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Automatic in-process data collection techniques have been widely used in complicated manufacturing
processes in recent years. The huge amounts of product measurement data have created great opportuni-
ties for process monitoring and diagnosis. Given such product quality measurements, this article examines
the diagnosability of the process faults in a multistage manufacturing process using a linear mixed-effects
model. Fault diagnosability is defined in a general way that does not depend on specific diagnosis algo-
rithms. The concept of a minimal diagnosable class is proposed to expose the “aliasing” structure among
process faults in a partially diagnosable system. The algorithms and procedures needed to obtain the min-
imal diagnosable class and to evaluate the system-level diagnosability are presented. The methodology,
which can be used for any general linear input–output system, is illustrated using a panel assembly process
and an engine head machining process.

KEY WORDS: Diagnosability analysis; Fault diagnosis; Multistage manufacturing process; Quality
control; Variance components analysis.

1. INTRODUCTION

Automatic in-process sensing and data collection techniques
have been widely used in complicated manufacturing processes
in recent years (Apley and Shi 2001). For example, optical co-
ordinate measuring machines (OCMMs) are built into autobody
assembly lines to obtain 100% inspection on product quality
characteristics. In-process probes are also installed on machine
tools to help ensure the dimensional integrity of manufactured
workpieces. The data collected by these tools create great op-
portunity not only for quality assurance and process monitor-
ing, but also for process fault diagnosis of quality-related prob-
lems in manufacturing systems.

Statistical process control (SPC) (Montgomery and Woodall
1997; Woodall and Montgomery 1999) is the major technique
used in practice for quality and process monitoring. After a
process change is detected through SPC techniques, it is critical
to determine the appropriate corrective actions toward restor-
ing the manufacturing system to its normal condition. Because
product quality is determined by the conditions of process tool-
ing elements (e.g., cutting tool, fixture, welding gun) in a man-
ufacturing system, the appropriate corrective action is to fix the
malfunctioning tooling elements that are responsible for the de-
fective products. However, SPC methods provide little diag-
nostic capability—the diagnosis of malfunctioning tooling el-
ements is left to human operators.

Consider the example of a two-dimensional panel assembly
process (Fig. 1) that is simplified from an autobody assembly

process. In this process, three stations are involved to assemble
four parts (marked as 1, 2, 3, and 4 in Fig. 1) and inspect the
assembly: parts 1 and 2 are assembled at station I, subassem-
bly “1 + 2” is assembled with parts 3 and 4 at station II, and
the final assembly with four parts is inspected at station III for
surface finish, joint quality, and dimensional defects. Each part
is restrained by a set of fixtures constituting of a four-way lo-
cator, which controls motion in both x- and z-directions, and a
two-way locator, which controls motion only in the z-direction.
A subassembly with several parts also needs a four-way locator
and a two-way locator to completely control its degrees of free-
dom. The active locating points are marked as Pi, i = 1, . . . ,8,
in Figure 1.

The positioning accuracy of locators is one of the critical fac-
tors in determining the dimensional accuracy of the final assem-
bly. Worn, broken, or improperly installed locators cannot pro-
vide desired positioning accuracy, and the assembly will have
excessive dimensional deviation or variation as a result. The
malfunction of tooling elements (locators in this example) is
called process fault, which is the root cause of product quality–
related problems.

Directly measuring the position of locators during the pro-
duction is costly, if not impossible. A practical method is to
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Figure 1. A Multistage Two-Dimensional Panel Assembly Process.

take measurements from the assembly (or subassembly). In this
example, five coordinate sensors are installed on all three sta-
tions. Each coordinate sensor measures the position of a part
feature, such as a corner, in two orthogonal directions (x and z).
The measurement points are marked as {Mi, i = 1, . . . ,5} in
Figure 1.

Measurements from M1 to M5 contain information regard-
ing the accuracy of fixture locators, offering the possibility of
diagnosing locators’ failure (i.e., process fault). However, the
diagnosis of failing locators is not obvious, because the out-of-
control condition of a product feature at a downstream station
k may be caused by a locator failure at an upstream station i
(i < k). For example, if M3 triggers an alarm, it could be caused
by the failure of P1 or P4 on station II, but it might also be
caused by the failure of P1, P2, even that of P3, P4 on station I.

In many other manufacturing processes, we encounter a sim-
ilar situation; a tremendous amount of product measurements
are available through in-process sensing devices, but the effec-
tive utilization of them beyond monitoring remains an interest-
ing, yet challenging problem. It is thus highly desirable to have
the capability to diagnose process faults from product measure-
ments.

Recent research has advanced toward this goal (Ceglarek
and Shi 1996; Apley and Shi 1998; Chang and Gossard 1998;
Rong et al. 2000). There are two major components of the re-
ported fault diagnosis methods: (1) a linear model linking prod-
uct quality measurements to process faults and (2) algorithms
of extracting fault information based on the model. The linear
model is often developed for particular processes considering
the underlying physical laws. The model-based diagnosis algo-
rithms can be further classified as either multivariate transfor-
mation, such as the principal components analysis followed by
pattern recognition (Ceglarek and Shi 1996; Rong et al. 2000),
or least squares estimation followed by a hypothesis test (Apley
and Shi 1998; Chang and Gossard 1998).

Limitations of the aforementioned work fall into two cate-
gories. First, the models used are developed for single-stage
operations, where a manufacturing stage is defined as a group
of operations conducted under the same workpiece setup. How-
ever, modern production systems often involve multiple stages
to finish complex products. The fault–quality relationship in a
multistage system is not a simple summation of single-stage
models. The effect of a certain process fault on product quality

could be altered by following operations, and different process
faults could have the same manifestation on the final product.
As we discuss in Section 2, systematic modeling of the fault–
quality relationship for multistage manufacturing systems is
currently available. Exploring fault diagnosis problems explic-
itly for multistage systems is feasible and necessary.

Second, diagnosability analysis, a fundamental issue regard-
ing fault diagnosis, has not been thoroughly studied. The is-
sue of diagnosability refers to the problem of whether the prod-
uct measurements contain enough information for the diagnosis
of critical process faults, that is, if process faults are diagnos-
able. In the abovementioned work, the diagnosability condition
is implicitly specified in the preconditions required by specific
diagnosis algorithms. No explicit discussion on diagnosability
under a general framework was given in those articles.

The diagnosability issue is particularly relevant for a multi-
stage system. First, it is challenging to evaluate diagnosability
in a multistage system. As in Figure 1, the quality characteris-
tic M3 at station II is affected by locators on both station I and
station II. It is not obvious what kind of information can be ob-
tained regarding those locators when M3 is measured. Overall,
are all process faults diagnosable, given five sensors measuring
the current product features? If not, then what is the “aliasing”
structure among the coupled process faults? Second, even if it is
technically feasible, it is not cost-effective to install sensors or
probes on every intermediate manufacturing stage. Therefore,
the quantitative performance evaluation of a gauging system is
very important. The proposed diagnosability analysis can pro-
vide the underlying analytical tools for this purpose.

Currently there is little reported research on diagnosability.
Ding, Shi, and Ceglarek (2002) conducted a preliminary study.
The diagnosability condition given in their article is a special
case of the diagnosability analysis presented in the present arti-
cle. This relationship is clarified in Section 3. Furthermore, their
article does not expose the “aliasing” fault structure for coupled
faults in a partially diagnosable system, which is another focus
of the present article.

This article focuses on developing a general framework of di-
agnosability analysis for the purpose of fault diagnosis in multi-
stage manufacturing systems. We start with a linear state-space
model that links product quality measurements to process faults
in a multistage system. The model can be reformulated into a
mixed linear model used in statistical inference. The diagnosis
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Figure 2. Diagram of a Multistage Manufacturing Process.

problem is shown to be equivalent to the problem of variance
components analysis (VCA). Following the concept of identifi-
ability in VCA, we define diagnosability in a general sense, in-
dependent of specific diagnosis algorithms. Diagnosability, and
especially partial diagnosability, is studied through the concept
of minimal diagnosable class, which is developed to reveal the
“aliasing” structure among coupled process faults. Three cri-
teria for performance evaluation of gauging systems are pro-
posed. These criteria benchmark the amount and the “quality”
of information obtained through a gauging system, as well as
the flexibility of the gauging system.

