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This study presents a Bayesian parametric model for the purpose of es-
timating the extreme load on a wind turbine. The extreme load is the highest
stress level imposed on a turbine structure that the turbine would experience
during its service lifetime. A wind turbine should be designed to resist such a
high load to avoid catastrophic structural failures. To assess the extreme load,
turbine structural responses are evaluated by conducting field measurement
campaigns or performing aeroelastic simulation studies. In general, data ob-
tained in either case are not sufficient to represent various loading responses
under all possible weather conditions. An appropriate extrapolation is neces-
sary to characterize the structural loads in a turbine’s service life. This study
devises a Bayesian spline method for this extrapolation purpose, using load
data collected in a period much shorter than a turbine’s service life. The spline
method is applied to three sets of turbine’s load response data to estimate the
corresponding extreme loads at the roots of the turbine blades. Compared
to the current industry practice, the spline method appears to provide better
extreme load assessment.

1. Introduction. A wind turbine operates under various loading conditions in
stochastic weather environments. The increasing size, weight and length of com-
ponents of utility-scale wind turbines escalate the stresses (or loads, responses)
imposed on the structure. As a result, modern wind turbines are prone to experi-
encing structural failures. Of particular interest in a wind turbine system are the
extreme events under which loads exceed a threshold, called a “nominal design
load” or “extreme load.” Upon the occurrence of a load higher than the nominal
design load, a wind turbine could experience catastrophic structural failures.

Mathematically, an extreme load is defined as an extreme quantile value in a
load distribution corresponding to a turbine’s service time of T years [Sørensen
and Nielsen (2007)]. Let y denote the maximum load, in the unit of million
Newton-meter (MN-m), during a specific time interval. Then, we define the load
exceedance probability as follows:

PT = P [y > lT ],(1.1)
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where PT is the target probability of exceeding the load level lT (in the same unit
as that of y).

In structural reliability analysis of wind turbines, people collect load response
data and arrange them in 10-minute intervals because wind speeds are considered
stationary over a 10-minute duration [Fitzwater and Winterstein (2001)]. Given
this data arrangement in wind industry, y commonly denotes the maximum load
during a 10-minute interval. The unconditional distribution of y, p(y), is called
the long-term distribution and is used to calculate P [y > lT ] in (1.1).

In (1.1), the extreme event, {y > lT }, takes place with the exceedance probabil-
ity PT . The waiting time until this event happens should be longer than, or equal to,
the service time. Therefore, a reasonable level of PT can be found in the following
way [IEC (2005), Peeringa (2003)]:

PT = 10

T × 365.25 × 24 × 60
.(1.2)

Note that PT is the reciprocal of the number of 10-minute intervals in T years. For
example, when T is 50, PT becomes 3.8 × 10−7.

Estimating the extreme load implies finding an extreme quantile lT in the 10-
minute maximum load distribution, given a target service period T , such that (1.1)
is satisfied. Wind turbines should be designed to resist the lT load level to avoid
structural failures during its desired service life.

Since loads are highly affected by wind profiles, we consider the marginal dis-
tribution of y obtained by using the distribution of y conditional on a wind profile
as follows:

p(y) =
∫

p(y|x)p(x) dx.(1.3)

Here, p(x) is the joint probability density function of wind characteristics in a
covariate vector x. The conditional distribution of y given x, p(y|x) in (1.3), is
called the short-term distribution. The long-term distribution can be computed by
integrating out wind characteristics in the short-term distribution.

The conditional distribution modeling in (1.3) is a necessary practice in the wind
industry. A turbine needs to be assessed for its ability to resist the extreme loads
under the specific wind profile at the site it will be installed. Turbine manufactur-
ers usually test a small number of representative turbines at their own testing site,
producing p(y|x). When a turbine is to be installed at a commercial wind farm,
the wind profile at the proposed installation site can be collected and substituted
into (1.3) as p(x), so that the site-specific extreme load can be assessed. With-
out the conditional distribution model, a turbine test would have to be done for
virtually every new wind farm; doing so is very costly and thus uncommon.

For in-land turbines, the wind characteristic vector x in general comprises two
elements: (1) a steady state mean of wind speed and (2) the stochastic variability of
wind speed [Bottasso, Campagnolo and Croce (2010), Manuel, Veers and Winter-
stein (2001), Ronold and Larsen (2000)]. The first element can be measured by the
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average wind speed (in the unit of meters per second, or m/s) during a 10-minute
interval, and the second element can be represented by the standard deviation of
wind speed, or the turbulence intensity, also during a 10-minute interval. Here,
turbulence intensity is defined as the standard deviation of wind speed divided by
the average wind speed for the same duration. For offshore turbines, weather char-
acteristics other than wind may be needed, such as the wave height [Agarwal and
Manuel (2008)].

In this study, we propose a new procedure to estimate the long-term extreme
load level lT for wind turbines. The novelty of the new procedure is primarily re-
garding how to model the short-term distribution p(y|x). Specially, we establish
a load distribution for y|x using spline models. As such, we label the resulting
method a Bayesian spline method for extreme loads. In the remainder of the pa-
per we first provide some background information regarding wind turbine load
responses and the data sets used in this study. In Section 3 we explain how the ex-
treme load estimation problem is currently solved. We proceed to present the de-
tails of our spline method in Section 4. In Section 5 we compare the spline method
with the method reviewed in Section 3, arguing that the spline method produces
better estimates. Finally, we end the paper with some concluding remarks in Sec-
tion 6.

2. Background and data sets. Figure 1 shows examples of mechanical loads
at different components in a turbine system. The flap-wise bending moments mea-
sure the loads at the blade roots that are perpendicular to the rotor plane, while the
edge-wise bending moments measure the loads that are parallel to the plane. Shaft-

FIG. 1. Illustration of structural loads at different components. (The illustration is modified based
on a figure originally available at WindData.)
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TABLE 1
Specifications of wind turbines in three data sets

Wind turbine model NEG-Micon/2750 Vestas V39 Nordtank 500
(Name of data set) (ILT1) (ILT2) (ILT3)

Hub height (m) 80 40 35
Rotor diameter (m) 92 39 41
Cut-in wind speed (m/s) 4 4.5 3.5
Cut-out wind speed (m/s) 25 25 25
Rated wind speed (m/s) 14 16 12
Nominal power (kW) 2750 500 500
Control system Pitch Pitch Stall
Location Alborg, Tehachapi Pass, Roskilde,

Denmark California Denmark
Terrain Coastal Bushes Coastal

and tower-bending moments measure, in two directions, the stresses on the main
shaft connected to the rotor and on the tower supporting the wind power generation
system (i.e., blades, rotor, generator etc.), respectively.

We only study in-land turbines (ILTs) in this work and use the data sets from
three ILTs located at different sites. These data sets were collected by Risø-DTU
(Technical University of Denmark) [WindData]. Table 1 summarizes the specifi-
cation of the data sets.

We would like to first explain a few terms used in the table as well as in the rest
of the paper:

• Pitch control: To avoid production of excessive electricity, turbines hold the
rotor at an approximately constant speed in high wind speeds. A pitch controlled
turbine turns its blades to regulate its rotor speed.

• Stall control: This serves the same purpose as in pitch control. But the blade an-
gles do not adjust during operation. Instead the blades are designed and shaped
to increasingly stall the blade’s angle of attack with the wind to protect the tur-
bine from excessive wind speeds.

• Cut-in wind speed: This is the lowest wind speed at a hub height at which a wind
turbine starts to produce power.

• Cut-out wind speed: This is the speed beyond which a wind turbine shuts itself
down to protect the turbine.

• Rated wind speed: This is the speed beyond which the turbine’s output power
needs to be limited and, consequently, the rotor speeds are regulated, by using,
for example, a pitch control mechanism.

Among the structural load responses, we consider only the flap-wise bending
moments measured at the root of blades. In other words, y in this study is the
10-minute maximum blade-root flap-wise bending moment (hereafter, we call y a
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maximum load). But please note that our method applies to other load responses
as well. Regarding weather characteristics, since we consider only the ILTs, we
include in x the average wind speed v and the standard deviation of wind speed s,
namely, x := (v, s).

The data are recorded at different frequencies on the ILTs, as follows:

• ILT1: 25 Hz = 15,000 measurements/10-min;
• ILT2: 32 Hz = 19,200 measurements/10-min;
• ILT3: 35.7 Hz = 21,420 measurements/10-min.

