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Buckypapers are thin sheets produced from Carbon NanoTubes (CNTs) that effectively transfer the exceptional mechanical properties
of CNTs to bulk materials. To accomplish a sensible tradeoff between effectiveness and efficiency in predicting the mechanical
properties of CNT buckypapers, a multi-fidelity analysis appears necessary, combining costly but high-fidelity physical experiment
outputs with affordable but low-fidelity Finite Element Analysis (FEA)-based simulation responses. Unlike the existing multi-fidelity
analysis reported in the literature, not all of the input variables in the FEA simulation code are observable in the physical experiments;
the unobservable ones are the latent variables in our multi-fidelity analysis. This article presents a formulation for multi-fidelity analysis
problems involving latent variables and further develops a solution procedure based on nonlinear optimization. In a broad sense, this
latent variable-involved multi-fidelity analysis falls under the category of non-isometric matching problems. The performance of the
proposed method is compared with both a single-fidelity analysis and the existing multi-fidelity analysis without considering latent
variables, and the superiority of the new method is demonstrated, especially when we perform extrapolation.

Keywords: Buckypaper, carbon nanotubes, latent variables, Gaussian processes, multi-fidelity analysis

1. Introduction

Carbon NanoTubes (CNTs) are a type of carbon struc-
ture that is made up of nano-scale tubes (Iijima, 1991).
Possessing exceptional thermal and mechanical properties,
CNTs are considered to be promising for application to a
wide range of products (Tsai et al., 2011). One method to
fabricate CNT-based products is through manufacturing
thin layers of CNT called buckypaper (Wang et al., 2004).
However, the buckypaper itself does not necessarily possess
desirable properties for industrial applications (Tsai et al.,
2011). One treatment is to add PolyVinyl Alcohol (PVA) to
the buckypaper (Zhang et al., 2011), which can produce a
high-stiffness product called PVA-treated buckypaper.

Practitioners want to understand how the stiffness of the
buckypaper, measured in terms of the Young’s modulus, is
affected by the addition of PVA in the fabrication process in
the presence of other noise variables. A standard approach

∗Corresponding author
Color versions of one or more of the figures in the article can be
found online at www.tandfonline.com/uiie.

is to conduct a set of physical experiments; that is, fabricate
a number of buckypapers with varying amounts of the PVA
added, measure the Young’s modulus of the resulting buck-
ypaper, and fit a functional relationship between the PVA
input and the stiffness output. The main problem with this
approach is that the physical experiments are expensive to
conduct, both time-wise and cost-wise, and measuring the
Young’s modulus requires a process that damages the buck-
ypaper under test. Realistically, only a small number of such
experiments, say, no more than 10 input settings with three
to five replications per setting, can be reasonably expected.

In order to complement the physical experiments and ex-
pedite product development, a simulation model based on
the finite element approximation has been developed to nu-
merically calculate the Young’s modulus of the buckypaper
under a given amount of PVA additive and a few speci-
fications of CNTs (Wang, 2013). The co-existence of the
physical and simulation outputs of the buckypaper fabrica-
tion process presents a multi-fidelity analysis problem that
has been extensively considered by the academic commu-
nity (to be reviewed in the following section). In our case, we
consider that the physical outputs provide the basic truth
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142 Pourhabib et al.

and are therefore the high-fidelity outputs, whereas the sim-
ulation, being an approximation, understandably provides
the low-fidelity responses.

In multi-fidelity analysis, one may be provided with data
sets created by a physical experiment and a simulation
model, such as in the aforementioned buckypaper fabri-
cation process as well as in Kennedy and O’Hagan (2000,
2001), Higdon et al. (2004), Reese et al. (2004), Bayarri et al.
(2007), Qian and Wu (2008), Han et al. (2009), and Joseph
and Melkote (2009), or they can come from two physical
processes of different measurement resolutions (Xia et al.,
2011) or from two simulation models of different degrees of
accuracy (Qian et al., 2006; Xiong et al., 2013). Regardless
of the origin of the data, in all of these cases one deals with
a situation in which one experiment provides more accurate
data (high fidelity) but obtained at a relatively higher cost,
and the other experiment, despite being affordable, cannot
be relied on solely as the responses or outputs do not re-
flect the reality very well (low fidelity). Apparently, if one
could collect an adequate number of data points from the
high-fidelity experiment, we would not need the low-fidelity
data. In reality, however, the high cost prohibits practition-
ers from running the high-fidelity experiments/simulations
to obtain a sufficient number of input conditions, as we
argued above, and, as a result, the high-fidelity responses,
with their inferiority in numbers, cannot be relied on solely
either and can only complement, rather than replace, the
low-fidelity responses.