The article is structured as follows. In Section 2, the fault–
quality diagnostic model is formulated as a mixed linear model.
Diagnosability analysis is presented in Section 3, including di-
agnosability criteria used to evaluate and compare gauging sys-
tems. The earlier example is revisited in Section 4, together
with another industrial case study, to illustrate the methodol-
ogy. Conclusions are presented in Section 5.

2. FORMULATION OF THE FAULT–QUALITY
DIAGNOSTIC MODEL

As mentioned in the previous section, the first step in di-
agnosability analysis is to develop a fault–quality diagnostic
model that links process faults and product quality measure-
ments. Several linear fault–quality models are available to de-
scribe the propagation of quality information in a multistage
system. Mantripragada and Whitney (1999), Jin and Shi (1999),
and Ding, Ceglarek, and Shi (2000) developed multistage fault–
quality models for rigid-part assembly processes. Camelio,
Hu, and Ceglarek (2001) modeled the variation propagation in
multistage compliant-part assembly processes. Zhou, Huang,
and Shi (2003) and Djurdjanovic and Ni (2001) provided lin-
ear fault–quality diagnostic models for multistage machining
processes. All of these models are mechanism models, based
on the physical laws of the processes. Lawless, Mackay, and
Robinson (1999) and Agrawal, Lawless, and Mackay (1999)
used a data-driven AR(1) model to describe the variation trans-
mission in both multistage assembly and machining processes.
The parameters of their AR(1) model are estimated based on
product measurements. All of the aforementioned models adopt
the same model structure, a linear state-space representation.
This linear state-space model is used in this article to link prod-
uct quality to individual process faults.

Figure 2 illustrates a manufacturing process with N stages.
Variable k is the stage index. At the kth stage, several vari-
ables are involved in the variation propagation model: (1) the
product quality information (e.g., part-dimensional deviations)
at each stage, represented by the state vector xk ∈ �nx×1, where

nx is the dimension of xk; (2) the process variance sources (i.e.,
the process faults, such as the fixturing error, the machining er-
ror, and the thermal error), included as the input uk ∈ �dk×1,
where dk is the number of process variation sources at stage k;
(3) background process noises and unmodeled errors, repre-
sented by wk ∈ �nx×1; (4) the product quality measurements,
denoted by yk ∈ �qk×1, where qk is the number of measure-
ment features at stage k; (5) the measurement noise, denoted as
a random vector vk ∈ �qk×1.

In this article we assume the following independence rela-
tionships. We assume that elements in uk are independent to
each other and also independent to any element in ul, ∀l �= k,
and assume the same independence relationship for wk and vk.
We further assume that elements in uk are independent to el-
ements in two other vectors, wl and vj, ∀k, l, j, and likewise
the same independent relationship for elements in wl and vj.
For wk, we assume that it is a zero-mean vector. For vk, we
assume that elements in vk are zero mean and have equal vari-
ance σ 2

v , that is, cov(vk) = σ 2
v Iqk , where cov(·) represents the

covariance matrix of a random vector, σ 2
v is the variance of

measurement noise, and Iqk is a qk × qk identity matrix. Please
note that here we assume that σ 2

v is a constant for all stations;
that is, measurement noise terms on all stations have the same
variance. This assumption is reasonable if we use the same mea-
surement devices on all measurement stages.

Under the small error assumption, the linear state-space
model can be expressed as

xk = Ak−1xk−1 +Bkuk +wk and yk = Ckxk +vk, (1)

where k = 1,2, . . . ,N, Ak−1xk−1 represents the transformation
of quality information from stage k − 1 to stage k, Bkuk repre-
sents how the product quality is affected by the process faults
at stage k, and Ck is the observation matrix that maps process
states to measurements. System matrices Ak, Bk , and Ck are
constant matrices, determined by the process/product design in-
formation.

The state-space model can be transformed into a general
mixed linear model as follows. First, it can be written in an
input-output format as

yk =
k∑

i=1

Ck�k,iBiui + Ck�k,0x0 +
k∑

i=1

Ck�k,iwi + vk, (2)

where �k,i = Ak−1Ak−2 · · ·Ai for k > i and �k,k = Inx . The
quality characteristics x0 correspond to the initial condition of
the product before it goes into the manufacturing line. If the
measurement of x0 is available, then Ck�k,0x0 can be moved to
the left side of (2), and the difference yk −Ck�k,0x0 can then be
treated as a new measurement. If the measurement of x0 is not
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available, then it can be treated as an additional process fault
input. Without loss of generality, we set x0 to 0.

Define µk as the expectation of uk and ũk = uk − µk. Com-
bining all available measurements from station 1 to station N,
we have


y1
y2
...

yN


 = � ·




µ1
µ2
...

µN


+� ·




ũ1
ũ2
...

ũN


+� ·




w1
w2
...

wN


+




v1
v2
...

vN


 , (3)

where

� =




C1B1 0 · · · 0
C2�2,1B1 C2B2 · · · 0

...
...

. . .
...

CN�N,1B1 CN�N,2B2 · · · CNBN


 ,

� =




C1 0 · · · 0
C2�2,1 C2 · · · 0

...
...

. . .
...

CN�N,1 CN�N,2 · · · CN


 ,

µk is an unknown constant vector, and ũk , wk, and vk are zero-
mean random vectors. Because yk is not necessarily available
at every stage, if no measurement is available at station k, then
the corresponding rows should be eliminated.

Let P denote the total number of potential faults (i.e., the
length of [µT

1 . . . µT
k . . . µT

N]T ) and let Q denote the number of
system noises (i.e., the length of [wT

1 . . . wT
k . . . wT

N]T ) consid-
ered on all of the stages. That is, P = ∑N

k=1 dk and Q = N · nx.
We use the lower-case ui, i = 1, . . . ,P, to represent the ith co-
ordinate of the vector of [ũT

1 . . . ũT
k . . . ũT

N]T and denote ui’s
variance as σ 2

ui
. Similarly, we use the lower-case wi to represent

the ith coordinate of the vector of [wT
1 . . . wT

k . . . wT
N]T and de-

note wi’s variance as σ 2
wi

. With this notation, the variance com-
ponents of process faults, the variance components of system
noises, and the variance of measurement noises are represented
by {σ 2

ui
}i=1,...,P, {σ 2

wi
}i=1,...,Q, and σ 2

v .
During production, multiple samples of the product are avail-

able at each stage. Assume that we have M samples, and that the
samples can be stacked up as

Y = (1M ⊗ �)U + (IM ⊗ �)Ũ + (IM ⊗ �)W + V, (4)

where UT = [µT
1 . . . µT

k . . . µT
N], YT = [YT

1 . . . YT
i . . . YT

M],
YT

i = [yT
1i . . . yT

ki . . . yT
Ni] is the ith sample measurement, and

yki is the ith sample measurement at the kth stage. Ũ, W, and
V are defined in the similar way as Y, ⊗ is the Kronecker ma-
trix product (Schott 1997), 1M is the summing vector whose M
elements equal unity. Letting “: j” represent the jth column of a
matrix, (4) can be reorganized as

Y = (1M ⊗�)U+
P∑

j=1

(IM ⊗�:j)Ũ(j)+
Q∑

j=1

(IM ⊗� :j)W(j)+V,

(5)
where Ũ(j) = [ũj1 . . . ũji . . . ũjM]T and W(j) = [wj1 . . . wji

. . . wjM]T are the collections of all samples of the jth fault and
the jth system noise.