Here, 1 Hz means one measurement per second. The raw measured variables
are vij and yij , where i = 1, . . . , n represents a 10-minute block of data and
j = 1, . . . ,N is the index of the measurements. We use N to represent the num-
ber of measurements in a 10-minute block, equal to 15,000, 19,200 and 21,420
for ILT1, ILT2 and ILT3, respectively, and use n to represent the total number of
the 10-minute intervals in each data set, taking the value of 1154, 595 and 5688,
respectively, for ILT1, ILT2 and ILT3. For these variables, the statistics of the ob-
servations in each 10-minute block are calculated as follows:

vi = 1

N

N∑
j=1

vij ,(2.1)

si =
√√√√√ 1

N − 1

N∑
j=1

(vij − vi)2 and(2.2)

yi = max{yi1, yi2, . . . , yiN }.(2.3)

3. Literature review. The previous edition of the international standard, IEC
61400-1:1999, offers a set of design load cases with deterministic wind conditions
such as annual average wind speeds, higher and lower turbulence intensities, and
extreme wind speeds [IEC (1999)]. In other words, the loads in IEC 61400-1:1999
are specified as discrete events based on design experiences and empirical models
[Moriarty, Holley and Butterfield (2002)]. Veers and Butterfield (2001) point out
that these deterministic models do not represent the stochastic nature of structure
responses, and suggest using statistical modeling to improve design load estimates.
Moriarty, Holley and Butterfield (2002) examine the effect of varying turbulence
levels on the statistical behavior of a wind turbine’s extreme load. They conclude
that the loading on a turbine is stochastic at high turbulence levels, significantly
influencing the tail of the load distribution.

In response to these developments, the new edition of IEC 61400-1 standard
(IEC 61400-1:2005), issued in 2005, replaces the deterministic load cases with
stochastic models, and recommends the use of statistical approaches for determin-
ing the extreme load level in the design stage. Freudenreich and Argyriadis (2008)
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compare the deterministic load cases in the IEC 61400-1:1999 with the stochas-
tic cases in IEC 61400-1:2005, and observe that when statistical approaches are
applied, higher extreme load estimates are obtained in some structural responses,
such as the blade tip deflection and flap-wise bending moment.

After IEC 61400-1:2005 was issued, many studies were reported to devise
and recommend statistical approaches for extreme load analysis [Agarwal and
Manuel (2008), Fogle, Agarwal and Manuel (2008), Freudenreich and Argyriadis
(2008), Moriarty (2008), Natarajan and Holley (2008), Peeringa (2009), Regan
and Manuel (2008)]. These studies adopt a common framework, which we call
binning method. The basic idea of the binning method is to discretize the domain
of a wind profile vector x into a finite number of bins. For example, one can divide
the range of wind speed, from the cut-in speed to the cut-out speed, into multiple
bins and set the width of each bin to, say, 2 m/s. Then, in each bin, the conditional
short-term distribution of y|x is approximated by a stationary distribution, with the
parameters of the distribution estimated by the method of moments or the maxi-
mum likelihood method. Then, the contribution from each bin is summed over all
possible bins to determine the final long-term extreme load. In other words, inte-
gration in (1.3) for calculating the long-term distribution is approximated by the
summation of finite elements.

According to the classical extreme value theory [Coles (2001), Smith (1990)],
the short-term distribution of y|x can be approximated by a generalized extreme
value (GEV) distribution. The probability density function of the GEV is

p(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

σ
exp

[
−

(
1 + ξ

(
y − μ

σ

))−1/ξ](
1 + ξ

(
y − μ

σ

))−1−1/ξ

,

if ξ �= 0,

1

σ
exp

[
−y − μ

σ
− exp

(
−y − μ

σ

)]
, if ξ = 0,

(3.1)

for {y : 1 + ξ(y − μ)/σ > 0}, where μ ∈ � is the location parameter, σ > 0 is the
scale parameter, and ξ ∈ � is the shape parameter that determines the weight of the
tail of the distribution. ξ > 0 corresponds to the Fréchet distribution with a heavy
upper tail, ξ < 0 to the Weibull distribution with a short upper tail and light lower
tail, and ξ = 0 (or, ξ → 0) to the Gumbel distribution with a light upper tail [Coles
(2001)].

One of the main focuses of interest in extreme value theory is in deriving the
quantile value (which, in our study, is defined as the extreme load level lT ), given
the target probability PT . The quantile value can be expressed as a function of the
distribution parameters as follows:

lT =
⎧⎨
⎩

μ − σ

ξ

[
1 − (− log(1 − PT )

)−ξ ]
, if ξ �= 0,

μ − σ log
[− log(1 − PT )

]
, if ξ = 0.

(3.2)
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The virtue of the binning method is that by modeling the short-term distribution
with a homogeneous GEV distribution (i.e., keep the parameters therein constant),
it provides a simple way to handle the overall nonstationary load response across
different wind speeds. The binning method is perhaps the most common method
used in the wind industry and also recommended by IEC (2005). For example,
Agarwal and Manuel (2008) use the binning method to estimate the extreme loads
for a 2MW offshore wind turbine. In each weather bin, they use the Gumbel dis-
tribution to explain the probabilistic behavior of the mudline bending moments of
the turbine tower. The data were collected for a period of 16 months. However,
most bins have a small number of data, or sometimes, no data at all. For the bins
without data, the authors estimate the short-term distribution parameters by using
a weighted average of all nonempty bins with the weight related to the inverse
squared distance between bins. They quantify the uncertainty of the estimated ex-
treme loads using a bootstrapping technique and report 95% confidence intervals
for the short-term extreme load given specific weather conditions (weather bins).
Because bootstrapping resamples the existing data for a given weather bin, it can-
not precisely capture the uncertainty for those bins with limited data or without
data.

Despite its popularity, the binning method has obvious shortcomings in estimat-
ing extreme loads. A major limitation is that the short-term load distribution in one
bin is constructed separately from the short-term distributions in other bins. This
approach requires an enormous amount of data to define the tail of each short-term
distribution. In reality, the field data can only be collected in a short duration (e.g.,
one year out of the 50-year service) and, consequently, some bins do not have
enough data. Then, the binning method may end up with inaccuracy or big uncer-
tainty in the estimates of extreme loads. In practice, how many bins to use is also
under debate, and there is not yet a consensus. The answer to the action of binning
appears to depend on the amount of data—if one has more data, he/she can afford
to use more bins; otherwise, fewer bins.

4. Bayesian spline method for extreme load. In this section we present our
new procedure of estimating the extreme load with two submodels. The first sub-
model (in Section 4.1) is the conditional maximum load model p(y|x), and the
second submodel (in Section 4.3) is the distribution of wind characteristics p(x).
Our major undertaking in this study is on the first submodel, where we present an
alternative to the current binning method.

We begin by presenting some scatter plots for the three data sets. Figure 2 shows
the scatter plots between the 10-minute maximum loads and 10-minute average
wind speeds. We observe nonlinear patterns between the loads and the average
wind speeds in all three scatter plots, while individual turbines exhibit different
response patterns. ILT1 and ILT2 are two pitch controlled turbines, so when the
wind speed reaches or exceeds the rated speed, the blades are adjusted to reduce the
absorption of wind energy. As a result, we observe that the loads show a downward
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FIG. 2. Scatter plots of 10-minute maximum load versus 10-minute average wind speed.

trend after the rated wind speed. But different from that of ILT1, the load response
of ILT2 has a large variation beyond the rated wind speed. This large variation
can be attributed to its less capable control system since ILT2 is one of the early
turbine models using a pitch control system. ILT3 is a stall controlled turbine, and
its load pattern in Figure 2(c) does not have an obvious downward trend beyond
the rated speed.

Figure 3 presents the scatter plots between the 10-minute maximum loads and
the standard deviations of wind speed during the 10-minute intervals. We also ob-
serve nonlinear relationships between them, especially for the new pitch-controlled
ILT1. Figure 4 shows scatter plots of 10-minute standard deviation versus 10-
minute average wind speed. Some previous studies [Fitzwater, Cornell and Veers
(2003), Moriarty, Holley and Butterfield (2002)] suggest that the standard devia-
tion of wind speed varies with the average wind speed, which appears consistent
with what we observe in Figure 4.