Methodologies introduced to tackle the multi-fidelity
problems can be classified into two broad categories: (i)
methodologies based on building respective models for
each of the data sets; and (ii) methodologies that build
a model for one of the data sets (low-fidelity ones for
example) and then employ a linkage model to connect both
data sets.

The methods in the first category hinge upon the idea
that the data from each of the corresponding experiments
are generated by the same underlying physical mechanism
and, therefore, similar models are created for describing the
data sets but connected implicitly through the underlying
physics. A couple of modeling strategies are reported in the
literature. For example, to combine spatial data with differ-
ent levels of accuracy, Wikle and Berliner (2005) devised a
hierarchical Bayesian framework that can be used to make
an inference at some predetermined level. Another method
was introduced by Reese et al. (2004), in which the infer-
ence achieved by the data at the low-fidelity level is used as
a prior for the model fit using the high-fidelity data.

The methods in the second category assume that the
responses in one of the data sets can be reconstructed by
including correction terms with the responses in the other
data set and using a calibration model to explicitly link
the two data sets. So far, the existing methods generally
employ a Gaussian Process (GP) to model the low-fidelity
experiment and a linear calibration function to connect the
two sets of data (see, for example, Kennedy and O’Hagan

(2000, 2001), Higdon et al. (2004), Goldstein and Rougier
(2006, 2009), Bayarri et al. (2007), Qian and Wu (2008),
Han et al. (2009), Joseph and Melkote (2009), Xiong et al.
(2009), and Xia et al. (2011)).

Irrespective of specific details in each category, they all
implicitly assume that the output in each data set is a func-
tion of a set of input variables that are the same for both
high-fidelity and low-fidelity experiments. More important,
those inputs can be directly measured, so that a response
from the high-fidelity experiment can be matched with its
low-fidelity counterpart. The problem of interest in this
article, which is to predict the Young’s modulus of PVA-
treated buckypaper, appears to present some extra chal-
lenges. To illustrate this, let us take a look at Fig. 1, which
shows that the simulation model tends to underestimate the
Young’s modulus for small amounts of PVA and overesti-
mate the modulus for larger amounts of PVA. Understand-
ing of the physical process suggests that such a mismatch
in the trend line is caused by the assumption made in the
simulation that the effectiveness of PVA—i.e., the amount
of the PVA absorbed in the process—stays unchanged as its
amount varies. This assumption makes the simulation re-
sponses continue to increase at a rapid rate, as the amount
of PVA addition increases, whereas the actual physical re-
sponses increase slowly or may even level off to a certain
degree.

Upon this revelation, our material science collaborators
stated that they could modify their simulation code by
including an input variable to represent the effectiveness
of the PVA. Once this extra variable is used with appro-
priate input values, the simulation outputs could possi-
bly track the physical responses. The problem, however,
is that this PVA effectiveness cannot be directly measured

Fig. 1. The Young’s moduli of the simulation model and the phys-
ical experiment. The x-axis is the weight ratio of PVA additive
versus the raw CNTs, both measured in gram. The y-axis is the
Young’s moduli, with units of milli-pascals. The simulation re-
sponse increases at a fast rate than the physical response at a high
PVA level.
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Multi-fidelity analysis involving latent variables 143

in the physical process and thus becomes difficult to set
in the simulation model. In other words, we end up with a
multi-fidelity analysis problem with a part of the input vari-
ables unobservable in the physical experiment. The unob-
servable variables have to be represented using latent vari-
ables in the corresponding response model. As a result, our
problem becomes a multi-fidelity analysis involving latent
variables.

We also want to emphasize the difference between la-
tent variables and parameters in the physical experiment.
Several multi-fidelity methodologies explicitly consider the
existence of some unobserved or uncontrollable features
in the physical experiments, generally referred to as cal-
ibration parameters (Higdon et al., 2004; Goldstein and
Rougier, 2006, 2009; Bayarri et al., 2007; Han et al., 2009;
Xiong et al., 2009), however, a calibration parameter is in-
ternal to the physical experiments, rather than correlating
with inputs to another response. The role of the latent in-
puts here allows us to link the two experiments, which is
a critical aspect in our problem setting us apart from the
existing multi-fidelity analyses.

