. [8]), a normal distribution (where the variance is set
equal to the mean) is often used to approximate the Poisson
distribution of particle incidence on a detector. We follow this
convention here for simplicity as well. Consider a container
type s, and let Xd

s and X
f
s denote the normal random variables

that describe, respectively, the gross particle counts obtained
at the domestic port detector and the foreign port detector.
In the presence of SNM, the means of Xd

s and X
f
s are rep-

resented by νd
s and ν

f
s , respectively, whereas in the absence

of SNM, the corresponding means are represented by μd
s and

μ
f
s , respectively. Naturally, νd

s > μd
s and ν

f
s > μ

f
s .

Given the two gross particle count random variables for
the two ports, the random vector Xs = [Xd

s X
f
s ]′ follows

a bivariate normal distribution. When SNM is present, the
mean vector is νs = [νd

s ν
f
s ]′ and the covariance matrix is

�1s =
[
νd

s Cov(Xd
s , Xf

s )

Cov(Xd
s , Xf

s ) ν
f
s

]
,

and the corresponding pdf is:

f1s(xs) = 1

2π |�1s |1/2 e− 1
2 (xs−νs )

′�−1
1s (xs−νs ), (1)

where the subscript 1 is used to indicate the presence of
SNM and xs = [xd

s x
f
s ]′ denotes a realization of the ran-

dom vector Xs . When SNM is absent, the mean vector is
μs = [μd

s μ
f
s ]′ and the covariance matrix is

�2s =
[
μd

s Cov(Xd
s , Xf

s )

Cov(Xd
s , Xf

s ) μ
f
s

]
,

and the corresponding pdf is:

f2s(xs) = 1

2π |�2s |1/2 e− 1
2 (xs−μs )

′�−1
2s (xs−μs ), (2)

where the subscript 2 indicates the absence of SNM.
At the passive detection stage, the decision is to classify

a particular container type to be either regular or suspicious,
where a suspicious container will be further investigated by
more stringent manual inspection. For the single-port case, as
illustrated in Fig. 3, this decision is made by implementing
a single-value threshold (tp in Fig. 3) achieving a sensible
tradeoff between the false alarm and missed detection proba-
bilities. The same philosophy applies to the two-port problem,
except that we now have a two-dimensional (2D) decision
space. Consequently, a decision boundary curve, rather than
a single value, is sought to split the decision space into two
regions R1 and R2, such that depending on which region a pair
of observed gross particle counts falls into, a proper disposi-
tion of the corresponding container can be reached; please see

Figure 7. An arbitrary decision boundary in a 2D decision space.
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

Fig. 7 for illustration, where the thick-lined curve is a decision
boundary splitting the decision space. Note that this particular
curve is arbitrarily drawn for the sake of illustration.

For simplicity, we will assume that Cov(Xd
s , Xf

s ) = 0
in the above covariance matrices. Note that the two detec-
tion processes happen independently: hence when SNM is
absent, the background radiation is uncorrelated. When SNM
is present and the SNM signal is small, the detection processes
act like two random draws from a population of large vari-
ance, leading naturally to a small correlation between them.
In our numerical example (described in Section 4.1), the
correlation between measurements at foreign and domestic
ports for a “hard” container type (s = 3), is 0.18, justifying
the independence assumption. For “softer” container types
with larger SNM signal, correlations are higher, as expected.
However, due to the max-min formulation of the inspection
policies (see Section 3.5), the hard container types determine
the detection probability and therefore the inspection policy.
Thus, we assume uncorrelatedness for simplicity.

3.2. Rectangular Boundary Curve Policy: Considering
Two Detection Events Separately

A straightforward way of classifying a container type into
“regular” versus “suspicious” is to set individual thresh-
olds for each detector separately. Denote by qd

s and q
f
s ,

respectively, individual thresholds for each detector, such
that if a container type has either one of its gross parti-
cle counts greater than the corresponding threshold, namely
either xd

s ≥ qd
s or x

f
s ≥ q

f
s , then the container type is

deemed “suspicious”; otherwise, it is treated as “regular.”
The resulting decision boundary is of a rectangular shape;
see Fig. 8.