The process faults manifest themselves as the mean de-
viation and variance of uk. The diagnosability problem can
then be restated: From M samples, can we identify the value
of {µi}i=1,...,P and {σ 2

ui
}i=1,...,P? In the following section, this

problem is studied using the framework of VCA.

3. DIAGNOSABILITY ANALYSIS FOR MULTISTAGE
MANUFACTURING PROCESSES

3.1 Definition of Fault Diagnosability

The model in (5) fits a general mixed linear model given by
Rao and Kleffe (1988) as

y = Xα +
c∑

i=1

ξ ibi + e, (6)

where y is an ny × 1 observation vector; X is an ny × lx known
constant matrix, lx ≤ ny; α is an lx × 1 vector of unknown con-
stants; ξ i is an ny × mi known constant matrix, mi ≤ ny; bi is
an mi × 1 vector of independent variables with mean 0 and un-
known variance σ 2

i ; e is an ny × 1 vector of independent vari-
ables with mean 0 and unknown variance σ 2

e . The σ 2
i ’s and σ 2

e
are called “variance components.”

A mixed model is used to describe both fixed and random ef-
fects. This model is often applied to biological and agricultural
data. In designed experiments, the matrices X and {ξ i}i=1,...,c

are determined by designers. They often contain only 0’s or
1’s, depending on whether the relevant effect contributes to the
measurement. Given a mixed model, researchers are interested
primarily in estimating the fixed effects and variance compo-
nents. A large body of literature about VCA is available; excel-
lent overviews have been given by Rao and Kleffe (1988) and
Searle, Casella, and McCulloch (1992).

We can establish a one-to-one corresponding relationship be-
tween terms in our fault–quality model [eq. (5)] and those in the
mixed model [eq. (6)]. In our fault diagnosis problem, however,
the matrices X, {ξ i}i=1,...,c are computed from system matri-
ces Ak, Bk , and Ck, k = 1, . . . ,N, which are determined by the
process design information and measurement deployment in-
formation. The fixed effects are the mean values (µk) of process
faults, and the random effects are the process faults and the
process noises, ũk, wk, and vk. Fault diagnosis is thus equiv-
alent to the problem of variance components estimation. The
definition of diagnosability in this article follows the same con-
cept of identifiability in VCA (Rao and Kleffe 1988). The term
“diagnosability” is used because it is more relevant in the con-
text of our engineering applications.

Based on (5), we have

E(Y) = [�T . . . �T . . . �T ]TU (7)

and

cov(Y) = F1σ
2
u1

+ · · · + FPσ 2
uP

+ FP+1σ
2
w1

+ · · ·
+ FP+Qσ 2

wQ
+ FP+Q+1σ

2
v (8)

where E(·) represents the expectation,

Fi =
{

IM ⊗ (�:i�T:i ), when 1 ≤ i ≤ P
IM ⊗ (� :(i−P)�

T
:(i−P)), when P < i ≤ P + Q,
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and FP+Q+1 is an identity matrix with the appropriate dimen-
sion.

Define [σ 2
u1

. . . σ 2
uP

σ 2
w1

. . . σ 2
wQ

σ 2
v ]T in (8) as θ , EU as the

space containing all possible values of U, and ES as the space
containing all possible values of θ . (In the most general case,
EU is �P×1 and ES is a (P + Q + 1) × 1 space spanned by
nonnegative real numbers.) Diagnosability is defined following
the definition of “identifiability” of Rao and Kleffe (1988).

Definition 1. In model (5), a linear parametric function pTα,
p ∈ �P×1, α ∈ EU is said to be diagnosable if, ∀α1,α2 ∈ EU ,

pTα1 �= pTα2 ⇒ E(Y)|U=α1 �= E(Y)|U=α2 . (9)

A linear parametric function fTθ , f ∈ �(P+Q+1)×1, θ ∈ ES is
said to be diagnosable if, ∀θ1, θ2 ∈ ES,

fTθ1 �= fTθ2 ⇒ cov(Y)|θ=θ1 �= cov(Y)|θ=θ2 . (10)

Remark 1. In model (5), we are concerned only about the
mean and variance of process faults. Therefore, only the first-
and second-order moments are considered in the definition.

Remark 2. The foregoing definition means that a fault com-
bination is called diagnosable if the change in the combined
mean or variance causes a change in the mean or variance of
observation Y. This definition does not depend on any specific
diagnosis algorithm.

Remark 3. By selecting different p and f, the diagnosability
of different fault combinations can be evaluated. For example,
by selecting p or f = [1 0 . . . 0]T , we can check whether the
mean or variance of the first fault is diagnosable. If it is, then we
say the mean or variance of this fault can be uniquely identified
or diagnosed.

3.2 Criterion of Fault Diagnosability and Minimal
Diagnosable Class

The necessary and sufficient condition of fault diagnosability
in a linear system is given by Theorem 1. The proof is given in
Appendix A.2.

Theorem 1. Define the range space of a matrix as R(·), and
D = [� �]. In model (5), the following statements hold:

a. pTα is diagnosable if and only if p ∈ R(�T).
b. fTθ is diagnosable if and only if f ∈ R(H), where H is

symmetric and given as

H =




(DT:1D:1)2 · · · (DT:1D:i)2 · · ·
...

...
...

...

(DT:i D:1)2 · · · (DT:i D:i)2 · · ·
...

...
...

...

(DT
:(P+Q)D:1)2 · · · (DT

:(P+Q)D:i)2 · · ·
DT:1D:1 · · · DT:i D:i · · ·

(DT:1D:(P+Q))
2 DT:1D:1

...
...

(DT:i D:(P+Q))
2 DT:i D:i

...
...

(DT
:(P+Q)D:(P+Q))

2 DT
:(P+Q)D:(P+Q)

DT
:(P+Q)D:(P+Q) L




, (11)

where L is the length of [yT
1 yT

2 . . . yT
N]T in (3), that is, L =∑N

k=1 qk.

Theorem 1 gives us a powerful tool to test whether some
combinations of faults are diagnosable. From this theorem, it
is clear that the means of all the faults are uniquely diagnosable
if and only if �T� is of full rank. The variances of all the faults
are uniquely diagnosable if and only if H is of full rank.

For the foregoing criterion, the diagnosability of the variance
of process fault includes the effects of the modeling error w
and the observation noise v. This means that even if a fault can
be distinguished from other faults, it still can be nonuniquely
diagnosable if it is tangled with the modeling error or the ob-
servation noise. In some cases, if the modeling error and the
observation noise can be assumed to be small or their variance
can be estimated from the normal working condition of a manu-
facturing process, then we can ignore their effects when explor-
ing the diagnosability of process faults. The testing matrix is
revised accordingly by reducing θ to include only [σ 2

u1
. . . σ 2

uP
]

and reducing the H matrix in Theorem 1 to Hr, where Hr is a
subblock of H, that is,

Hr =




(�T:1�:1)2 · · · (�T:1�:i)2 · · · (�T:1�:P)2

...
...

...
...

...

(�T:i�:1)2 · · · (�T:i�:i)2 · · · (�T:i�:P)2

...
...

...
...

...

(�T:P�:1)2 · · · (�T:P�:i)2 · · · (�T:P�:P)2




. (12)

Remark 4. Under the setting where noises w and v are as-
sumed to be negligible, the diagnosability matrix was defined
by Ding et al. (2002) as π(�), where π(·) is a matrix trans-
formation that they defined. The variances of process faults are
considered fully diagnosable if and only if π(�)Tπ(�) is of
full rank. In fact, this condition is the same as what we have
derived in the present article. It can be shown that R(Hr) =
R(π(�)Tπ(�)). Therefore, the work of Ding et al. (2002) can
be considered a special case of the general framework presented
in this article.

Remark 5. If noise terms are not included, Ding et al. (2002)
showed that the mean being diagnosable is a sufficient con-
dition for variance being diagnosable. However, the converse
is not true. This is illustrated in the case study of machining
processes given in Section 4.