4.1. Submodel 1: Bayesian spline model for conditional maximum load. Re-
call that in the binning method, a homogeneous GEV distribution is used to model
the short-term load distribution, for it appears reasonable to assume stationarity if

FIG. 3. Scatter plots of 10-minute maximum load versus 10-minute standard deviations of wind
speed.
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FIG. 4. Scatter plots of 10-minute average wind speed versus 10-minute standard deviation of wind
speed.

the chosen weather bin is narrow enough. A finite number of the homogeneous
GEV distributions are then stitched together to represent the nonstationary nature
across the entire wind profile. What we propose here is to abandon the bins and in-
stead use a nonhomogeneous GEV distribution whose parameters are not constant
but depend on weather conditions.

Our research started out with simple approaches based on polynomial mod-
els. It turns out that polynomial-based approaches lack the flexibility of adapting
to the data sets from different types of turbines. Moreover, due to the nonlinear-
ity around the rated wind speed and the limited amount of data under high wind
speeds, polynomial-based approaches performed poorly in those regions that are
generally important for capturing the maximum load. Spline models, on the other
hand, appear to work better than a global polynomial model, because they have
more supporting points spreading over the input regions. In the sequel, we present
two flexible Bayesian spline models for the purpose of establishing the desired
nonhomogeneous GEV distribution.

Suppose we observe 10-minute maximum loads y1, . . . , yn with corresponding
covariate variables x1 = (v1, s1), . . . ,xn = (vn, sn), as defined in (2.1) and (2.2).
We choose to model yi with a GEV distribution:

yi |xi ∼ GEV
(
μ(xi ), σ (xi ), ξ

)
, σ (·) > 0,(4.1)

where the location parameter μ and scale parameter σ in this GEV distribution
are a nonlinear function of wind characteristics x. The shape parameter ξ is fixed
across the wind profile, while its value will still be estimated using the data from
a specific wind turbine. The reason that we keep ξ fixed is to keep the final model
from becoming overly complicated. Let us denote μ(xi ) and σ(xi ) by

μ(xi ) = f (xi ),(4.2)

σ(xi ) = exp
(
g(xi )

)
,(4.3)
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where in (4.3), an exponential function is used to ensure the positivity of the scale
parameter.

Our strategy of modeling f (·) and g(·) is to use a Bayesian MARS (multi-
variate adaptive regression splines) model [Denison, Mallick and Smith (1998),
Denison et al. (2002)] for capturing the nonlinearity between the load response
and the wind-related covariates. The Bayesian MARS model has high flexibility.
It includes the number and locations of knots as part of its model parameters and
determines these from observed data. In addition, interaction effects among input
factors can be modeled if choosing appropriate basis functions.

Specifically, the Bayesian MARS models f (x) for the location parameter μ and
g(x) for the scale parameter σ are represented as a linear combination of the basis
functions B

μ
k (x) and Bσ

k (x), respectively, as

f (x) =
Kμ∑
k=1

βkB
μ
k (x),(4.4)

g(x) =
Kσ∑
k=1

θkB
σ
k (x),(4.5)

where βk, k = 1, . . . ,Kμ and θk, k = 1, . . . ,Kσ are the coefficients of the basis
functions B

μ
k (·) and Bσ

k (·), respectively, and Kμ and Kσ are the number of the
respective basis functions. According to the study by Denison, Mallick and Smith
(1998), which proposed the Bayesian MARS, the basis functions are specified as
follows:

Bk(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, k = 1,
Jk∏

j=1

[
hjk · (xr(j,k) − tjk)

]
+, k = 2,3, . . . ,K .(4.6)

Here, [·]+ = max(0, ·), Jk is the degree of interaction modeled by the basis func-
tion Bk(x), hjk is the sign indicator, taking the value of either −1 or +1, and
r(j, k) produces the index of the predictor variable which is being split on tjk ,
commonly referred to as the knot points.

We here introduce an integer variable Tk to represent the types of basis func-
tions used in (4.6). Since we consider two predictors v and s for inland turbines,
there could be three types of basis functions, namely, [±(v−∗)]+ and [±(s −∗)]+
for each explanatory variable, respectively, and [±(v − ∗)]+[±(s − ∗)]+ for inter-
actions between them. So we let Tk take the integer value of 1, 2 or 3, to represent
the three types of basis functions. That is, [±(v − ∗)]+ is represented by Tk = 1,
[±(s − ∗)]+ represented by Tk = 2, and [±(v − ∗)]+[±(s − ∗)]+ represented by
Tk = 3. When Jk = 1 in equation (4.6), then the first two types of basis functions
are used, while when Jk = 2, all three types of basis functions are used. In our
model, we set Jk = 1 or Jk = 2 in the model of the location parameter μ for ILT1
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and ILT3 data to allow the interaction to be modeled. For ILT2, however, due to
its relatively smaller data amount, a model setting Jk = 2 produces unstable and
unreasonably wide credible intervals. So for ILT2, Jk = 1 is set for its location
parameter μ. For the scale parameter σ , we set Jk = 1 for all three data sets, but
for ILT2, again due to its data scarcity, we include v as the only predictor in its
scale parameter model.

Let �a = (�μ,�σ , ξ) denote all the parameters used in model (4.1), where
�μ and �σ include the parameters in function f (·) and g(·), respectively. These
parameters are grouped into two sets: (1) the coefficients of the basis functions in
β = (β1, . . . , βKμ) or θ = (θ1, . . . , θKσ ), and (2) the number and locations of the
knots, and the types of basis function in φμ or φσ , as follows:

φμ = (
Kμ,�

μ
2 , . . . ,�

μ
Kμ

)
,

(4.7)

where �
μ
k =

{(
T

μ
k ,h

μ
1k, t

μ
1k

)
, when T

μ
k = 1,2;(

T
μ
k ,h

μ
1k, h

μ
2k, t

μ
1k, t

μ
2k

)
, when T

μ
k = 3,

and

φσ = (
Kσ ,�σ

2 , . . . ,�σ
Kσ

)
,

(4.8)
where �σ

k = (
T σ

k , hσ
1k, t

σ
1k

)
when T σ

k = 1,2.

Using the above notation, we have �μ = (β,φμ) and �σ = (θ ,φσ ).
To complete the Bayesian formulation for the model in (4.1), priors of the pa-

rameters involved should be specified. In this paper, we use uniform priors on φμ

and φσ ; see the detailed expression in Appendix A. Given φμ and φσ , we specify
the prior distribution for the parameters (β, θ, ξ) as the unit-information prior, that
is, UIP [Kass and Wasserman (1995)], which is defined by setting the correspond-
ing covariance matrix to be equal to the Fisher information of one observation.

4.2. Submodel 1: Posterior distribution of parameters. The Bayesian MARS
model treats the number and locations of the knots as random quantities. When
the number of knots changes, the dimension of the parameter space changes with
it. To handle a varying dimensionality in the probability distributions in a ran-
dom sampling procedure, researchers usually use a reversible jump Markov chain
Monte Carlo (RJMCMC) algorithm developed by Green (1995). The acceptance
probability for a RJMCMC algorithm includes a Jacobian term, which accounts
for the change in dimension. However, under the assumption that the model space
for parameters of varying dimension is discrete, there is no need for a Jacobian. In
our analysis, this assumption is satisfied since we only consider probable models
over all possible knot locations and numbers. Therefore, instead of using the RJM-
CMC algorithm, we use the reversible jump sampler (RJS) algorithm proposed in
Denison et al. (2002). Since the RJS algorithm does not require new parameters
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to match dimensions between models and the corresponding Jacobian term to the
acceptance probability, it is simpler and more efficient to execute.

To allow for dimensional changes, there are three actions in the RJS algorithm:
BIRTH, DEATH and MOVE, which adds, deletes or alters a basis function, respec-
tively. Accordingly, the number of knots as well as the locations of some knots
change. The detailed definitions of the three actions are given in Denison et al.
(2002), page 53, so we need not repeat them here. They suggest the following:
use equal probability (i.e., 1

3 ) to propose any of the three moves, and then use the
following acceptance probability α for a proposed move from a model having k

basis functions to a model having kc basis functions:

α = min{1, the ratio of marginal likelihood × R},(4.9)

where R is a ratio of probabilities defined as follows:

• For a BIRTH action, R = probability of DEATH in model kc

probability of BIRTH in model k
;

• For a DEATH action, R = probability of BIRTH in model kc

probability of DEATH in model k
;

• For a MOVE action, R = probability of MOVE in model kc

probability of MOVE in model k
.