Same as in the single-port case, the optimal decision
involves finding the best trade off between the missed detec-
tion and false alarm probabilities. For the case of a rectangular

Naval Research Logistics DOI 10.1002/nav
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Figure 8. Rectangular decision boundary. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.
com.]

decision boundary curve, the missed detection probability can
be computed as:

∫ qd
s

0

∫ q
f
s

0
f1s(xs) dxd

s dxf
s , (3)

when SNM is present.
The false alarm probability is calculated as:

1 −
∫ qd

s

0

∫ q
f
s

0
f2s(xs) dxd

s dxf
s , (4)

when SNM is absent.
In Section 3.5, we present an optimization formulation

where these two measures are incorporated, and its solution
yields the optimal rectangular decision boundary; we call the
resulting inspection policy the rectangular boundary curve
policy (RBCP).

3.3. Proposed BCP: Considering Two Detection Events
Simultaneously

Using the rectangular decision, boundary curve is the same
as combining the two single-port decisions in a sequential
fashion. Doing this, however, may lead to counterintuitive
and suboptimal decision-making. Consider Point A in Fig. 8,
which represents a container having relatively high-gross par-
ticle counts at both detectors. This should have raised enough
suspicion on this particular container. But because Point A is
still within the rectangular decision boundary, the container
will be deemed as “regular.” Consider another Point B, corre-
sponding to a container for which the detector at the foreign
port returns a gross particle count slightly larger than that of
A, while the domestic one returns a very small count. Yet, the
container represented by B would have been deemed more

suspicious than that of A. This simple example demonstrates a
major drawback of the sequential decision making practice—
it allows too much margin at the right-top area close to the
decision boundary, where common sense indicates that more
stringent inspection is warranted.

Given that we use the normal approximation to model the
bivariate detection outcome xs , we propose that a sensible
decision boundary is to minimize the expected cost of mis-
classification (ECM) [11], a criterion widely used in statistics
and decision theory. The minimized ECM naturally leads to
the optimal trade-off between missed detections and false
alarms associated with the detection process.

The ECM is defined as

ECM = c(2|1)P (2|1)p1 + c(1|2)P (1|2)p2, (5)

where c(2|1) and P(2|1) are the cost and the probability of
missed detections, p1 is the prior probability that SNM is
present in a container, c(1|2) and P(1|2) are the cost and the
probability of false alarms, and p2 is the prior probability of
SNM is absent in the container; p1 + p2 = 1. Johnson and
Wichern [11] provide the following conditions that minimize
the ECM, leading to the optimal splitting between regions R1

and R2:

R1 :
f1s(xs)

f2s(xs)
≥

(
c(1|2)

c(2|1)

)
·
(

p2

p1

)

i.e.,

(
density

ratio

)
≥

(
cost
ratio

)
·
⎛
⎝ prior

probability
ratio

⎞
⎠ , (6)

and R2 is the complement of region R1.
Using different cost ratios and prior probabilities, one can

generate a series of decision boundaries, parallel to each

Figure 9. Proposed decision boundary curve. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.
com.]
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other, as shown in Fig. 9. The shape of each of these decision
boundaries is elliptic, distinctively different from the rectan-
gular ones. Like the RBCP, the ultimate inspection policy
based on this new decision boundary will be obtained by solv-
ing an optimization problem, to be introduced in Section 3.5;
we will refer to the resulting optimal decision boundary as
the boundary curve policy (BCP).

One difficulty this proposed decision boundary brings is
that the minimized ECM depends on the choices of misclas-
sification costs and prior probabilities of events, which are in
reality difficult to decide. But inspecting the above inequali-
ties, one will notice that the right hand sides, namely the mul-
tiplication of the cost ratio and the prior probability ratio, do
not depend on the actual reading of the detectors, manifested
in xs . As such, we can treat the multiplication of the ratios as
a constant, but unknown, quantity. Denote by τs the natural

logarithm of this constant, that is, τs = ln
[(

c(1|2)

c(2|1)

)
·
(

p2

p1

)]
.

We then include this τs as one of the decision variables in the
optimization problem to be presented in Section 3.5.