Theorem 1 alone is not very effective in analyzing a partially
diagnosable system where not all faults are diagnosable. The
other faults that we need to know before we can identify a
nonuniquely diagnosable fault are not obvious from the theo-
rem. To analyze the partial diagnosable system, we propose the
concept of a minimal diagnosable class. We first introduce the
concept of the diagnosable class, and then present the definition
of the minimal diagnosable class.

Definition 2. A nonempty set of n faults {ui1 . . . uin} forms a
mean or variance diagnosable class if a nontrivial linear com-
bination of their means {µi1 . . . µin} or variances {σ 2

i1
. . . σ 2

in
}

is diagnosable. (“Nontrivial” means that at least one coefficient
of the linear combination is nonzero.)

Definition 3. A nonempty set of n faults {ui1 . . . uin} forms a
minimal mean or variance diagnosable class if no strict subset
of {ui1 . . . uin} is mean or variance diagnosable.
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The diagnosability of the mean and the variance can be dealt
with separately, and the testing procedures are very similar (the
only difference being the testing matrix, �T for mean and H
for variance). Hence no distinction between mean or variance
diagnosability is made hereafter unless otherwise indicated.

The minimal diagnosable classes expose the interrelation-
ship between different faults. Intuitively, a minimal diagnosable
class represents a set of faults that are coupled together closely.
We can identify only a linear combination of them, not any strict
subset. With this information, we can show the coupling rela-
tionship among faults and learn what additional information is
needed to identify certain faults.

We found that the minimal diagnosable class can be gener-
ated from the reduced row echelon form (RREF) (Lay 1997) of
the transpose of testing matrices. This result is stated in the fol-
lowing theorem, the proof of which is given in Appendix A.3.

Theorem 2. Given a testing matrix G ∈ �n×m (where G is
�T or H) and n faults θ = [u1 . . . un]T corresponding to G, the
fault set θ [v] is a minimal diagnosable class if v is a nonzero
row of the RREF of GT , where θ [v] is a subset of θ such that
θ(i) (the ith element of θ ) ∈ θ [v] if v(i) (the ith element of
v) �= 0.

When the RREF of GT is calculated, we can obtain some
of the minimal diagnosable classes. The following corollary
shows that by rearranging the columns in GT , we can obtain
all of the possible minimal diagnosable classes. (The proof is
given in Appendix A.4.) The rearranging process is known as
matrix permutation. The permuted matrix is defined as follows:
If {ci}i=1,...,n denote the column vectors of GT and correspond
to the faults θ = [u1 . . . un]T , then the columnwise permuted
matrix G′T = [ci1 . . . cin] is called the permuted matrix corre-
sponding to the fault permutation θ ′ = [ui1 . . . uin]T .

Corollary 1. Given a testing matrix G ∈ �n×m and assuming
that � = {ui1, . . . ,uis} is a minimal diagnosable class, we have
θ[v] = �, where v is the last nonzero row of G′T

r . G′T
r is the

RREF of the permuted matrix of GT corresponding to the fault
permutation uis+1 . . .uinui1 . . .uis .

Corollary 1 shows that a complete list of minimal diag-
nosable classes can be obtained by thoroughly permuting GT .
However, the number of permutations will explode if the num-
ber of faults is large. To handle this problem, we need the con-
cept of the “connected fault class.”

Given the RREF of GT , assume that we can divide its
nonzero rows into two sets of rows (C1 and C2) such that for any
vi ∈ C1 and vj ∈ C2, vi ∗ vj = 0, where ∗ is the Hadamard prod-
uct (Schott 1997). In other words, vi does not share any com-
mon nonzero column positions with vj. Define θ [C] as the fault
set of

⋃
k(θ [vk]) for all vk ∈ C, where C is a set of rows. We

can show that for an arbitrary minimal diagnosable class θ [v],
either θ [v] ⊆ θ [C1] or θ [v] ⊆ θ[C2]. From Theorem 1, v is in
the space spanned by the rows of GT . Thus v = a1v1 + a2v2,
where v1 and v2 are in the space spanned by the rows in C1
and C2. However, if a1 and a2 are both nonzero, then the fact
that vi ∗ vj = 0 and θ [v1], θ[v2] are both diagnosable will lead
to the contradiction that θ [v] is not minimal. The implication
is that the complete list of minimal diagnosable classes can be
obtained only by permuting the faults within θ [C1] and θ [C2].

Following the same rule, C1 and C2 can be further divided
into smaller groups iteratively until they are no longer divid-
able. If Ci is an undividable set of rows, then θ [Ci] is called a
“connected fault class.” Following a similar argument, we know
that the complete list of minimal fault classes can be obtained
through permutations only within each connected fault class.

If there are many small connected fault classes in the system,
then the computational load required to find all minimal diag-
nosable classes can be reduced significantly. The worst case is
that all faults are connected in a big fault class. However, this
is usually not the situation in practice. For instance, one princi-
ple in manufacturing process design is to reduce the accumula-
tion and propagation chain of process faults (Halevi and Weill
1995). For many actual engineering systems, the entire fault set
can often be partitioned into much smaller connected fault sub-
sets, as we demonstrate in the case studies in Section 4.

In summary, the algorithm obtaining all of the minimal diag-
nosable classes is as follows:

1. Calculate the RREF of GT .
2. Remove all of the uniquely identifiable faults because

each of them will form a minimal diagnosable class; re-
move the faults corresponding to zero columns because
they are invisible to the measurement system and hence
not diagnosable, and will not appear in any minimal diag-
nosable classes.

3. Find the connected fault classes based on the RREF of
GT .

4. Permute the columns within the connected fault classes
and obtain the minimal diagnosable classes based on the
permuted matrices until all of the possible permutations
are visited.

The minimal diagnosable classes expose the “aliasing” struc-
ture among the faults in the system, revealing critical fault di-
agnosability information. For example, if a single fault forms
a minimal diagnosable class, then it is uniquely diagnosable. If
a fault is not uniquely diagnosable and it forms a minimal di-
agnosable class with several other faults, then this fault can be
identified when all other faults are known. Thus, by looking at
the minimal diagnosable classes, we can identify which fault
can be identified from the measurements or, if not, what other
faults need to be known to identify it.

Minimal diagnosable classes can be used to evaluate the per-
formance of different gauging systems in terms of the diag-
nosability of the process faults. Consider the panel assembly
process in Figure 1 as an example. Another gauging system im-
plemented in this system is shown in Figure 3. Counting poten-
tial locator errors on all stations, we have a total of n = 18 po-
tential faults, which are assigned a serial number from 1 to 18,
as shown in Figure 3. The difference between the gauging sys-
tems shown in Figures 1 and 3 is the position of M5. The prob-
lem of how to compare these two systems in terms of the di-
agnosability of all 18 potential faults is addressed in the next
section.

3.3 Gauging System Evaluation Based on Minimal
Diagnosable Class

To evaluate a gauging system, we may need several easy-
to-interpret indices to characterize the information obtained
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Figure 3. Gauging System 2 for the Multistage Two-Dimensional Panel Assembly Process.

through the gauging system. We propose three criteria for
evaluating gauging systems: information quantity, information
quality, and system flexibility.

Information quantity refers to the degree to which we know
about process faults from the measurement data. When two
gauging systems are used for the same manufacturing system,
the number of potential faults is the same. However, for two
different partially diagnosable systems, the number of faults
that we need to know to ensure full diagnosability will often
be different. This number can be used to quantify the amount of
information obtained by different gauging systems. The follow-
ing corollary indicates that the rank of the diagnosability testing
matrix should be used to quantify the amount of measurement
information.

Corollary 2. Given a testing matrix G ∈ �n×m and n faults
θ = [u1 . . . un]T corresponding to G, if the rank of G is ρ, then
n − ρ faults need to be known to uniquely identify all n faults.