We have R = 1 for most cases, because the probabilities in the denominator and
numerator are equal, except when k reaches either the upper or the lower bound.

The marginal likelihood in (4.9) can be expressed as follows:

p(Dy |φμ,φσ )
(4.10)

=
∫

p(Dy |β, θ, ξ,φμ,φσ )p(β, θ, ξ |φμ,φσ ) dβ dθ dξ,

where Dy = (y1, . . . , yn) represents a set of observed load data. Since it is diffi-
cult to calculate the above marginal likelihood analytically in our study, we con-
sider an approximation of p(Dy |φμ,φσ ). Kass and Wasserman (1995) and Raftery
(1995) showed that when UIP priors are used, the marginal log-likelihood, that is,
log(p(Dy |φμ,φσ )), can be reasonably approximated by the Schwarz information
criterion (SIC) [Schwarz (1978)]. The SIC is expressed as

SICφμ,φσ
= log

(
p(Dy |β̂, θ̂, ξ̂ ,φμ,φσ )

) − 1
2 dk log(n),

where β̂, θ̂, ξ̂ are the maximum likelihood estimators (MLEs) of the correspond-
ing parameters obtained conditional on φμ and φσ , and dk is the total number of
parameters to be estimated. In this case, dk = Kμ + Kσ + 1.

Recall that we have two dimension-varying states φμ and φσ in the RJS algo-
rithm. Depending on which state vector is changing, two marginal log-likelihood
ratios are needed, and they are approximated by the corresponding SICs, such as

log
p(Dy |φc

μ,φσ )

p(Dy |φμ,φσ )
� SICφc

μ,φσ
− SICφμ,φσ

and(4.11)
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log
p(Dy |φμ,φc

σ )

p(Dy |φμ,φσ )
� SICφμ,φc

σ
− SICφμ,φσ

.(4.12)

Then, we use two acceptance probabilities αμ and ασ for accepting or rejecting
a new state in φμ and φσ , respectively. Using the SICs, αμ and ασ are expressed
as

αμ = min
{
1, exp(SICφc

μ,φσ
− SICφμ,φσ

) × R
}

and(4.13)

ασ = min
{
1, exp(SICφμ,φc

σ
− SICφμ,φσ

) × R
}
.(4.14)

In order to produce the samples from the posterior distribution of parameters
in �a , we sequentially draw samples for φμ and φσ by using the two acceptance
probabilities, while marginalizing out (β , θ , ξ ); and then, conditional on the sam-
pled φμ and φσ , draw samples for (β , θ , ξ ) using a Normal approximation based
on the maximum likelihood estimates and the observed information matrix. The
detailed simulation procedure can be found in Step I of Appendix B.

4.3. Submodel 2: Distribution of wind characteristics. To find a site-specific
load distribution, the distribution of wind characteristics p(x) in (1.3) needs to be
specified. Since a statistical correlation is noticed between the 10-minute average
wind speed v and the standard deviation of wind speeds s in Figure 4, the distribu-
tion of wind characteristics p(x) can be written as a product of the average wind
speed distribution p(v) and the conditional wind standard deviation distribution
p(s|v). In this section we separately discuss how to specify each model.

For modeling the 10-minute average wind speed v, the IEC standard suggests
using a 2-parameter Weibull distribution (W2) or a Rayleigh distribution (RAY)
[IEC (2005)]. These two distributions are arguably the most widely used ones for
this purpose. Carta, Ramirez and Velazquez (2008) and Li and Shi (2010) note
that under different wind regimes other distributions may fit wind speed data bet-
ter, including 3-parameter Weibull distribution (W3), 3-parameter log-Normal dis-
tribution (LN3), 3-parameter Gamma distribution (G3) and 3-parameter inverse-
Gaussian distribution (IG3). We take a total of six candidate distribution models
for average wind speed (W2, W3, RAY, LN3, G3, IG3) from Li and Shi (2010),
and conduct a Bayesian model selection to choose the best distribution fitting a
given average wind speed data set.

We assume UIP priors for the parameters involved in the aforementioned mod-
els, and our approach is again based on maximizing the SIC. Once the best wind
speed model is chosen, we denote it by Mv . Then, the distribution of 10-minute
average wind speed v is expressed as

vi ∼ Mv(ν),(4.15)

where ν is the set of parameters specifying Mv . For instance, if Mv is W3, then
ν = (ν1, ν2, ν3), where ν1, ν2 and ν3 represent the shape, scale and shift parameter,
respectively, of a 3-parameter Weibull distribution.
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For modeling the standard deviation of wind speed s, given the average wind
speed v, the IEC standard recommends using a 2-parameter Truncated Normal
distribution (TN2) [IEC (2005)], which appears to be what researchers have com-
monly used; see, for example, Fitzwater, Cornell and Veers (2003). The distribu-
tion is characterized by a location parameter η and a scale parameter δ. In the
literature, both η and δ are treated as a constant. But we observe that data sets
measured at different sites have different relationships between the average wind
speed v and the standard deviation s. Some of the v-versus-s scatter plots show
nonlinear patterns.

Motivated by this observation, we employ a Bayesian MARS model for model-
ing η and δ, similar to what we did in Submodel 1. The standard deviation of wind
speed s, conditional on the average wind speed v, can then be expressed as

si |vi ∼ T N2
(
η(vi), δ(vi)

)
,

(4.16)
where η(vi) = fη(vi) and δ(vi) = exp

(
gδ(vi)

)
,

where fη and gδ , like their counterparts in (4.4) and (4.5), are linear combina-
tions of the basis functions taking the general form (4.6). Notice that both of the
functions have only one input variable, which is the average wind speed.

Let �η = (βη,φη) and �δ = (θ δ,φδ) denote the parameters in fη(·) and gδ(·).
Since the basis functions fη and gδ in (4.16) have only one input variable, only one
type of basis function (i.e., Tk = 1) is needed. Hence, φη and φδ are much simpler
than φμ and φσ , their counterparts in (4.7) and (4.8), and are expressed as follows:

φη = (
Kη,�

η
2, . . . ,�

η
Kη

)
,

(4.17)
where �

η
k = (

T
η
k , h

η
1k, t

η
1k

)
and T

η
k = 1

and

φδ = (
Kδ,�

δ
2, . . . ,�

δ
Kδ

)
,

(4.18)
where �δ

k = (
T δ

k , hδ
1k, t

δ
1k

)
and T δ

k = 1.

We choose the prior distribution for (βη, θ δ) as UIP and the prior for (φη,φδ)

as uniform distribution, and solve this Bayesian MARS model by using a RJS
algorithm, as in the preceding two sections. The predictive distributions of the
average wind speed ṽ and the standard deviation s̃ are

p(ṽ|Dv) =
∫

p(ṽ|ν)p(ν|Dv) dν and(4.19)

p(s̃|ṽ, Dv, Ds) =
∫ ∫

p(s̃|ṽ,�η,�δ)p(�η,�δ|Dv, Ds) d�η d�δ,(4.20)

where Dv and Ds are the data sets of the observed average wind speeds and the
standard deviations. The detailed simulation procedure is included in Step II in
Appendix B.
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4.4. Posterior predictive distribution of the extreme load level lT . We are in-
terested in getting the posterior predictive distribution of the quantile value lT ,
based on the observed load and wind data D := (Dy, Dv, Ds). In order to do so,
we need to draw samples ỹ’s from the predictive distribution of the maximum load
given parameters p[ỹ|D,�a], which is

p[ỹ|D,�a] =
∫ ∫

p[ỹ|ṽ, s̃,�a, D]p[ṽ, s̃|Dv, Ds]dṽ ds̃,(4.21)

where p[ṽ, s̃|Dv, Ds] can be expressed as the product of (4.19) and (4.20).
To calculate a quantile value of the load for a given PT [as in (1.2)], we go

through the following steps:

• Draw samples from the joint posterior predictive distribution p[ṽ, s̃|Dv, Ds] of
wind characteristics (ṽ, s̃) (Step II in Appendix B);

• Draw a set of samples from the posterior distribution of model parameters �a =
(�μ,�σ , ξ); this is realized by employing the RJS algorithm in Section 4.2 (or
Step I in Appendix B);

• Given the above samples of wind characteristics and model parameters, we cal-
culate (μ,σ, ξ ) that are needed in a GEV distribution; this yields a short-term
distribution p[ỹ|ṽ, s̃,�a];

• Integrating out the wind characteristics (ṽ, s̃), obtain the long-term distribution
p[ỹ|D,�a];

• Draw samples from p[ỹ|D,�a], and compute a quantile value lT [�a] corre-
sponding to PT .