In this article, we introduce a solution approach that tar-
gets the specific application as described above. We assume
that the latent input variables are correlated with and can be
imputed from the observable variables. Our strategy entails
the following elements: (i) for the low-fidelity simulation re-
sponses, we resort to a GP model; this is the same as in the
existing multi-fidelity analyses; (ii) based on the aforemen-
tioned assumption, we introduce a functional relationship
that connects the latent variables with the observed ones;
and (iii) the combined models are formulated as a non-
linear optimization problem, which is in turn solved using
numerical techniques.

The rest of this article is organized as follows. In Section
2, we formally define the problem and present a mathe-
matical approach. In Section 3, we present our choices of
specific model components for the PVA-treated buckypaper
fabrication process. In Section 4, we demonstrate that our
method outperforms the existing methods in terms of the
accuracy of prediction. In particular, the advantage of the
proposed method becomes more obvious when it comes
to extrapolation. Finally in Section 5, we summarize the
article.

2. Latent variable multi-fidelity analysis with correlated
inputs

We first introduce the notations and symbols used to de-
fine the latent variable multi-fidelity analysis problem in
the context of Young’s modulus prediction for a PVA-
treated buckypaper fabrication process. Consider two data
sets available for such a process, the physical experiment
denoted by P and the simulation denoted by S. We as-
sume that there exists a degree of similarity between the
simulation responses and the physical responses so their

integration is justified. The degree of similarity can be eas-
ily checked by computing the correlation between the two
data sets.

Let x ∈ X be the input vector, then P = {(x, P(x)) : x ∈
X } where (x, P(x)) is an input–output pair for the physi-
cal experiment. Similarly, we have S = {(x, S(x)) : x ∈ X }
where (x, S(x)) is an input–output pair for the simulation.
Assume we can decompose the components of the vector x
into two parts such that x = (xo, xm), where the subscripts
o and m stand for “observable” and “missing,” respectively.
Then, we can express the functional relation between inputs
and outputs in the two experiments as P = P (xo, xm) and
S= S (xo, xm). In other words, both physical experiment
and simulation are functions of x = (xo, xm). In the phys-
ical experiment, however, only a subset of components of
the input—i.e., xo—can be specified, whereas in the simu-
lation, both xo and xm can be specified.

In order to handle the latent variables, we believe that
their values need to be in some way determined by those of
the observable inputs in xo, because if xms are completely
uncorrelated to anything we can observe, it becomes im-
possible to make an inference about them. Based on this
understanding, we assume that xms can be described by us-
ing the observations in xo, through a relationship g(·) and
subject to a prescribed level of discrepancy. Specifically, we
intend to find the relationship g(·) by minimizing the dif-
ference between the simulation outputs and the physical
experiment outputs; that is,

min
g∈G

L (P (xo, xm) , S (xo, xm)) ,

s.t.
∫
X

[xm − g(xo)]2 μ(dx) ≤ δ, g ∈ G, (1)

where L(., .) is a loss function, G is a class of functions
to which g is deemed to belong, and δ is the predeter-
mined discrepancy allowance in terms of some metric in-
duced by a measure μ(·). The integral constraint connects
the unobservable variables xm with the observed variables
xo, by minimizing the average difference between the la-
tent variables and the fitted values based on the estimated
relationship.

This formulation is in general difficult to solve. To make
it tractable, we would like to introduce a few simplifications.
Since we care about the mean prediction, the loss function
L(., .) is chosen to be a squared error loss function. An
alternative choice is the absolute error loss, and its use leads
to optimality in median estimation. The absolute error loss
is more robust to the existence of outliers, whereas the
squared error loss is easier to optimize. In our application,
the outlier problem is not a source of concern, so we choose
to use the squared error loss.

Being multi-fidelity means that the simulation responses
generally differ from the physical responses by a noticeable
bias. Without bias, people could simply run the low-fidelity
simulation a large number of times and average the re-
sponses to produce a result comparable to the high-fidelity
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144 Pourhabib et al.

source. In reality, the low-fidelity data sources are inher-
ently inferior because the bias cannot be reduced or elimi-
nated through averaging. When using the squared error loss
function, we would like to include a bias term B(xo, xm),
the value of which may depend on the input conditions in
general. Under this general circumstance, we assume that
B(xo, xm) can be parameterized by a set of parameters �B.
One example of such parameterization is to use a GP to
model the bias B(xo, xm) as a function of the input con-
ditions; as such, �B contains the parameters in the GP
model.