Next, we simplify the left-hand side in the above inequal-
ities, which is the likelihood ratio between two pdf’s. Let rs

be the natural logarithm of this likelihood ratio, namely:

rs(xs) = ln

[
f1s(xs)

f2s(xs)

]

= −1

2
x′

s

(
�−1

1s − �−1
2s

)
xs +(

ν ′
s�

−1
1s − μ′

s�
−1
2

)
xs − k,

(7)

where

k = 1

2
ln

( |�1s |
|�2s |

)
+ 1

2

(
ν ′

s�
−1
1s νs − μs

′�−1
2s μs

)
= 1

2
(ln(νd

s νf
s ) − ln(μd

s μ
f
s )) + 1

2
(νd

s + νf
s − μd

s − μf
s ).

The resulting BCP is as follows. Given a new pair of gross
particle counts xs for container type s, if the corresponding
rs ≥ τs , then this container type is classified as “suspicious”;
otherwise, it is classified as “regular.”

The missed detection probability associated with the BCP
can be computed as:∫

rs<τs

f1s(xs) dxs = 1 −
∫

rs≥τs

f1s(xs) dxs

= 1 − P(rs(Xs) ≥ τs |Xs ∼ N (νs , �1s)).
(8)

The false alarm rate of the BCP is:∫
rs≥τs

f2s(xs) dxs = P(rs(Xs) ≥ τs |Xs ∼ N (μs , �2s)).

(9)

To obtain the above two probabilities, the conditional tail
probability P(rs(Xs) ≥ τs |Xs) will need to be derived. In the
following, we show how to derive the conditional tail proba-
bility when Xs ∼ N (νs , �1s), that is, when SNM is present.
The tail probability when Xs ∼ N (μs , �2s) can be obtained
likewise.

We introduce a new random variable Ys , defined as: Ys :=
− 1

2 X′
s(�

−1
1s − �−1

2s )Xs + (ν ′
s�

−1
1s − μ′

s�
−1
2s )Xs . Then, the

conditional tail probability is:

P(rs(Xs) ≥ τs |Xs ∼ N (νs , �1s))

= P(Ys − k ≥ τs |Xs ∼ N (νs , �1s))

= P(Ys ≥ τs + k|Xs ∼ N (νs , �1s)). (10)

Noticing ν ′
s�

−1
1s − μ′

s�
−1
2s = [νd

s ν
f
s ] ·

[
1
νd
s

0

0 1
ν

f
s

]
−

[μd
s μ

f
s ] ·

[
1

μd
s

0

0 1
μ

f
s

]
= [0 0], we can simplify Ys to:

Ys = −1

2
X′

s(�
−1
1s − �−1

2s )Xs

= 1

2

(
1

μd
s

− 1

νd
s

)
(Xd

s )2 + 1

2

(
1

μ
f
s

− 1

ν
f
s

)
(Xf

s )2. (11)

The above equation shows that Ys is a quadratic function of
the bivariate normal random variables in Xs , suggesting that
Ys follows a generalized χ2 distribution. This is expected

because given Xs ∼ N (νs , �1s), we know that (Xi
s )

2

νi
s

, for
i = d or f , follows a noncentral chi-square distribution
χ2

ωi
s
(δi

s), with degree of freedom ωi
s = 1 and noncentral

parameter δi
s = (νi

s )
2

νi
s

= νi
s [12]. So Ys is basically the sum-

mation of two noncentral χ2 variables with their respective
coefficients. As such, we can obtain the following:

Ys = 1

2

(
1

μd
s

− 1

νd
s

)
(Xd

s )2 + 1

2

(
1

μ
f
s

− 1

ν
f
s

)
(Xf

s )2

∼ λd
s χ2

ωd
s
(δd

s ) + λf
s χ2

ω
f
s

(δf
s ) (12)

where λi
s = 1

2 · ( 1
μi

s
− 1

νi
s
) · νi

s , for i = d or f .
Likewise, we can compute the tail probability P(rs(Xs) ≥

τs |Xs ∼ N (μs , �2s)) by using two similar noncentral χ2

distributions. The difference is that when Xs ∼ N (μs , �2s),
Ys ∼ λd

s χ2
ωd

s
(δd

s ) + λ
f
s χ2

ω
f
s

(δ
f
s ), where δi

s = μi
s and λi

s =
1
2 · ( 1

μi
s
− 1

νi
s
) · μi

s , for i = d or f .