The proof is omitted here, it uses the property of the RREF
of a matrix. An intuitive understanding of this corollary is given
as follows. The solvability condition of a linear system Y = AX
can be determined by analyzing the RREF of A. In such a linear
system, n − ρ free variables need to be known before uniquely
solving X, where n is the dimension of X, ρ = rank(A). If we
consider the testing matrix G as if it is in a similar situation to
matrix A, then the result of Corollary 2 is not surprising.

The second criterion is information quality. Even if two gaug-
ing systems provide the same amount of information per the cri-
terion developed earlier, the detailed information content could
be very different. In practice, it is always desirable to have
unique identification of a fault so that corrective action can be
undertaken immediately eliminate the fault and restore the sys-
tem to its normal condition. The decision on what corrective
action to take cannot be made for a fault coupled with others
without further investigation or measurement. Thus we use the
number of uniquely identifiable faults to benchmark the quality
of measurement information. The uniquely identifiable faults
can be easily found by counting the number of minimal diag-
nosable classes that contain only a single fault.

The third criterion is the flexibility provided by the cur-
rent gauging system toward achieving full diagnosability. Some
gauging systems can be rigid in the sense that certain faults

or fault combinations, which may be difficult to measure in
practice, must be known to achieve a fully diagnosable system.
Other gauging systems may provide information in a flexible
way; for example, many fault combinations can be selected to
make the system fully diagnosable. This comparison needs the
concept of minimal complementary classes. A minimal com-
plementary class is a minimal set of faults such that if they are
known, then all of the systems faults can be uniquely identified.
Consider a system with four faults and three minimal diagnos-
able classes, {u1,u2}, {u1,u3,u4}, and {u2,u3,u4}. One can ver-
ify that the minimal complementary classes for this system are
{u1,u3}, {u1,u4}, {u2,u3}, {u2,u4}, and {u3,u4}. The number
of minimal complementary classes is five. A system with more
minimal complementary classes is considered more flexible.

In general, it is difficult to find the complete sets of mini-
mal complementary classes by simply trying out different fault
combinations, especially for a complex system with numerous
faults and intricate fault combinations. Corollary 3 facilitates
the determination of minimal complementary classes; its proof
is given in Appendix A.5.

Corollary 3. A set of faults forms a minimal complementary
class if and only if the set contains n − ρ faults but does not
contain any minimal diagnosable classes, where n is the total
number of faults and ρ is the rank of the diagnosability testing
matrix.

With Corollary 3, the complete minimal complementary
classes can be found through a search among all fault sets with
n − ρ faults. If the entire fault set can be partitioned into many
smaller distinct, connected fault classes, then the task of search-
ing the complete minimal complementary classes can be further
reduced. Corollary 3 can be applied to a connected fault class,
but n should be the total number of faults in the connected fault
class and ρ is the rank of the space spanned by the associ-
ated row vectors in the RREF of the transpose of the testing
matrix. Individual searches can be conducted within each con-
nected fault class. The complete set of minimal complementary
classes can then be obtained by joining the minimal comple-
mentary classes from each connected fault class and adding the
nondiagnosable faults. An example will be given in Section 4
to illustrate this procedure.

The order of using the three criteria generally depends on the
requirements of individual applications. In some cases, when
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the ultimate goal is to design a gauging system that provides full
diagnosability, we can skip the second criterion and compare
the number of minimal complementary classes directly. In some
other cases, the second criterion can be used before the first
criterion if the uniquely identified fault is highly desired. Based
on our experience, using the three criteria in the sequence in
which they were presented here is an effective way of gauging
system evaluation in many industrial applications.

4. CASE STUDY

4.1 Case Study of a Multistage Assembly Process

Consider the assembly processes shown in Figures 1 and 3.
The product state variable xk is denoted by random deviations
associated with the degrees of freedom (df) of each part. Each
two-dimensional part in this example has three df (two trans-
lational and one rotational) and the size of xk is 12 × 1 (i.e.,
nx = 12) given that there are four parts. The state vector xk is
expressed as

xk = [δx1,k δz1,k δα1,k | . . . | . . . | δx4,k δz4,k δα4,k]T , (13)

where δ is the deviation operator, δxi,k, δzi,k, and δα1,k are two
translational and one rotational deviations of part i on station k.
If part i has not yet appeared on station k, the corresponding
δxi,k, δzi,k, and δα1,k are 0’s.

The input vector uk represents the random deviations asso-
ciated with fixture locators on station k. There are a total of
18 components of fixture deviations on three stations as in-
dicated by the number 1–18 (i.e., the 18 faults) in Figure 3.
Thus we have u1 = [δp1 . . . δp6]T , u2 = [δp7 . . . δp15]T , and
u3 = [δp16 δp17 δp18]T , where δpi is the deviation associated
with fault i and the dimensions are d1 = 6, d2 = 9, d3 = 3, and
P = 6 + 9 + 3 = 18.

The measurement y contains positional deviations detected
at Mi, i = 1, . . . ,5. In this 2-D case, each Mi can deviate in
x and/or z directions. Hence, y1 = [δM1(x) δM1(z) δM2(x)
δM2(z)]T , y2 = [δM3(x) δM3(z) δM4(x) δM4(z)]T , and y3 =
[δM5(x) δM5(z)]T . The dimensions are q1 = 4, q2 = 4, q3 = 2,
and L = 4 + 4 + 2 = 10.

The state-space representation of this process is

x1 = B1u1 + w1 and xk = Ak−1xk−1 + Bkuk + wk,

k = 2,3, (14)

and

yk = Ckxk + vk, k = 1,2,3. (15)

Matrices Ak, Bk, and Ck are determined by process design and
sensor deployment. The Ak characterizes the change in prod-
uct state when a product is transferred from station k to station
k + 1. Thus Ak depends on the coordinates of fixture locators
on two adjacent stations k and k + 1. The Bk determines how
fixture deviations affects product deviations on station k and
is thus determined by the coordinates of fixture locators on sta-
tion k. The Ck is determined by the coordinates of measurement
points such as M1 to M5 in this example.

Following the model development presented by Jin and Shi
(1999) and Ding et al. (2000), we give the numerical expres-
sions of A’s, B’s, and C’s of the assembly processes shown in
Figures 1 and 3. The A’s, B’s, C1, and C2 are the same for

these two processes, because their fixture layouts are the same
and the sensor deployments are the same for stations I and II.

A1 =




0 0 0 0 0 0

06×6

0 0 0 0 0 0
0 .0007 1 0 −.0007 −.3497

−1 0 0 1 0 0
0 −.3497 0 0 .3497 −325.17
0 .0007 0 0 −.0007 .6503

06×6 I6×6




12×12

,

A2 =




0 0 0
03×6

0 0 0
0 0 0 0 0 0
0 .0005 1 0 −.0005 −.2392

−1 0 0

I6×6

0 0 0
0 −.5550 0 0 −.4450 −222.49
0 .0005 0 0 −.0005 −.2392

−1 −.2153 0 0 .2153 107.655
0 −.2392 0 0 −.7608 −380.38
0 .0005 0 0 −.0005 −.2392

−1 0 0
03×6

1 −.0005 0
0 −.2392 0 0 .2392 −380.38
0 .0005 0 0 −.0005 .7608




12×12

,

(16)

B1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 −.0014 .0014 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 −.002 .002

06×6




12×6

,

B2 =




1 0 0

06×6

0 1 0
0 −.0007 .0007
1 0 0
0 .3497 .6503
0 −.0007 .0007

06×3

1 0 0 0 0 0
0 1 0 0 0 0
0 −.002 .002 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 −.002 .002




12×9

,

B3 =




1 0 0
0 1 0
0 −.0005 .0005
1 0 0
0 .5550 .4450
0 −.0005 .0005
1 .2153 −.2153
0 .2392 .7608
0 −.0005 .0005
1 0 0
0 .2392 .7608
0 −.0005 .0005




12×3

,

(17)
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C1 =




1 0 −550
02×3 02×6

0 1 −110

02×3 1 0 −550
02×6

0 1 −630




4×12

,

C2 =




1 0 −550
02×3 02×3 02×3

0 1 −100

02×3 02×3 1 0 −300
02×3

0 1 −740




4×12

.