In fact, the predictive mean and Bayesian credible interval of the extreme load
level lT are obtained when running the RJS algorithm. The RJS runs through Ml

iterations and, at each iteration, we obtain a set of samples of the model parameters
�a and calculate a lT [�a]. Once Ml values of lT [�a] are obtained, its mean and
credible intervals can then be numerically computed.

5. Results.

5.1. Model selection. Table 2 presents the SIC values of the six candidate av-
erage wind speed models using different ILT data sets. The boldfaced values in-
dicate the largest SIC for a given data set and, consequently, the corresponding
models are chosen for that data set.

Regarding the average wind speed model, all candidate distributions except
RAY provide generally a good model fit for ILT1, with a similar level of fitting
quality, but W3 dominates slightly. For the ILT2 data, W2, W3, LN3 and G3 pro-
duce similar SIC values. In the ILT3 data, W3, LN3, G3 and IG3 perform similarly.
Still W3 is slightly better. So we choose W3 as our average wind speed model.
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TABLE 2
SIC for the average wind speed models

Distributions ILT1 ILT2 ILT3

W2 −2984 −1667 −12,287
W3 −2941 −1663 −11,242
RAY −3120 −1779 −13,396
LN3 −2989 −1666 −11,444
G3 −2974 −1666 −11,290
IG3 −2986 −2313 −11,410

5.2. Point-wise credible intervals. As a form of checking the conditional max-
imum load model, we present in Figures 5 and 6 the 95% point-wise credible
intervals under different wind speeds and standard deviations. To generate these
figures, we take a data set and fix v or s at one specific speed or standard deviation
at a time and then draw the posterior samples for ỹ from the posterior predictive
distribution of conditional maximum load, p(ỹ|x). Suppose that we want to gener-
ate the credible intervals at wind speed v∗ or standard deviation s∗. The posterior
predictive distributions are computed as follows:

p
(
ỹ|(v, s) ∈ Dv∗, Dy

) =
∫

p
(
ỹ|(v, s) ∈ Dv∗,�a

)
p(�a|Dy) d�a,

p
(
ỹ|(v, s) ∈ Ds∗, Dy

) =
∫

p
(
ỹ|(v, s) ∈ Ds∗,�a

)
p(�a|Dy) d�a,

where Dv∗ and Ds∗ are subsets of the observed data such that Dv∗ = {(vi, si) :v∗ −
0.5 < vi < v∗ + 0.5, and (vi, si) ∈ Dv,s} and Ds∗ = {(vi, si) : s∗ − 0.05 < si <

s∗ + 0.05, and (vi, si) ∈ Dv,s}. Given these distributions, samples for ỹ are drawn
to construct the 95% credible intervals at v∗ or s∗. The result is shown as one
vertical bar in either a v-plot (Figure 5) or a s-plot (Figure 6). To complete these
figures, the process is repeated in the v-domain with 1 m/s increment and in the

FIG. 5. 95% point-wise credible intervals for different wind speeds.
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FIG. 6. 95% point-wise credible intervals for different standard deviations.

s-domain with 0.2 m/s increment. These figures show that the variability in data
are reasonably captured by the spline method.

5.3. Comparison between the binning method and spline method for condi-
tional maximum load. In our procedure for estimating the extreme load level,
two different distributions of maximum load y are involved: one is the conditional
maximum load distribution p(y|x), aka the short-term distribution, and the other is
the unconditional maximum load distribution p(y), aka the long-term distribution.
Using the observed field data, it is difficult to assess the estimation accuracy of the
extreme load levels in the long-term distribution, because of the relatively small
amount of observation records. What we undertake in this section is to evaluate a
method’s performance of estimating the tail of the short-term distribution p(y|x).
We argued before that the short-term distribution underlies the difference between
the proposed Bayesian spline method and the binning method. The comparison in
this section is intended to show the advantage of the Bayesian spline method. In
Section 5.5 we employ a simulation study that generates a much larger data set,
allowing us to compare the performance of two methods in estimating the extreme
load level in the long-term distribution.

To evaluate the tail part of a conditional maximum load distribution, we com-
pute a set of upper quantile estimators and assess their estimation qualities using
the generalized piecewise linear (GPL) loss function [Gneiting (2011)]. A GPL is
defined as follows:

Sτ,b

(
l̂(xi ), y(xi)

)
(5.1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
(
l̂(xi ) ≥ y(xi )

) − τ
) 1

|b|
([

l̂(xi )
]b − [

y(xi )
]b)

, for b �= 0,

(
1
(
l̂(xi ) ≥ y(xi )

) − τ
)

log
(

l̂(xi )

y(xi )

)
, for b = 0,

where l̂(xi ) is the τ -quantile estimation of p(y|xi ) for a given xi , y(xi ) is the ob-
served maximum load in the test data set, given the same xi , b is a power parameter,
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and 1 is an indicator function. The power parameter b usually ranges between 0
and 2.5. When b = 1, the GPL loss function is the same as the piecewise linear
(PL) loss function.

For the above empirical evaluation, we randomly divide a data set into a parti-
tion of 80% for training and 20% for testing. We use the training set to establish
a short term distribution p(y|x). For any xi in the test set, the τ -quantile estima-
tion l̂(xi ) can be computed using p(y|x). And then, the GPL loss function value is
taken as the average of all Sτ,b values over the test set, as follows:

Sτ,b = 1

nt

nt∑
i=1

Sτ,b

(
l̂i (xi ), yi

)
,(5.2)

where nt is the number of data points in a test set and yi is the same as y(xi ). We
call Sτ,b the mean score. We repeat the training/test procedure 10 times, and the
final mean score is the average of the ten mean scores. For notational simplicity,
we still call the final mean score the mean score and use Sτ,b to represent it, as
long as its meaning is clear in the context.

In this comparison, we use two methods to establish the short-term distribution:
the binning method and the proposed Bayesian spline method. In our RJS algo-
rithm in Section 4.2, we draw Nl = 100 samples from the short-term distribution.
Accordingly, we can evaluate the quality of quantile estimations of the short-term
distribution for a τ up to 0.99.

We first take a look at the comparisons in Figure 7, which compares the PL loss
(i.e., b = 1) of both methods as τ varies in the above-mentioned range. The left
vertical axis shows the values of the mean score of the PL loss, while the right axis
is the percentage value of the reduction in mean scores when the spline method
is compared with the binning method. For all three data sets, the spline method
maintains lower mean scores than the binning method.

FIG. 7. Comparison of PL function: the left Y-axis represents the mean score values and the right
Y-axis represents the percentage values, which are the reduction in the mean scores when the spline
method is compared with the binning method.
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TABLE 3
Mean scores of GPL/PL for the 0.9-quantile estimators

ILT1 ILT2 ILT3

Power parameter Binning Spline Binning Spline Binning Spline

b = 0 0.0185 0.0108 0.0129 0.0103 0.0256 0.0171
b = 1 0.0455 0.0265 0.0040 0.0031 0.0042 0.0028
b = 2 0.1318 0.0782 0.0013 0.0010 0.0008 0.0005

When τ is approaching 0.99 in Figure 7, it looks like the PL losses of the spline
and binning methods are getting closer to each other. This is largely due to the
fact that the PL loss values are smaller at a higher τ , so that their differences are
compressed in the figure. If one looks at the solid line in a plot, which represents
the percentage of reduction in the mean score, the spline method’s advantage over
the binning method is more evident in the cases of ILT1 and ILT3 data sets. When
τ gets larger, the spline method produces a significant improvement over the bin-
ning method, with a reduction of PL loss ranging from 33% to 50%. The trend
is different when using the ILT2 data set. But still, the spline method can reduce
the mean scores of the PL loss from the binning method by 8% to 20%. Please
note that the ILT2 data set is the smallest set, having slightly fewer than 600 data
records. We believe that the difference observed over the ILT2 case is attributable
to the scarcity of data.