The loss function will be evaluated using a set of training
data. Suppose that we execute n runs of high-fidelity exper-
iments, having as their input conditions as xo

1, xo
2, . . . , xo

n,
and the i th experiment is replicated ni times. Then, the
noise contaminated responses of the high-fidelity experi-
ments are

yi j = P(xo
i )+ εi j , i = 1, 2, . . . , n, and j = 1, . . . , ni ,

(2)

where εi j ∼ N (0, σ 2) captures variability in y due to both
measurement errors and uncertainty associated with un-
known latent variable xm

i .
In parallel, we also execute a set of low-fidelity simula-

tions. Here we are primarily concerned with the so-called
deterministic simulations that yield the same response when
run repeatedly under the same input condition. The de-
terministic simulations are usually referred to as computer
experiments (Santner et al., 2003). The simulation, being
low cost computationally, can be run a large number of
times. Suppose there are a total of N(>> n) runs for the
observable variables and L runs for the unobserved vari-
ables (recall that both of the variables can be specified in
the computer experiment), then

Si� = S(xo
i , xm

� ), i = 1, 2, . . . , N, and � = 1, . . . , L.

(3)

Understandably, when planning for the two sets of experi-
ments, we would like the input conditions used in the physi-
cal experiment to be a subset of those used in the computer
experiment.

The simulation code has to be run at specific values of the
input variables, so that including the simulation directly in
an optimization formulation creates a continuous-discrete
mixed optimization problem that is usually harder to solve.
To alleviate this problem, we use a Gaussian process to
model the simulation responses {Si�} and denote the re-
sulting GP model as Ŝ(xo, xm). The GP model provides
a smooth and continuous response over the design space,
and using the GP model in the objective function makes
the problem easier. We want to note that modeling the low-
fidelity response using GP models is a standard practice in
the existing multi-fidelity analysis literature (for example,
Kennedy and O’Hagan (2000, 2001); Qian and Wu (2008);
Xia et al. (2011), among others) but the motivation of doing
so here is slightly different.

We believe that the choice of G will have to be decided
according to specific applications. Generally the governing
physics of a process should indicate whether xo and xm are
related and, if so, how. Here we assume that the class of G
can be parameterized through a set of parameters in �G .

Provided all of the above simplifications and specifica-
tions and, moreover, choosing a counting measure for μ,
the original optimization formulation can be rewritten, for
a given δ, as

min�B,�G

∑
i

∑
j

(
yi j − Ŝ(xo

i , xm
i )− B(xo

i , xm
i ; �B)

)2
, (4)

s.t.
n∑

i=1

∣∣xm
i − g(xo

i ; �G)
∣∣2 ≤ δ, (5)

where the parameters of the bias and the linkage func-
tion g are explicitly mentioned to demonstrate how the
decision variables impact the optimization problem. How-
ever, for simplicity of notation, hereafter we drop the ex-
plicit notational dependencies, namely, using B(xo

i , xm
i ) for

B(xo
i , xm

i ; �B) and g(xo
i ) for g(xo

i ; �G).
Solving the optimization problem (4)–(5) requires impos-

ing additional constraints on the relation between observed
and latent variables. This is due to the fact that we cannot
observe xm

i and we need to impute those values in the opti-
mization procedure. Therefore, depending on the nature of
the application, one needs to make pertinent assumptions
to solve problems (4)–(5). For example, if the particular
application permits and g is selected to be flexible enough,
one may assume δ = 0, which in essence implies xm

i can
be imputed by g(xo

i ). In Section 3 we proceed by consid-
ering a similar approach and demonstrate how one can
utilize such a dependency toward devising a tractable op-
timization problem for buckypaper fabrication. In Section
3.3, we choose the appropriate g function, and in Section
3.4 we present additional regulations to be used for the
buckypaper fabrication process and finally solve the above
optimization problem.

3. PVA-treated buckypaper fabrication process model

In this section, we specify the model components for the
PVA-treated buckypaper fabrication process. In this appli-
cation, xo represents the PVA amount, denoted as p and
measured by the weight ratio of the PVA additive versus the
raw carbon nanotubes (see also the x-axis of Fig. 1), and
xm is the absorption rate of the PVA; i.e., the effectiveness
of the PVA, denoted as α and expressed in percentage, so
that 0 ≤ α ≤ 1.