For computing the above noncentral χ2 distributions, we
use the approximation developed by Liu et al. [12], which
provides superior accuracy and performance compared to
Pearson’s approximation method [18].

Naval Research Logistics DOI 10.1002/nav
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3.4. Hardness Measure using Prior Radiography
Information

In the two-port problem, the hardness of a container type
at the domestic port is determined based on the radiography
information obtained at both foreign and domestic ports.

The hardness of a container type is still defined as the
smallest misclassification error, but now under two bivariate
normal distributions. According to the results from Johnson
and Wichern [11] regarding the ECM, the misclassification
error can be computed when the detection threshold is set
to τs = 0 [or equivalently, the right-hand side of Inequality
(6) equals 1]. The decision boundary curve corresponding to
τs = 0 is the curve on which the two bivariate pdfs intersect
with each other.

We again use the MCNP software package to simulate a
given passive detection process. The difference is that we
now use the radiography information of the same container
type obtained at both ports. This is equivalent to simulating
the two bivariate normal density functions, as illustrated in
the previous subsection (Fig. 9), with and without SNM in
the container. Let the resulting simulated pdfs be denoted by
f̃1s (for SNM present) and f̃2s (for SNM absent). Then the
new hardness hs(F , D) at the domestic port is given by:

hs(F , D) = missed detection rate + false alarm rate

=
∫

rs<0
f̃1s(xs) dxs +

∫
rs≥0

f̃2s(xs) dxs (13)

3.5. Optimization Problem

The setup of the optimization problem that solves for
the decision variables is similar to the formulations used
in Gaukler et al. [9, 10]. We briefly summarize the major
considerations.

We use a simulation (MCNP) to find the appropriate distri-
butions of gross particle counts for containers with and with-
out SNM. We then evaluate the performance of the combined
inspection system by solving a nonlinear optimization prob-
lem using a genetic algorithm. Details of the optimization
problem setup are provided in Section 4.1.

The objective is to maximize the worst-case detection
probability (DP) among all possible container types (a max-
min problem), subject to two constraints. The first constraint
is the expected delay time (DT), which is the real-life con-
sequence of having false alarms. The delay time can be
computed through modeling the queueing network associ-
ated with the inspection processes, and is a function of the
arrival rates and false alarm probabilities at each node. This
queueing network model has been developed and described
in detail in earlier research; for details, please refer to Gaukler
et al. [9, 10]. The second constraint is on the utilization rate
at the manual node, denoted by ρM . The second constraint

is motivated by the observation that any inspection policy
attempts to use the manual inspection as much as possible
for obvious reasons. Yet the manual inspection is the most
time-consuming step and takes significantly longer to com-
plete than any other inspection steps. As a consequence, the
queueing system is very sensitive to even the smallest unantic-
ipated changes to the arrival stream and could easily become
unstable. Putting the constraint on ρM helps obtain a more
robust and practicable system.

In this article, we optimize inspection policies under three
settings: the single-port policy (SP) that ignores the container
inspection history, the two-port policy that uses the rectangu-
lar decision boundary (RBCP), and the two-port policy that is
derived using the expected misclassification cost (BCP). SP
and RBCP serve as the alternatives to the BCP. In Section 4,
we will demonstrate the merit of BCP by comparing its
performance with that of SP and RBCP.

The three inspection policies use a similar set of decision
variables, which include:

• the threshold(s) at the passive detection node. For
BCP, τs is the threshold; for RBCP, the passive detec-
tion has two thresholds qd

s and q
f
s ; for SP, the passive

detection threshold is represented by γs .
• the threshold tR at the radiography node; and
• a randomization factor a, 0 < a < 1.

The randomization factor works as follows: if the hardness
measure for container type s is higher than the prescribed
threshold tR , then a randomly selected proportion a of con-
tainer type s is elevated to manual inspection. If a container is
not selected for manual inspection, it will be sent to passive
inspection. This randomization factor a was introduced in
Gaukler et al. [10] to produce a smooth operation of inspec-
tions when the number of container types is relatively small.
Consider the situation when there are only four container
types. As a result, tR can only take on five discrete values.
Without the randomization factor a, tR would be set at 1
(the maximum possible value) whenever the volume of the
hardest container types is too large for the manual inspection
stage to handle. Introducing the randomization factor a gives
the system the flexibility to escalate a subset of containers
whose hs ≥ tR , the volume of which can be handled within
the capacity restriction of the manual inspection stage.