We compute the mean scores of the GPL loss under three different power pa-
rameters b = 0,1,2 for each method. Table 3 presents the results under τ = 0.9,
while Table 4 is for τ = 0.99. In Table 3 the spline method has a mean score 20%
to 42% lower than the binning method. In Table 4 the reductions in mean scores are
in a similar range. Overall, these results clearly show the improvement achieved
by employing the Bayesian spline method.

In order to understand the difference between the spline method and binning
method, we compare the 0.99 quantiles of the 10-minute maximum load condi-
tional on a specific wind condition. This is done by computing the difference in

TABLE 4
Mean scores of GPL/PL for the 0.99-quantile estimators

ILT1 ILT2 ILT3

Power parameter Binning Spline Binning Spline Binning Spline

b = 0 0.0031 0.0018 0.0022 0.0020 0.0045 0.0027
b = 1 0.0086 0.0045 0.0007 0.0006 0.0008 0.0005
b = 2 0.0270 0.0135 0.0003 0.0002 0.0002 0.0001
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FIG. 8. Comparison of the 0.99-quantiles between binning method and spline method.

the quantile values of the conditional maximum load from the two methods for dif-
ferent weather bins. The wind condition of each bin is approximated by the median
values of v and s in that bin. Figure 8 shows the standardized difference of the two
0.99 quantile values in each bin. The darker the color is, the bigger the difference.
Note that we exclude comparisons in the weather bins with very low likelihood,
namely, low wind speed and high standard deviation or high wind speed and low
standard deviation.

We can observe that the two methods produce similar results at the bins having
a sufficient number of data points (mostly weather bins in the central area), and
the results are different when the data are scarce—this tends to happen at the two
ends of the average wind speed and standard deviation. This echoes the point we
made earlier that without binning the weather conditions, the spline method is able
to make better use of the available data and overcome the limited data problem for
rare weather events.

5.4. Estimation of extreme load. Finally, Tables 5 and 6 show the estimates
of the extreme load levels lT , corresponding to T = 20 and T = 50 years, respec-
tively. The values in parenthesis are the 95% credible (or confidence) intervals.
We observe that the extreme load levels lT obtained by the binning method are
generally higher than those obtained by the spline method. This should not come
as a surprise. As we push for a high quantile, more data would be needed in each
weather bin, but the amounts in reality are limited due to the binning method’s

TABLE 5
Estimates of extreme load levels (lT , T = 20 years), unit: MN-m

Data sets Binning method Spline method

ILT1 6.455 (6.063, 7.092) 4.750 (4.579, 4.955)
ILT2 0.752 (0.658, 0.903) 0.576 (0.538, 0.627)
ILT3 0.505 (0.465, 0.584) 0.428 (0.398, 0.463)
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TABLE 6
Estimates of extreme load level (lT , T = 50 years), unit: MN-m

Data sets Binning method Spline method

ILT1 6.711 (6.240, 7.485) 4.800 (4.611, 5.019)
ILT2 0.786 (0.682, 0.957) 0.589 (0.547, 0.646)
ILT3 0.527 (0.480, 0.621) 0.438 (0.405, 0.476)

compartmentalization of data. The binning method also produces a wider con-
fidence interval than the spline method, as a result of the same rigidity in data
handling. The detailed procedure for computing the binning method’s confidence
interval is included in Appendix C.

5.5. Simulation of extreme load. In this section a simulation study is under-
taken to assess the estimation accuracy of extreme load level in the long-term dis-
tribution. The simulations use one single covariate x, mimicking the wind speed,
and a dependent variable y, corresponding to the maximum load. We use the fol-
lowing procedure to generate the simulated data:

(a) Generate a sample xi from a 3-parameter Weibull distribution. Then sample
xij , j = 1, . . . ,1000, from a normal distribution having xi as its mean and a unit
variance. The set of xij ’s represents the different wind speeds within a bin.

(b) Draw the samples yij from a normal distribution with its mean as μs
ij and

its standard deviation as σ s
ij , which are expressed as follows:

μs
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1.5

[1 + 48 × exp(−0.3 × xij )] ,
if xi < 17,

1.5

[1 + 48 × exp(−0.3 × xij )] + [
0.5 − 0.0016 × (

xi + x2
i

)]
,

if xi ≥ 17,

σ s
ij = 0.1 × log(xij ).

The above set of equations is used to create a y response resembling the load data
we observe. The parameters used in the equations are chosen through trials so that
the simulated y looks like the actual mechanical load response. While many of the
parameters used above do not have any physical meaning, some of them do, for
instance, the “17” in “xi < 17” bears the meaning of the rated wind speed.

(c) Find the maximum value yi = max{yi,1, . . . , yi,1000}, corresponding to xi .
According to the classical extreme value theory [Coles (2001), Smith (1990)], yi

produced in such a way can be modeled by a GEV distribution.
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FIG. 9. Simulation data set, estimated and observed extreme quantile values: (a) An example of
a simulated data set. (b) and (c) Boxplots for the distribution of the binning estimate, the Bayesian
spline estimate and the respective sample quantile across 100 simulated data sets.

(d) Repeat (a) through (c) for i = 1, . . . ,1000 to produce the training data
set with n = 1000 data pairs, and denote this data set by DTR = {(x1, y1), . . . ,

(x1000, y1000)}.
Once the training data set DTR is simulated, both the binning method and spline

method are used to estimate the extreme load levels lT corresponding to two prob-
abilities: 0.0001 and 0.00001. This estimation is based on drawing samples from
the long-term distribution of y, as described in Section 4.4, which produces the
posterior predictive distribution of lT . To compare the estimation accuracy of the
extreme quantile values, we also generate 100 simulated data sets; each data set
consists of 100,000 data points, which are obtained by repeating the above (a)
through (c). For each data set, we find the observed quantile values l0.0001 and
l0.00001. Using the 100 simulated data sets, we also obtain 100 different samples of
these quantiles.

Figure 9(a) shows a scatter plot of the simulated x’s and y’s in DTR, which
resembles the load responses we saw previously. Figure 9(b) and (c) present the
extreme load levels estimated by the two methods as well as the observed extreme
quantile values under the two selected probabilities. We observe that the binning
method tends to overestimate the extreme quantile values and yields wider confi-
dence intervals than the spline method. Furthermore, the degree of overestimation
appears to increase as the probability corresponding to an extreme quantile value
goes smaller. This observation confirms what we observed in Section 5.4 using
the field data. This simulation result suggests that using the binning method for
extreme load estimation is not a good practice.

6. Summary. This study presents a Bayesian spline method for estimating the
extreme load on wind turbines. The spline method essentially supports a nonhomo-
geneous GEV distribution to capture the nonlinear relationship between the load
response and the wind-related covariates. Such treatment avoids binning the data.
The underlying spline models instead connect all the bins across the whole wind
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profile, so that load and wind data are pooled together to produce better estimates.
This is demonstrated by applying the spline method to three sets of inland wind
turbine load response data and making comparisons with the binning method.

The popularity of the binning method in industrial practice is due to the sim-
plicity of its idea and procedure. However, simplicity of a procedure should not be
mistaken as simplicity of a model. Suppose that one uses a 6 × 10 grid to bin the
two-dimensional wind covariates (as we did in this study) and fixes the shape pa-
rameter ξ across the bins (a common practice in the industry). The binning method
yields 60 local GEV distributions, each of which has two parameters, translating
to a total of 121 parameters for the overall model (counting the fixed ξ as well).
By contrast, the spline method, although conceptually and procedurally more in-
volved, produces an overall model with fewer parameters. To see this, consider
the following: for the three ILT data sets, the average (Kμ + Kσ ) from the RJS
algorithm is between 12 and 18. The number of model parameters dk in (4.2) is
generally less than 20, a number far smaller than the number of parameters in the
binning method. In the end, the spline method uses a sophisticated procedure to
find a simpler model that is more capable.

APPENDIX A: PRIORS

In this appendix we specify priors for parameters used in the basis functions as
follows:

φ = (K,�2, . . . ,�K)
(A.1)

where �k =
{

(Tk, h1k, t1k), when Tk = 1,2,
(Tk, h1k, h2k, t1k, t2k), when Tk = 3,

p(K) = 1

n
, K = {1, . . . , n},

p(Tk) =

⎧⎪⎪⎨
⎪⎪⎩

1, Tk = {1}, for φη and φδ ,
1
2 , Tk = {1,2}, for φμ in ILT2 and all φσ ,
1
3 , Tk = {1,2,3}, for φμ in ILT1 and ILT3,

p(h·k) = 1
2 , h·k = {+1,−1},

p(t·k) = 1

n
, t·k = {v1, . . . , vn} or {s1, . . . , sn}.