3.1. Design of experiments

Since xo is one dimensional, the design of physical ex-
periments is straightforward. Our material scientist part-
ners set the PVA amount range to be between 0.4 and
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Multi-fidelity analysis involving latent variables 145

1.2 and conducted a total of n = 17 physical experiments
with pi s evenly spread over the input range. Under each
pi level, there were five replications, namely, ni = 5 for all
i = 1, . . . , n. There were therefore a total of 85 physical ex-
periments conducted. We want to note that in this study, the
number of physical experiments is relatively large because
we need extra data for the validation purpose. In practice,
it is usually difficult to afford this level of data amount.

The simulation code takes two inputs p and α. The sim-
ulation code does involve a group of randomly generated
parameters associated with CNTs, such as a CNT diame-
ter, length, and orientation, so its response is not entirely
deterministic. However, the simulation code generates a
large number of CNTs to mimic the underlying structure
in a buckypaper, and the resulting Young’s modulus is
mostly affected by the two inputs mentioned above. The
randomness of the response, under a given setting of p, is
much smaller compared with the randomness in the phys-
ical experiments. Thus, we believe that the simulation can
be reasonably approximated by a deterministic computer
experiment.

The computer experiment was designed to cover the PVA
amount in the range 0.5 ≤ p ≤ 1. The physical responses
outside this range were reserved to validate the quality of
the extrapolation. The simulation code we use has a restric-
tion on the product of p × α. This product indicates the
effective PVA level and cannot be smaller than 0.40 in the
simulation code (Wang, 2013); otherwise, the simulation
returns a Young’s modulus value that is virtually zero. This
is one of the limitations of the current simulation code for
the computer experiments that the material scientists are
working on to improve. Given this restriction, our design
input space for the computer experiment is no longer a
rectangular region.

This type of design problems is generally solved through
a space-filling design formulation (Johnson et al., 1990).
The basic idea is to find the design points that minimize the
maximum inter-point distance; this is the so-called mini-
max design criterion. Alternatively, a maximin criterion can
be used as well (Stinstra et al., 2003). Suppose we choose the
minimax criterion. The design problem can be expressed as
follows: for a fixed number of design points ns , find a set of
design points D ⊂ T that solves the following optimization
formulation:

inf D supt∈T ρ(t, D)
s.t. |D| = ns, D ⊂ T, (6)

where ρ(t, D) = infd∈D ρ(t, d) is the inter-point distance,
|D| denotes the cardinality of the set D, and T is the feasi-
ble region from which a candidate design point is chosen.
Specifying T differentiates the non-regular designs of ar-
bitrary shape from the regular designs of a rectangular
design region. When T is a bounded polytope, Draguljć
et al. (2010) developed an efficient algorithm that finds the
optimal design. The feasibility constraint for a polytope T

Fig. 2. The design layout for the computer experiment.

is specified as

At ≤ r,
l ≤ t ≤ u, (7)

for some matrix A and vectors r, l, and u, where the in-
equality should hold point-wise between the correspond-
ing vectors. Using this set of constraints, together with the
minimax design criterion, Draguljć et al. (2012) showed
that it can be solved using a sequential algorithm entailing
mainly linear operations. For other alternatives regarding
space-filling designs—for example, sliced Latin hypercube
designs—readers may refer to Qian and Wu (2009) and
Qian (2012).

The design area of our computer experiments can be duly
represented by a polytope. Specifically, let t = (p, α)T, then
the design space can be represented in terms of Equation
(7) using the following values:

A = [−0.8,−1], r = −1.2,

l = [0.5, 0.4]T, u = [1, 1]T.

Note that as only one of the constraints is non-parallel to
an axis, the matrix A degenerates to a 1× 2 vector and r to
a real number. The number of points ns (i.e., |D| = ns) is
decided such that the subsequent surrogate GP model for
the low-fidelity data suitably represents the corresponding
response surface. Using a few rounds of trial and error, we
settled at ns = 150. Note that the number of low-fidelity
input settings is about one order of magnitude higher than
that of the high-fidelity physical experiment (150 versus 17).
Figure 2 displays the selected design points for (p, α) in this
computer experiment.