With the above thoughts and notations, we present the
optimization formulation below. For the two-port problem
with the proposed elliptic decision boundary (BCP), the
optimization formulation is:

max
tR ,a,τs

min
s

DPBCP
s

s.t . DTBCP ≤ T0,

ρBCP
M ≤ ρ0, (14)
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where T0 is the limit set for the system delay time, and ρ0 is
the utilization limit for the manual inspection.

For the single-port problem (SP), the optimization formu-
lation is:

max
tR ,a,γs

min
s

DPSP
s

s.t . DTSP ≤ T0,

ρSP
M ≤ ρ0. (15)

For the two-port problem with the rectangular decision
boundary curve (RBCP), the formulation is:

max
tR ,a,qd

s ,qf
s

min
s

DPRBCP
s

s.t . DTRBCP ≤ T0, ρRBCP
M ≤ ρ0. (16)

In the above optimization problems, 0 < ρ0 < 1 is a
fixed constant chosen a priori. Each optimization problem
is solved sequentially for different values of delay time T0,
using a genetic algorithm [13]. Ultimately, this sequence of
optimizations produces for each inspection process an effi-
cient frontier between the detection probability and the delay
time. We use the efficient frontier to characterize the per-
formance of individual inspection policies. Which decision
variable setting to choose out of an efficient frontier in an
actual implementation is left for a policy maker to decide.

4. ANALYSIS OF INSPECTION SYSTEMS

In this section, we conduct a numerical analysis of the
afore-mentioned three inspection policies and compare their
performance. First, we discuss the setup of the numerical
study. Then, we present the performance comparison among
all three policies. Last, we discuss additional implications
if all three policies are implemented in the standard version
of the inspection systems, which does not use radiography
equipment (i.e., the inspection system shown in Fig. 2).

4.1. Setup of the Numerical Study

In this study, without loss of generality, we assume that the
two ports involved use the same detection equipment and have
the same level of background radiation, absent any SNM in a
container. We set the arrival rate of containers at the domestic
port as 90 per h, the same as in Wein et al. [23]. On arrival,
the containers first go through the ATS step, which does not
consume any time in the queueing system because the ATS
scores can be assigned before a container ship arrives at the
port. We assume that the percentage of “high-risk” containers
that is directly escalated to manual inspection is 2%.

The next step is the radiography stage. We assume there are
three radiography machines at each port, each of which takes

Table 1. The port operation parameters.

Parameter Description Value

λ Arrival rate of container 90/h
δ Percentage of containers elevated to

manual inspection by ATS
2%

μR Service rate at radiography node
(R-node)

40/h

mR Number of servers at R-node 3
μP Service rate at passive detection

node (P-node)
80/h

mP Number of servers at P-node 2
μM Service rate at manual detection

node (M-node)
1/h

mM Number of servers at M-node 6
ρ0 Maximum utilization at M-node 0.95

an average scan time of 90 s. In literature, the imaging and
analysis time of stationary X-ray inspection ranges from 75 s
to 90 s [20]. We model two passive detectors at each port, each
of which takes an average scan time of 45 s. Those containers
that are flagged by either the ATS, the radiography stage, or
a passive detector, will go through manual inspection, which
is assumed to take an average of 1 h. We assume there are
six manual inspection teams that can work in parallel. The
inspection time of either the radiography machines, the pas-
sive detectors, or the manual inspection stage is modeled as
following an exponential distribution. We set the maximum
allowable capacity utilization for the manual inspection stage
to be ρ0 = 0.95; the same value is used in all three inspection
models.

We further assume that when a container with SNM is man-
ually inspected, the probability that the SNM is discovered
is one. In reality, it is certainly possible that a manual team
could miss the SNM (see the story in Scientific American [4]).
When the detection probability at the manual inspection is
less than one, then all the detection probabilities and efficient
frontiers that we report need to be scaled by a factor equal-
ing the manual detection probability, but the general insights
arrived at in this study will remain.