APPENDIX B: IMPLEMENTATION DETAILS OF THE SPLINE METHOD

In this appendix we provide the detailed implementation procedure for the
spline method. The procedure consists of two major steps: (1) Step I: construct
the posterior predictive distribution of the extreme load level lT and (2) Step II:
obtain the joint posterior predictive distribution of wind characteristics (v, s).
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1. Step I: construct the posterior predictive distribution of the extreme load level
using the Bayesian spline models:
(a) Set t = 0 and the initial φ(t)

μ and φ(t)
σ both to be a constant scalar.

(b) At iteration t , Kμ and Kσ are equal to the number of basis functions speci-
fied in φ(t)

μ and φ(t)
σ . Find the MLEs of β(t), θ (t), ξ (t) and the inverse of the

negative of Hessian matrix, given φ(t)
μ and φ(t)

σ .
(c) Generate u1

μ uniformly on [0,1] and choose a move in the RJS procedure.
In the following, bKμ, rKμ,mKμ are the proposal probabilities associated
with a move type, and they are all set as 1

3 :

• If (u1
μ ≤ bKμ), then go to BIRTH step, denoted by φ∗

μ = BIRTH-

proposal(φ(t)
μ ), which is to augment φ(t)

μ with a �
μ
Kμ+1 that is selected

uniformly at random;
• Else if (bKμ ≤ u1

μ ≤ bKμ + rKμ), then go to DEATH step, denoted by

φ∗
μ = DEATH-proposal(φ(t)

μ ), which is to remove from φ(t)
μ with a �

μ
k

where 2 ≤ k ≤ Kμ is selected uniformly at random;
• Else, go to MOVE step, denoted by φ∗

μ =MOVE-proposal(φ(t)
μ ), which

first does φ†
μ = DEATH-proposal(φ(t)

μ ) and then does φ∗
μ = BIRTH-

proposal(φ†
μ).

(d) Find the MLEs (β∗, θ∗, ξ∗) and the inverse of the negative of Hessian ma-
trix, given φ∗

μ and φσ .
(e) Generate u2

μ uniformly on [0,1] and compute the acceptance ratio αμ

in (4.13), using the results from (b) and (d).
(f) Accept φ∗

μ as φ(t+1)
μ with probability min(αμ,1). If φ∗

μ is not accepted, let

φ(t+1)
μ = φ(t)

μ .
(g) Generate u1

σ uniformly on [0,1] and choose a move in the RJS procedure.
In the following, bKσ , rKσ ,mKσ are the proposal probabilities associated
with a move type, and they are all set as 1

3 :

• If (u1
σ ≤ bKσ ), then go to BIRTH step, denoted by φ∗

σ = BIRTH-
proposal(φ(t)

σ ), which is to augment φ(t)
σ with a �σ

Kσ +1 that is selected
uniformly at random;

• Else if (bKσ ≤ u1
σ ≤ bKσ + rKσ ), then go to DEATH step, denoted by

φ∗
σ = DEATH-proposal(φ(t)

σ ), which is to remove from φ(t) with a �σ
k

where 2 ≤ k ≤ Kσ that is selected uniformly at random;
• Else, go to MOVE step, denoted by φ∗

σ =MOVE-proposal(φ(t)
σ ), which

first does φ†
σ = DEATH-proposal(φ(t)) and then does φ∗

σ = BIRTH-
proposal(φ†

σ ).

(h) Find the MLEs (β∗, θ∗, ξ∗) and the inverse of the negative of Hessian ma-
trix, given φt+1

μ and φ∗
σ .
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(i) Generate u2
σ uniformly on [0,1] and compute the acceptance ratio ασ

in (4.14), using the results from (d) and (h).
(j) Accept φ∗

σ as φ(t+1)
σ with probability min(ασ ,1). If φ∗

σ is not accepted, let
φ(t+1)

σ = φ(t)
σ .

(k) After initial burn-ins (in our implementation, initial burn-in is 1000), draw
a posterior sample of (β(t+1), θ (t+1), ξ (t+1)) from the approximated mul-
tivariate normal distribution at the maximum likelihood estimates and the
inverse of the negative of the Hessian matrix. Depending on the acceptance
or rejection that happened in (f) and (j), the MLEs to be used are obtained
from either (b), (d) or (h).

(l) Take the posterior sample of �a , obtained in (f), (j) and (k), and calculate
a sample of μ and σ using (4.4) and (4.5), respectively, for each pair of the
Nw × Nsw samples of (v, s) obtained in Step II. This generates Nw × Nsw

samples of μ and σ .
(m) Draw Nl samples for the 10-minute maximum load ỹ from each GEV

distribution with μi , σi and ξi , i = 1, . . . ,Nw × Nsw , where μi and σi are
among Nw × Nsw samples obtained in (l), and ξi is always set as ξ (t+1).

(n) Get the quantile value (i.e., the extreme load level lT [�a]) corresponding
to 1 − PT from the Nw × Nsw × Nl samples of ỹ.

(o) To obtain a credible interval for lT , repeat (b) through (n) Ml times.
2. Step II: obtain the joint posterior predictive distribution of wind characteristics

(v, s):
(a) Find the MLEs of ν for all candidate distributions listed in Section 4.3.
(b) Use the SIC to select the “best” distribution model for the average wind

speed v. The chosen distribution is used in the subsequent steps to draw
posterior samples.

(c) Draw a posterior sample of ν from the approximated multivariate normal
distribution at the MLEs and the inverse of the negative of the Hessian
matrix.

(d) Draw Nw samples of ṽ using the distribution chosen in (b) with the param-
eter sampled in (c).

(e) Implement the RJS algorithm again, namely, (a) through (k) in Step I, to
get one posterior sample of �η = (βη,φη) and �δ = (θ δ,φδ).

(f) Take the posterior sample of �η and �δ , obtained in (e), and calculate a
sample of η and δ using (4.16) for each sample of v. This generates Nw

samples of η and δ.
(g) Draw a sample for the standard deviation of wind speed s̃ from each trun-

cated normal distribution with ηi , δi , i = 1, . . . ,Nw . Using the Nw samples
of η and δ obtained in (f), we obtain Nw samples of s̃.

(h) To get Mw × Nw samples of ṽ and s̃, repeat (c) through (g) Mw times.

In our implementation, we use Mw = 1000, Ml = 10,000, Nw = 100 and Nl =
100.



SPLINE METHOD FOR EXTREME LOADS 2059

APPENDIX C: CONFIDENCE INTERVALS FOR THE BINNING METHOD

To calculate the confidence intervals for the binning method, we follow a pro-
cedure similar to the one used for calculating the credible intervals in the spline
method. The difference is mainly that in the binning method, the parameters used
in the GEV distribution, namely, μ and σ (recall that ξ is fixed as a constant across
all the bins), are sampled using only the data in a specific bin. For those bins which
do not have data, its μ and σ are a weighted average of all nonempty bins with
the weight related to the inverse squared distance between bins, following the ap-
proach used by Agarwal and Manuel (2008). Once a sample of μ and σ is obtained
for a specific bin, the resulting local GEV is used to sample ỹ in that bin. Do this
for all the bins, and ỹ’s from all bins are pooled together to estimation lT .

Specially, we go through the following steps, where �c denotes the collection
of the parameters associated with all local GEV distributions used in all bins:

• Draw Mw × Nw samples from the joint posterior predictive distribution
p[ṽ, s̃|Dv, Ds] of wind characteristics (ṽ, s̃); this step is the same as in the
spline method;

• Using the data in a bin, draw a sample of μ and σ for that specific bin from a
multivariate normal distributions taking the MLE as its mean and the inverse of
the negative of the Hessian matrix as its covariance matrix. Not all the bins have
data. For those which do not have data, its μ and σ are a weighted average of all
nonempty bins with the weight related to the inverse squared distance between
bins, as we explained above. Collectively, �c contains all the μ’s and σ ’s from
all the bins;

• Decide which bins the wind characteristic samples (ṽ, s̃)’s fall into. Based on
the specific bin in which a sample of (ṽ, s̃) falls, the corresponding μ and σ in
�c is chosen; doing this yields the short-term distribution p[ỹ|ṽ, s̃,�c] for that
specific bin;

• Draw Nl samples of ỹ from p[ỹ|ṽ, s̃,�c] for each of the total Mw ×Nw samples
of (ṽ, s̃). This produces a total of Mw × Nw × Nl ỹ samples;

• One can then compute the quantile value lT [�c] corresponding to PT ;
• Repeat the above procedure Ml times to get the median and confidence intervals

of lT .