(18)
We use C1

3 and C2
3 to denote C3 of these two gauging systems.

Their expressions are

C1
3 =

[
1 0 −550

02×9
0 1 −100

]
2×12

and (19)

C2
3 =

[
02×9 1 0 −200

0 1 620

]
2×12

.

For simplicity, we discuss only the variance diagnosability of
fixture faults in this study. Thus, we use Hr in (12) as the testing
matrix. To use Hr , we need to obtain � first. Substituting the
A’s, B’s, and C’s in (16)–(19) into (3) yields

�1 =




1 .786 −.786 0 0 0 0 0 0 0
0 1.143 −.143 0 0 0 0 0 0 0
0 0 0 1 1.1 −1.1 0 0 0 0
0 0 0 0 2.26 −1.26 0 0 0 0
0 .401 −.786 0 0 .385 1 .385 −.385 0
0 .073 −.143 0 0 .070 0 1.070 −.070 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 .401 −.786 0 0 .385 0 .122 −.385 0
0 .073 −.143 0 0 .070 0 .022 −.070 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
.6 −.6 0 0 0 0 0 0

2.48 −1.48 0 0 0 0 0 0
0 0 0 0 .263 1 .263 −.263
0 0 0 0 .048 0 1.048 −.048




(20)

and

�2 =




1 .786 −.786 0 0 0 0 0 0 0
0 1.143 −.143 0 0 0 0 0 0 0
0 0 0 1 1.1 −1.1 0 0 0 0
0 0 0 0 2.26 −1.26 0 0 0 0
0 .401 −.786 0 0 .385 1 .385 −.385 0
0 .073 −.143 0 0 .070 0 1.070 −.070 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 −.096 0 0
0 0 0 0 0 0 0 .057 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
.6 −.6 0 0 0 0 0 0

2.48 −1.48 0 0 0 0 0 0
0 0 1 .4 −.304 1 .096 −.096
0 0 0 −.24 .183 0 −.057 1.057




, (21)

where the superscript 1 or 2 indicates which gauging system the

� is associated with. Further, Hr can be obtained following its

definition in (12). Their expressions are

H1
r =




1 .617 .617 0 0 0 0 0 0 0
.617 5.089 2.050 0 0 .102 .161 .08 .102 0
.617 2.050 3.661 0 0 .390 .617 .307 .390 0

0 0 0 1 1.21 1.21 0 0 0 0
0 0 0 1.21 39.91 16.46 0 0 0 0
0 .102 .390 1.21 16.46 9.63 .148 .073 .093 0
0 .161 .617 0 0 .148 1.0 .148 .148 0
0 .08 .307 0 0 .073 .148 1.711 .073 0
0 .102 .390 0 0 .093 .148 .073 .093 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 .36
0 0 0 0 0 0 0 0 0 .36
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 .012 .046 0 0 .011 0 .001 .011 0
0 .161 .617 0 0 .148 0 .015 .148 0
0 .033 .127 0 0 .030 0 .003 .030 0
0 .012 .046 0 0 .011 0 .001 .011 0

0 0 0 0 0 0 0 0
0 0 0 0 .012 .161 .033 .012
0 0 0 0 .046 .617 .127 .046
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 .011 .148 .030 .011
0 0 0 0 0 0 0 0
0 0 0 0 .001 .015 .003 .001
0 0 0 0 .011 .148 .03 .011

.36 .36 0 0 0 0 0 0
42.39 16.24 0 0 0 0 0 0
16.24 6.505 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 .005 .069 .014 .005
0 0 0 0 .069 1 .069 .069
0 0 0 0 .014 .069 1.362 .014
0 0 0 0 .005 .069 .014 .005




(22)

and
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Table 1. Comparison of Gauging Systems 1 and 2

Gauging system 1 Gauging System 2

RREF(Hr )



I12×12 012×6

06×12

0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




18×18




I12×12 012×6

06×12

1 0 0 1 0 0
0 1 .58 0 .06 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




18×18

Number of potential faults 18 18

Rank of testing matrix 15 15

Minimal diagnosable classes {1}, . . . , {12}, {16}, {17}, {15,18} {1}, . . . , {12}, {18}, {13,16},
{14,15,17}

Number of uniquely identified faults 14 13

Minimal complementary classes {13,14,15}, {13,14,18} {13,14,15}, {13,14,17}, {13,15,17},
{16,14,15}, {16,14,17}, {16,15,17}

Number of minimal complementary classes 2 6

H2
r =




1 .617 .617 0 0 0 0 0 0 0
.617 4.367 1.224 0 0 .025 .161 .054 .025 0
.617 1.224 1.627 0 0 .098 .617 .207 .098 0

0 0 0 1 1.21 1.21 0 0 0 0
0 0 0 1.21 39.91 16.46 0 0 0 0
0 .025 .098 1.21 16.46 8.705 .148 .050 .023 0
0 .161 .617 0 0 .148 4.0 .231 .148 0
0 .054 .207 0 0 .050 .231 1.703 .050 0
0 .025 .098 0 0 .023 .148 .05 .023 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 .36
0 0 0 0 0 0 0 0 0 .36
0 0 0 0 0 0 1 .009 0 0
0 0 0 0 0 0 .16 .003 0 0
0 0 0 0 0 0 .093 .002 0 0
0 0 0 0 0 0 1 .009 0 0
0 0 0 0 0 0 .009 .0002 0 0
0 0 0 0 0 0 .009 .005 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 .16 .093 1 .009 .009
0 0 .009 .003 .002 .009 .0002 .005
0 0 0 0 0 0 0 0

.36 .36 0 0 0 0 0 0
42.39 16.24 0 0 0 0 0 0
16.24 6.505 0 0 0 0 0 0

0 0 1 .16 .093 1 .009 .009
0 0 .16 .047 .027 .16 .003 .085
0 0 .093 .027 .016 .093 .002 .049
0 0 1 .16 .093 1 .009 .009
0 0 .009 .003 .002 .009 .0002 .005
0 0 .009 .085 .049 .009 .005 1.271




(23)

The RREF of the Hr’s and the corresponding fault structures
are compared in Table 1. For gauging system 1, 14 rows have
only 1 nonzero element, corresponding to 14 uniquely iden-

tified faults and hence minimal diagnosable classes, {1}, . . . ,
{12}, {16}, {17}. Two faults (13, 14) correspond to 0 columns,
and hence they are not diagnosable. The 13th row has two
nonzero elements (i.e., [01×12 | 0 0 1 0 0 1]), indicating that
{15,18} is a minimal diagnosable class. The class {15,18} is
also a connected fault class, and because it is already min-
imal, no further permutation is needed. Similarly, for gaug-
ing system 2, there are 13 uniquely diagnosable classes,
{1}, . . . , {12}, {18}. Two minimal diagnosable classes, {13,16}
and {14,15,17}, correspond to the 13th and 14th rows. No per-
mutation of Hr is needed for gauging system 2, either.

For gauging system 1, to achieve a fully diagnosable sys-
tem, at least n − ρ = 3 faults must be known. We first search
fault set {15,18} with n = 2 and ρ = 1. It is clear that {15}
and {18} are two minimal complementary fault classes for
the connected fault class {15,18}. Adding the nondiagnosable
faults {13,14}, we obtain the minimal complementary classes
as {13,14,15} and {13,14,18}. The number of minimal com-
plementary classes is two.