The choices of the above parameters are consistent with
those used in previous studies, for example in Wein et al. [23]
and Gaukler et al. [9,10]. To the best of our knowledge, these
parameter choices reflect a reasonable setup and operation
of the inspection steps at a port. The set of port operation
parameters is summarized in Table 1.

Under the advice of our nuclear engineering collabora-
tors, we model four container types in this analysis. The first
container type consists of only low Z-value materials, whose
Z-value is less than 10 (e.g., textiles, plastic, wood). The
contents of the second container type is a mixture of medium
Z-value materials, whose Z-value is between 10 and 20 (e.g.,
aluminum), and low Z-value materials. The third container
type has both high Z-value materials, whose Z-value is greater
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than 20 (e.g., steel), and low Z-value materials. The fourth
and last container type is laden with naturally occurring radia-
tive materials (NORM), such as fertilizer. To account for the
effect of NORM, the background emission level of the fourth
container type is set to be five times that of the first three
container types.

The four container types do not arrive at a port with equal
proportion. We estimate the proportion of each container
type, denoted by ps , based on a 2007 listing of the top 100
U.S. container importers and the industry (and thus cargo)
segments represented by these top 100 importers [19]. It turns
out that there are relatively fewer hard containers than there
are soft containers. For all four container types, MCNP is used
to obtain the background radiation particle counts as well as
the particle counts when SNM is present. Here, our goal is to
detect the presence of a solid ball of HEU (40% U-235 and
60% U-238), with one centimeter of lead shielding around it.
This shielded SNM is strategically located in the center of the
highest-Z-value area of the container. Once MCNP obtains
the two pdfs, the hardness associated with each container

Table 2. Container information, simulated gross counts, and
hardness.

s ps μd
s μ

f
s νd

s ν
f
s hd

s h
f
s hs(F , D)

1 0.60 10 10 29.52 29.52 0.022 0.022 0.001
2 0.30 10 10 15.75 15.75 0.416 0.416 0.247
3 0.08 10 10 12.10 12.10 0.749 0.749 0.649
4 0.02 50 50 52.06 52.06 0.888 0.888 0.842

type can be computed. Table 2 lists the container types,
their proportion in the arrival stream, the gross particle count
means obtained from the MCNP simulations, and the hard-
ness measures. In this table, we report the hardness based on
information obtained only at the foreign or domestic ports
(hf

s and hd
s , respectively), as well as the hardness based on

information obtained at both ports (hs(F , D)).
Using the data in the above table, we generate the rec-

tangular decision boundaries and the proposed elliptic deci-
sion boundaries for each container type; please see Fig. 10.
Multiple decision boundaries are plotted, corresponding

Figure 10. Decision boundary curves for each container type. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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to different tradeoffs between missed detections and false
alarms. Obviously, container type 4 is the hardest container
as the overlap between the two pdf is enormous. According
to Table 2, this overlap translates quantitatively to a hardness
of 0.842.

4.2. System Comparison

We use the optimization formulations in Section 3.5 to
solve for the efficient frontiers associated with the three
inspection policies (i.e., SP, RBCP, and BCP). The resulting
efficient frontiers are presented in Fig. 11.

The efficient frontier of BCP dominates those of RBCP and
SP. The difference in terms of detection probability between
BCP and SP for a large portion of delay time is about 10
percentage points. Considering that the SP has a detection
probability less than 0.6, the 10 percentage points translates
to an improvement of more than 17% . This outcome supports
our earlier conjecture that using the container inspection his-
tory enhances the overall detection capability. RBCP also
improves over SP but not as much as BCP. This echoes
our argument that using the detection data sequentially for
decision-making (as in RBCP) is not as good as using them
simultaneously.

The above analysis is conducted based on the assumption
that radiography equipment is available at both ports. We
acknowledge that in current practice, the standard version of
the inspection system without radiography capability, as out-
lined in Fig. 2, is still much more common than the hybrid
inspection system with radiography equipment. Hence we

Figure 11. Efficient frontiers of the three inspection policies
when radiography machines are available at both ports. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Figure 12. Efficient frontiers of the three inspection policies
when radiography machines are not available at either port. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

are interested in seeing what difference, if any, prior inspec-
tion data may make on the standard version of the inspection
system.