Our implementation here uses the same Mw,Ml,Nw and Nl as those used in the
spline method’s implementation.

Acknowledgments. This analysis has benefited from measurements down-
loaded from the internet database: “Database of Wind Characteristics” located at
DTU, Denmark. Internet: http://www.winddata.com/. Wind field time series from
the following sites have been applied: Roskilde, Denmark; Alborg, Denmark; and
Tehachapi Pass, California, USA. The authors would also like to acknowledge the
generous support from their sponsors.

http://www.winddata.com/


2060 LEE, BYON, NTAIMO AND DING

REFERENCES

AGARWAL, P. and MANUEL, L. (2008). Extreme loads for an offshore wind turbine using statistical
extrapolation from limited field data. Wind Energy 11 673–684.

BOTTASSO, C. L., CAMPAGNOLO, F. and CROCE, A. (2010). Computational procedures for the
multi-disciplinary constrained optimization of wind turbines. Technical report, Dipartimento di
Ingegneria Aerospaziale. Available at http://www.aero.polimi.it/~bottasso/DownloadArea.htm.

CARTA, J. A., RAMIREZ, P. and VELAZQUEZ, S. (2008). Influence of the level of fit a density
probability function to wind-speed data on the WECS mean power output estimation. Energy
Coversion and Management 49 2647–2655.

COLES, S. G. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, New
York.

DENISON, D. G. T., MALLICK, B. K. and SMITH, A. F. M. (1998). Bayesian MARS. Statist.
Comput. 8 337–346.

DENISON, D. G. T., HOLMES, C. C., MALLICK, B. K. and SMITH, A. F. M. (2002). Bayesian
Methods for Nonlinear Classification and Regression. Wiley, Chichester. MR1962778

FITZWATER, L. M., CORNELL, C. A. and VEERS, P. S. (2003). Using environmental contours to
predict extreme events on wind turbines. In Proceedings of the 2003 ASME Wind Energy Sympo-
sium, AIAA Paper-2003-865. Reno, Nevada.

FITZWATER, L. M. and WINTERSTEIN, S. R. (2001). Predicting design wind turbine loads from
limited data: Comparing random process and random peak models. In Proceedings of the 2001
ASME Wind Energy Symposium, AIAA Paper-2001-0046. Reno, Nevada.

FOGLE, J., AGARWAL, P. and MANUEL, L. (2008). Towards an improved understanding of statisti-
cal extrapolation for wind turbine extreme loads. Wind Energy 11 613–635.

FREUDENREICH, K. and ARGYRIADIS, K. (2008). Wind turbine load level based on extrapolation
and simplified methods. Wind Energy 11 589–600.

GNEITING, T. (2011). Making and evaluating point forecasts. J. Amer. Statist. Assoc. 106 746–762.
MR2847988

GREEN, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika 82 711–732. MR1380810

IEC (1999). IEC 61400-1 Ed 2: Wind Turbines-Part1: Design Requirements. International Elec-
trotechnical Commission, Geneva, Switzerland.

IEC (2005). IEC 61400-1 Ed 3: Wind Turbines-Part1: Design Requirements. International Elec-
trotechnical Commission, Geneva, Switzerland.

KASS, R. E. and WASSERMAN, L. (1995). A reference Bayesian test for nested hypotheses and its
relationship to the Schwarz criterion. J. Amer. Statist. Assoc. 90 928–934. MR1354008

LI, G. and SHI, J. (2010). Application of Bayesian model averaging in modeling long-term wind
speed distributions. Renewable Energy 35 1192–1202.

MANUEL, L., VEERS, P. S. and WINTERSTEIN, S. R. (2001). Parametric models for estimating
wind turbine fatigue loads for design. ASME Journal of Solar Energy Engineering 123 346–355.

MORIARTY, P. (2008). Database for validation of design load extrapolation techniques. Wind Energy
11 559–576.

MORIARTY, P., HOLLEY, W. E. and BUTTERFIELD, S. (2002). Effect of turbulence variation on
extreme loads prediction for wind turbines. ASME Journal of Solar Energy Engineering 124
387–395.

NATARAJAN, A. and HOLLEY, W. E. (2008). Statistical extreme load extrapolation with quadratic
distortions for wind turbines. ASME Journal of Solar Energy Engineering 130 031017:1–7.

PEERINGA, J. M. (2003). Extrapolation of extreme responses of a multi megawatt wind turbine.
Technical report, Energy Research Centre of the Netherlands. Available at http://www.ecn.nl/
docs/library/report/2003/c03131.pdf.

http://www.aero.polimi.it/~bottasso/DownloadArea.htm
http://www.ams.org/mathscinet-getitem?mr=1962778
http://www.ams.org/mathscinet-getitem?mr=2847988
http://www.ams.org/mathscinet-getitem?mr=1380810
http://www.ams.org/mathscinet-getitem?mr=1354008
http://www.ecn.nl/docs/library/report/2003/c03131.pdf
http://www.ecn.nl/docs/library/report/2003/c03131.pdf


SPLINE METHOD FOR EXTREME LOADS 2061

PEERINGA, J. M. (2009). Comparison of extreme load extrapolations using measured and calcu-
lated loads of a MW wind turbine. Technical report, Energy Research Centre of the Netherlands.
Available at http://www.ecn.nl/docs/library/report/2009/m09055.pdf.

RAFTERY, A. E. (1995). Bayesian model selection in social research. Sociological Methodology 25
111–163.

REGAN, P. and MANUEL, L. (2008). Statistical extrapolation methods for estimating wind turbine
extreme loads. ASME Journal of Solar Energy Engineering 130 031011:1–15.

RONOLD, K. O. and LARSEN, G. C. (2000). Reliability-based design of wind-turbine rotor blades
against failure in ultimate loading. Engineering Structures 22 565–574.

SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461–464. MR0468014
SMITH, R. L. (1990). Extreme value theory. In Handbook of Applicable Mathematics 7 437–471.

Wiley, England.
SØRENSEN, J. D. and NIELSEN, S. R. K. (2007). Extreme wind turbine response during operation.

Journal of Physics, Conference Series 75 012074:1–7.
VEERS, P. S. and BUTTERFIELD, S. (2001). Extreme load estimation for wind turbines: Issues and

opportunities for improved practice. In Proceedings of the 2001 ASME Wind Energy Symposium,
AIAA Paper-2001-0044. Reno, Nevada.

WINDDATA. Available at http://www.winddata.com. Accessed July 2010.

G. LEE

L. NTAIMO

Y. DING

DEPARTMENT OF INDUSTRIAL AND

SYSTEMS ENGINEERING

TEXAS A&M UNIVERSITY

COLLEGE STATION, TEXAS 77843-3131
USA
E-MAIL: giwhyunlee@gmail.com

ntaimo@tamu.edu
yuding@iemail.tamu.edu

E. BYON

DEPARTMENT OF INDUSTRIAL AND

OPERATIONS ENGINEERING

UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN 48109
USA
E-MAIL: ebyon@umich.edu

http://www.ecn.nl/docs/library/report/2009/m09055.pdf
http://www.ams.org/mathscinet-getitem?mr=0468014
http://www.winddata.com
mailto:giwhyunlee@gmail.com
mailto:ntaimo@tamu.edu
mailto:yuding@iemail.tamu.edu
mailto:ebyon@umich.edu

	Introduction
	Background and data sets
	Literature review
	Bayesian spline method for extreme load
	Submodel 1: Bayesian spline model for conditional maximum load
	Submodel 1: Posterior distribution of parameters
	Submodel 2: Distribution of wind characteristics
	Posterior predictive distribution of the extreme load level lT

	Results
	Model selection
	Point-wise credible intervals
	Comparison between the binning method and spline method for conditional maximum load
	Estimation of extreme load
	Simulation of extreme load

	Summary
	Appendix A: Priors
	Appendix B: Implementation details of the spline method
	Appendix C: Confidence intervals for the binning method
	Acknowledgments
	References
	Author's Addresses