For gauging system 2, to find the minimal complementary
class, we search the faults among {13,16} with n = 2 and ρ = 1
and among {14,15,17} with n = 3 and ρ = 1. The search yields
{13} and {16} for {13,16} and {14,15}, {14,17}, and {15,17}
for {14,15,17}. Joining these two fault groups together gives
us C1

2 ·C1
3 = 6 minimal complementary classes, which are listed

in Table 1. This analysis verifies that although engineering sys-
tems have many potential faults (18 faults in this case), they can
often be partitioned into smaller connected fault classes.

Neither gauging systems provides full diagnosability, be-
cause their Hr’s are not of full rank. Ranks of Hr’s are the
same (ρ = 15), suggesting that the amount of information ob-
tained by both systems is the same. But gauging system 1 can
uniquely identify 14 faults, which are faults 1–12, 16, and 17,
while gauging system 2 can only uniquely identify 13 faults,
which are faults 1–12 and 18. The information quality provided
by gauging system 1 is considered better than that of gauging
system 2. In this sense, gauging system 1 provides more valu-
able information. However, gauging system 2 can have six pos-
sible ways of measuring additional faults in achieving a fully
diagnosable system, whereas gauging system 1 has only two
possibilities. This difference indicates that gauging system 2 is
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more flexible. If the third criterion is in a higher priority, then
gauging system 2 is more favorable.

4.2 Case Study of a Multistage Machining Process

The proposed evaluation criteria can also be applied to mul-
tistage machining processes. To machine a workpiece, we first
need to fix the location of the workpiece in the space. Figure 4
shows a widely used 3-2-1 fixturing setup. If we require that
the workpiece touch all of the locating pads (L1–L3) and locat-
ing pins (P1–P3), then the location of the workpiece in the ma-
chine coordinate system xyz is fixed. The surface of the work-
piece that touches the locating pads (L1–L3) (surface ABCD in
Fig. 4) is called the “primary datum.” Similarly, surface ADHE
is the “secondary datum” and DCGH is the “tertiary datum” in
Figure 4. Because the primary datum (surface ABCD) touches
L1–L3, the translational motion in the z direction and the rota-
tional motion in the x and y directions are restrained. Similarly,
the secondary datum constrains the translational motion in the
x direction and the rotational motion in the z direction; the ter-
tiary datum constrains the translational motion in the y direc-
tion. Therefore, all six degrees of freedom associated with the
workpiece are constrained by these three datum surfaces and
the corresponding locating pins and pads.

The cutting tool path is calibrated with respect to the ma-
chine coordinate system xyz. Clearly, an error in the position of
locating pads and pins will cause a geometric error in the ma-
chined feature. Suppose that we mill a slot on surface EFGH
in Figure 4. If L1 is higher than its nominal position, then the
workpiece will be tilted with respect to xyz. However, the cut-
ting tool path is still determined with respect to xyz. Hence the
bottom surface of the finished slot will not be parallel to the
primary datum (ABCD). Besides the fixture error, the geomet-
ric errors in the datum feature will also affect workpiece quality.
For example, if the primary datum (ABCD) is not perpendicu-
lar to the secondary datum (ADHE), then the milled slot also
will not be perpendicular to the secondary datum.

A three-stage machining process using this 3-2-1 fixture
setup is shown in Figure 5. The product is an automotive engine
head. The features are the cover face (M), the joint face, and
the slot (S). The cover face, joint face, and the slot are milled
at the first [Fig. 5(a)], second [Fig. 5(b)], and third [Fig. 5(c)]
stages.

We treat the positional errors of product features after stage
k as state vector xk, the errors of fixture and cutting tool path
at stage k as input uk, and the measurements of positions and
orientations of the machined product features as yk, which can

Figure 4. A Typical 3-2-1 Fixturing Configuration.

be obtained by a coordinate measuring machine (CMM). The
state-space model [eq. (1)] can be obtained through a similar
(to the foregoing panel assembly) but more complicated three-
dimensional kinematics analysis, where Ak−1xk−1 is the error
contributed by the errors of datum features (with these features
produced in previous stages) and Bkuk is the error contributed
by fixture and/or cutting tool at stage k. Details of this process
and the corresponding state-space model have been given by
Zhou et al. (2003).

After the model in (1) is obtained, the diagnosability study
for the multistage machining process can be conducted follow-
ing the theories proposed in Sections 2 and 3. We focus on the
fixture error in this case study. For a 3-2-1 fixture setup, there
are six potential fixture errors at each stage (each locating pad
and pin could have one error). Hence, there are 18 potential
faults in the whole system, where faults 1–6 represent locator
errors at the first stage, faults 7–12 represent locator errors at
the second stage, and faults 13–18 represent locator errors at the
third stage. Three gauging systems are used to measure slot S,
cover face M, and the rough datum, where the rough datum is
the primary datum at the first stage and can be seen from the
joint face. The results of a fault diagnosability for the three sys-
tems are listed in Table 2.

The RREF of the testing matrices of gauging systems 1
and 2 have a very simple structure. For the gauging sys-
tem 3 (the fourth column in Table 2), the first three rows
of RREF(�) share common nonzero column positions. The
corresponding faults, {1,2,3,7,8,9}, form a connected fault
class regarding its mean diagnosability. By permuting the
corresponding columns of RREF(�), we can generate 15
minimal diagnosable classes (each with 4 faults) within this
connected fault class, as shown in Table 2. The minimal
complementary class of this connected fault class can be

(a) (b) (c)

Figure 5. Process Layout at Three Stages.
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Table 2. Comparison of Gauging Systems

Gauging system System 1 (slot S) System 2 (cover face M) System 3 (rough datum)

Mean diagnosability:
RREF(�)

[
06×12 I6×6

030×12 030×6

]
36×18




06×3 I6×6

1 0 0

06×6

0 1 0
0 0 −1
0 0 0
0 0 0
0 0 0

030×3 030×6 030×3 030×6




36×18




I3×3 03×3
−.63 .53 −.90

03×3 03×6.47 −.57 −.90
−.49 −.48 −.04

03×3 03×3 03×3 I3×3 03×6

030×3 030×3 030×3 030×3 030×6




Variance
diagnosability:
RREF(Hr )

[
06×12 I6×6

012×12 012×6

]
18×18




06×3 I6×6

1 0 0

06×6

0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

012×3 012×6 012×3 012×6




18×18




I3×3 03×3 03×6 03×6

06×3 06×3 I6×6 06×6

09×3 09×3 09×6 09×6




Number of potential faults 18 18 18

Rank of testing matrix � 6 6 6

Hr 6 6 9

Minimal diagnosable
classes

Mean {13}, {14},
{15}, {16},
{17}, {18}

{7}, {8}, {9}, {4,10},
{5,11}, {6,12}

{10}, {11}, {12}, {1,7,8,9}, {2,7,8,9},
{3,7,8,9}, {1,3,8,9}, {2,3,8,9},
{1,7,3,9}, {2,7,3,9}, {1,7,8,3},
{2,7,8,3}, {1,2,8,9}, {1,7,2,9},
{1,7,8,2}, {1,2,3,9}, {1,2,8,3},
{1,7,2,3}

Variance {13}, {14}, {15},
{16}, {17}, {18}

{7}, {8}, {9}, {4,10},
{5,11}, {6,12}

{1}, {2}, {3}, {7}, {8}, {9},
{10}, {11}, {12}

Number of uniquely Mean 6 3 3

identified faults Variance 6 3 9

Number of minimal Mean 1 8 20

complementary classes Variance 1 8 1

found by searching the class with n = 6, ρ = 3. We obtain
C3

6 = 20 minimal complementary classes for the connected
class: {1,7,8}, {2,7,8}, {3,7,8}, {1,7,9}, {2,7,9}, {3,7,9},
{1,8,9}, {2,8,9}, {3,8,9}, {1,2,7}, {1,2,8}, {1,2,9}, {1,3,7},
{1,3,8}, {1,3,9}, {2,3,7}, {2,3,8}, {2,3,9}, {1,2,3}, and
{7,8,9}. Adding the nondiagnosable faults {4,5,6,13–18}, we
can obtain 20 minimal complementary classes for the system
regarding the mean diagnosability. It is also interesting to see
that although the faults {1,2,3,7,8,9} form a connected fault
class in regard to mean diagnosability, they are uniquely di-
agnosable regarding variance diagnosability. This verifies our
previous remark that mean diagnosability requires a stronger
condition than variance diagnosability.