The absence of radiography information eliminates the
possibility of classifying containers into different hardness
types. We will have to treat all the containers as coming
from one pooled population, a mixture of the distributions
of distinct container types, weighted by their respective pro-
portions ps . The resulting efficient frontiers of the same three
inspection policies are shown in Fig. 12. Although BCP still
outperforms RBCP and SP, the benefit diminishes dramati-
cally without the radiography information. On top of that, all
policies attain significantly reduced detection probabilities:
for instance, at a delay time of 7 min, the detection prob-
ability of SP decreases from around 0.6 with radiography
information to less than 0.4 without radiography information.

This result is not really surprising, because without radi-
ography information or the classification of container types,
the inspection system loses much if its power of discrimi-
nation and is is less effective in allocating its most precious
resources. With all containers pooled together, the variabil-
ity of the gross particle counts increases significantly. The
impact of the extra detection data from the previous port
is inevitably dwarfed by the presence of a large variability.
Thus, this analysis also supports the inclusion of the radiog-
raphy machines in the detection process and the use of the
container type as an informative proxy to focus the limited
resources on those containers that need most of the atten-
tion, an argument initially made by Gaukler et al. [9] for the
single-port case.
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5. TWO-PORT PROBLEM CONSIDERING THE
POSSIBILITY OF INFILTRATION

The analysis presented in Section 4 assumes that the con-
tents in the containers are not altered en route from one port
to the other. In this case, it intuitively makes sense to use the
prior detection data because for a container in which SNM
is present, its two gross particle counts are likely both large,
while for a container without SNM, its two counts are likely
both small. This pattern explains the intuition why BCP and
RBCP perform better than SP, because another reading of a
large gross particle count helps reinforce the belief that SNM
is present.

But what if the contents in a container may be altered dur-
ing transit? More specifically, we want to consider the case
where a container is infiltrated, that is, a certain amount of
SNM is placed and hidden in a non-SNM container some
time after the container is loaded onto the ship at the foreign
port, but before it starts the inspection process at the domestic
port. Would considering the prior detection data mislead us
to the degree that we would be better off completely ignoring
the inspection history?

We believe that the answer depends on the likelihood of
infiltration. We presented the question of how likely it might
be that an adversary could infiltrate a container during tran-
sit to a group of colleagues who work on port security and
container inspection problems. Although a majority of the
respondents believed that infiltrating a container during tran-
sit is unlikely for the reason that doing so is not as easy as
generally imagined, some others did believe that this could
possibly be done if a smart adversary was determined to
do so. The existing port security literature is silent on this
aspect, possibly because there have never been any recorded
incidents of this type of infiltration in the past. This lack of
records to some degree supports the claim that the likelihood
of infiltration is small.

There are two possible ways that SNM may get into a con-
tainer: either before the container is loaded onto the ship at
the foreign port or in between the two ports (“during transit”);
see Fig. 13.

To represent a broad spectrum of possibilities, we choose
to model infiltration using a simple probability parameter.
Denote by PI the likelihood of infiltration during transit, and
1 − PI the likelihood of SNM getting into a container before
embarkation at the foreign port. We here only consider the
possibility that an adversary puts SNM into a non-SNM con-
tainer rather than someone taking SNM out of a container.
We also assume that the content change is small enough so
that the container type remains the same.

We need to slightly modify the optimization formulation
presented earlier to incorporate the likelihood of infiltration.
Because infiltration only happens to a certain container, it
will not change the false alarm probability. Consequently, the
expected delay time is the same with or without infiltration.

Figure 13. Possibility of infiltration. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

Existence of infiltration does impact the detection proba-
bility of an inspection system, however. We use DPBCP,I

s and
DPBCP,nI

s , respectively, to present the detection probability
of BCP for container type s with and without infiltration.
The final detection probability of the inspection system is
weighted by the infiltration probability, PI .

The optimization problem for BCP considering the possi-
bility of infiltration is then described as:

max
tR ,a,τs

min
s

[DPBCP,I
s · PI + DPBCP,nI

s · (1 − PI )]
s.t . DTBCP ≤ T0 (17)

ρBCP
M ≤ ρ0 (18)

where ρ0 is still chosen as 0.95.
The same change can be done to the optimization for

RBCP; for brevity, we omit the detailed expression. Because
SP does not use the container inspection history in the first
place, its detection outcome will not change in the pres-
ence of infiltration, and we need not modify the previous
SP formulation.

The efficient frontiers from the solution of the revised
optimization formulations are presented in Fig. 14. Fig. 14a
shows the efficient frontiers for the same parameter settings
as in Fig. 11. We can observe that when the probability of
infiltration increases, the benefit of using prior inspection
information diminishes, as one might expect. When infiltra-
tion becomes a certainty (Fig. 14f), it is clearly better not to
use prior detection data. Interestingly, and somewhat unex-
pectedly though, the results also show that the benefit of using
prior detection data in BCP does not go away until the prob-
ability of infiltration is PI > 0.5. We consider this a pleasant
surprise because it suggests a good degree of robustness of
the proposed BCP, especially considering that many experts
we asked believe that PI is very small, if not next to nothing.

In accordance with our discussion in Section 4.2, we
also investigate what happens if the hybrid inspection sys-
tem with radiography is replaced with the standard version
without radiography. It turns out that the insight garnered
from Section 4.2 remains: without radiography, the differ-
ence among the inspection policies with and without prior
detection information becomes smaller, and the detection
probabilities of all the policies decrease considerably; please
see Fig. 15 for the efficient frontiers of the three policies. This
result reflects the nonideal state of the current practice of port
security.
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Figure 14. Efficient frontiers of the three inspection policies under different infiltration probability PI when radiography machines are
available at both ports. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 15. Efficient frontiers of the three inspection policies under different infiltration probability PI when radiography machines are not
available at either port. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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6. CONCLUDING REMARKS

The United States are faced with the grave threat of
adversaries smuggling SNM into the country for nefarious
purposes. Indeed, once an adversary obtains SNM such as
weapons-grade enriched uranium, the step to assembling a
nuclear device is a comparatively simple one. The recent
development of enrichment facilities in Iran is particularly
worrisome, because basic enrichment capability for power
generation purposes can easily be extended to weapons grade
enrichment: for centrifuge-type equipment as used in Iran,
the enrichment percentage is largely a function of centrifuge
runtime.

To thwart SNM smuggling efforts, efficient and effective
inspection policies at ports and border crossings are neces-
sary. In this article, we propose using prior inspection data
as a low-cost way of increasing overall interdiction perfor-
mance. First, under the assumption that prior inspection data
are reliable, we investigate how a decision maker at a domes-
tic port should use detection data from a foreign port to
improve the overall detection capability. Then, we discuss the
impact of prior inspection data that is potentially unreliable.
Prior inspection data, for example, is unreliable if an adver-
sary infiltrates a container downstream of the first inspection.
Thus, there is the danger that prior data may harm decision
making at the domestic port.

To investigate and quantify these issues, we consider a two-
port, seaborne container inspection problem. Our research
analyzes activities at the domestic port only, but involves the
use of detection data from both foreign and domestic ports.
This unifying approach is, to the best of our knowledge, novel
and unique in the port security literature. Current work either
focuses on a single port without taking into account prior
information, or it focuses on multiple interdiction locations,
but assumes that there is no sharing of data or information.
Thus, our work breaks new ground here.

We derive several inspection policies that make use of prior
detection data. In particular, we derive a BCP that is based on
the concept of minimizing the ECM. We show that this con-
tainer inspection history is valuable when used in conjunction
with our control policy, and we argue that such information
should be used for making the final inspection decision at
the domestic port. Our study shows that using the BCP pol-
icy offers significant improvement in detection probablity.
In particular, we demonstrate that the BCP policy performs
best when radiography equipment is available at both ports.
However, even in the absence of radiography, BCP offers
good improvement over a SP, which does not use container
inspection history information. We also find that the BCP pol-
icy is robust in the presence of possible infiltration, that is,
when an adversary breaches a container while it is in transit
from the foreign port to the domestic port.

Thus, our work provides two important suggestions to pol-
icy makers: first, radiography equipment should be an integral

part of an inspection system; second, with or without radi-
ography equipment, information on the container inspection
history should always be used for inspection decisions. With
BCP, we provide a robust inspection policy that shows how
this prior detection data should be used, with and without radi-
ography equipment, under different expectations on container
infiltration.
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