5. CONCLUDING REMARKS

This article has reported on a study of the diagnosability of
process faults given the product quality measurements in a com-
plicated multistage manufacturing process. This study has re-
vealed that the diagnosis capability that a gauging system can
provide depends strongly on sensor deployment in a multistage
manufacturing system. A poorly designed gauging system is
likely to result in the loss of diagnosability. In contrast, a well-
designed gauging system that achieves the desired level of di-
agnosability not only can monitor the process change, but also
can quickly identify the process root causes of quality-related

problems. The quick root cause identification will lead to prod-
uct quality improvement, production downtime reduction, and
hence a remarkable cost reduction in manufacturing systems.

This study was a model-based approach; a linear fault-
quality model was used. The results can be used where a lin-
ear diagnostic model is available. Because the errors of tool-
ing elements considered in quality control problems are often
much smaller than the nominal parameters, most manufactur-
ing systems can be linearized and then represented by a lin-
ear model under the small error assumption. Many of the lin-
ear state-space models reviewed in Section 2 were validated
through comparison with either a commercial software simu-
lation (Ding et al. 2000) or experimental data (Zhou et al. 2003;
Djurdjanovic and Ni 2001). Thus the small error assumption is
not restrictive, and the methodology presented in this article is
generic and applicable to various manufacturing systems.

Another note on the applicability of the reported methodol-
ogy is that for some poorly designed manufacturing systems,
a numerous process faults could possibly be coupled together
and form a single huge connected fault class. As a result, it
would be impractical to exhaust matrix column permutation in
finding the complete list of minimal diagnosable classes, and
the diagnosability study itself then becomes intractable.

The development of the diagnosis algorithm that can give the
best estimation of process faults will follow this diagnosability
study. This is our ongoing research.
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APPENDIX: PROOFS

A.1 Theorem 4.2.1 of Rao and Kleffe (1988)

Consider a general linear mixed model Y = Xβ + ε, where
β represents the fixed effects and ε is mean 0 and cov(ε) =
θ1V1 +· · ·+θrVr . Let θ = [θ1 . . . θr]T denote variance compo-
nents. pTβ is identifiable if and only if p ∈ R(XT), fTθ is iden-
tifiable if and only if f ∈ R(H) and H′ = (tr(ViVj)), 1 ≤ i ≤ r,
1 ≤ j ≤ r.

A.2 Proof of Theorem 1

This theorem is an extension of theorem (4.2.1) of Rao and
Kleffe (1988). From that theorem, pTα is diagnosable if and
only if p ∈ R([�T . . . �T ]). It is clear that R([�T . . . �T ]) =
R(�T). Therefore, part (a) holds. For part (b) fTθ is diagnosable
if and only if f ∈ R(H′), where H′ = (tr(FiFj)), 1 ≤ i ≤ P+Q+
1, 1 ≤ j ≤ P + Q + 1, and Fi and Fj are defined in (8). It can
be further shown that H′ = MH. Because a constant coefficient
does not affect the range space of a matrix, the result of part b
follows.

A.3 Proof of Theorem 2

Denote the row and column spaces of a matrix by row(·) and
col(·), the RREF of GT by GT

r , and the nonzero row vectors of
GT

r by {vi}i=1,...,ρ , where ρ is the rank of GT
r . Noting that GT

r
is unique and that row(GT

r ) = row(GT) (Lay 1997), we have
vi ∈ col(G). Hence θ[vi] is a diagnosable class.

We also need to prove that θ [vi] is a minimal diagnosable
class. From the algorithm used to obtain the RREF, the left-
most element of vi is always a “leading 1.” The position of such
a “leading 1” in vi is called the “pivot position.” Denote the
set of all pivot positions contributed by the rows of GT

r as �.
It is known that (a) given an i ∈ {1, . . . , ρ}, there is only one
nonzero element in {vi(j)}j∈�, and (b) if {ci}i=1,...,n are columns
of GT

r , then there is only one nonzero element in ci if i ∈ �.
From (a), θ [vi] must be in the form {upi,ui1, . . . ,uik}, pi ∈ �,
i1, . . . , ik /∈ �. Assuming that θ [vi] is not a minimal diagnos-
able class, we can then find a vector v′

i such that θ [v′
i] ⊂ θ [vi],

v′
i ∈ row(GT

r ) and hence v′
i can be written as v′

i = ∑ρ
j=1 ajvj.

However, from (b), if there is a j, then aj is nonzero and upj must
be in θ [v′

i], where pj is the pivot position of vj. Because θ [vi]
contains only one fault at the pivot position, pi, ai is the only
possible nonzero coefficient. Then θ [v′

i] = θ [vi]. This contra-
dicts the assumption that θ [v′

i] ⊂ θ [vi], implying that θ [vi] is a
minimal diagnosable class.

A.4 Proof of Corollary 1

Let {vi}i=1,...,ρ denote the nonzero row vectors of G′T
r . We

want to prove that the pivot position of the last row, vρ , must
be n − s + 1 (this position corresponds to ui1 ). First, suppose
that the pivot position of vρ is larger than n − s + 1. If so, then
θ[vρ] ⊂ �. According to Theorem 2, however, θ [vρ] is a di-
agnosable class, which contradicts the fact that � is minimal.
Second, assume that the pivot position of vρ is smaller than
n − s + 1. If so, then a fault among {uis+1, . . . ,uin} must be-
long to θ[vρ]. Because the pivot position of vρ is the largest

of all the pivot positions of {vi}i=1,...,ρ , given any vector vf =∑ρ
j=1 ajvj (defined as an arbitrary nontrivial linear combina-

tion of {vi}i=1,...,ρ ), θ[vf ] contains at least one element among
{uis+1, . . . ,uin}. According to Theorem 1, any diagnosable class
should contain at least one element among {uis+1, . . . ,uin}, be-

cause vf is an arbitrary vector in row(G′T
r ). This contradicts

the assertion that � = {ui1, . . . ,uis} is a minimal diagnosable
class. Therefore, the pivot position of vρ is at n − s + 1, that is,
θ [vρ] ⊆ �. Because θ [vρ] and � are both minimal, θ[vρ] = �.

A.5 Proof of Corollary 3

From Corollary 2, it is clear that a minimal complementary
class should contain exactly n − ρ faults. Assume that a mini-
mal complementary class contains a minimal diagnosable class
that includes n1 faults. Because a minimal diagnosable class is
diagnosable, we need to know only n1 − 1 faults in the min-
imal diagnosable class to identify all of the n1 faults. Then
the number of faults in the minimal complementary class can
be reduced by 1. Thus a fault class is a minimal complemen-
tary class only if it does not contain any minimal diagnosable
classes. Now we need to prove that if a fault class with n − ρ

elements does not include any minimal diagnosable classes,
it is a minimal complementary class. Assume that a fault
class {ui1, . . . ,uin−ρ } does not contain any minimal diagnosable

classes. Consider the RREF of the permuted matrix G′T cor-
responding to the fault permutation in−ρ+1, . . . , ini1, . . . , in−ρ .
Because the ui1, . . . ,uin−ρ do not include any minimal diagnos-
able class, the last n − ρ columns of the RREF should not in-
clude any pivot positions, according to Corollary 1. However,
because there are total ρ pivot positions, every column among
the first ρ columns of the RREF should contain only a “lead-
ing 1.” Hence, it is clear that all of the faults can be uniquely
identified if the n − ρ faults that correspond to the last n − ρ

columns are known.
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