3.2. Gaussian process model and bias term

Once the experimental designs are finished and data are
collected, we are ready to train a GP model for the
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146 Pourhabib et al.

low-fidelity responses and, if needed, for the bias correc-
tion term.

The key aspect in training a GP model is to specify a
covariance function, which, loosely speaking, determines
the similarity of the response surface at different locations.
Here we chose a Squared Exponential (SE) covariance
function; that is,

KSE(xi , x j ) = σ 2
f exp

(
−||xi − x j ||2

2η

)
, (8)

where σ 2
f and η are the variance parameter and scale pa-

rameter, respectively, in the covariance function, and they
are estimated using the low-fidelity data obtained in the
previous subsection. Here we omit the detailed procedure
of fitting a GP model; interested readers can find well-
established algorithms in Rasmussen and Williams (2006).

The SE covariance function is arguably the most widely
used form in many applications and it is isotropic. We did
try the so-called automatic relevance determination ver-
sion of the SE covariance function that uses different scale
parameters for each dimension. The fitted GP models using
both choices did not differ significantly. We chose the SE
covariance function for its simplicity.

Concerning the choice of the bias term, we believe that
it is adequate to use a constant in this buckypaper fabrica-
tion process because the resulting response surface is not
complicated. Making the bias term more flexible does not
create much added value. Given this choice, the parameter
�B = {B}.

3.3. Choice of the g function

Based on our understanding of the physical process, the ab-
sorption rate of the PVA appears to be in a monotonically
decreasing relation with the PVA amount (Zhang et al.,
2011). This implies that when xo = 0.7, the corresponding
absorption rate = 75%, and when xo = 0.8, the correspond-
ing absorption rate is smaller than 75%. This intuitively
explains why the physical responses do not increase with
a rapid rate as in the simulation responses in which the
absorption rate is set constant for all PVA levels. For this
reason we chose G as the class of smooth monotonically
decreasing functions.

For the PVA-treated buckypaper fabrication process,
we model function g(·) as a sum of monotone splines.
Specifically,

g =
Q∑

q=1

gq , (9)

log (−Dgq) is differentiable and

D{log (−Dgq )} = D2gq

Dgq
(10)

is Lebesgue square integrable, where Dm represents taking
the derivative of order m > 0. These conditions guarantee
that gi is smooth and strictly monotonically decreasing
(Ramsay, 1998). For different choices of q, g(·) can take a
variety of forms which results in a rich and flexible set of
functions.

In the buckypaper fabrication process, since the observ-
able and unobservable variables both have a single element,
the function form of g(·) can be greatly simplified. In a
one-dimensional space, one solution to differential equa-
tion (10) is gq (p) = ab×p, provided that a × b < 0, thereby
assuming Q = 1, g(p) = ab×p is an option for the linkage
function. This simple form is desirable as it facilitates the
subsequent optimization problem for linking the two ex-
periments without sacrificing the flexibility of the model.
We report the results of numerical analysis in Section 4,
and we compare this simple choice of g function with a
few other alternatives and show that this choice suits our
problem well. Given this choice, the function g(·) can be
parametrized by �G = {a, b}.

3.4. Solution approach

The final step is to solve optimization (4)–(5). Based on our
understanding of the buckypaper fabrication process, we
believe it is reasonable to assume that the relation between
the latent variables can be expressed as a nonlinear function
of the observed variables plus a residual difference, such
that

xm = g(xo)+ e, (11)

where e ∼ N (0, σ̃ 2). Then, in order to solve optimization
(4)–(5), we can simply replace the unknown latent variables
xm

i with its sample mean, g(xo
i ), for i = 1, 2, . . . , n, and plug

the sample mean into the optimization formulation. When
taking this approach, we can express the optimization prob-
lem as

min�B,�G

∑
i

(
ȳi − Ŝ(xo

i , g(xo
i ))− B(xo

i , g(xo
i ))

)2
, (12)

where ȳi = 1/ni
∑ni

j=1 yi j . The resulting optimization prob-
lem can be solved by standard nonlinear optimization
techniques.

On solving the above optimization problem (12), the
multi-fidelity analysis yields a linkage function g(·), de-
termined by â and b̂ (estimated parameters in �G), and a
bias function B(xo

i , xm
i ), determined by B̂ (estimated pa-

rameter in �B). For any given test case that has an ob-
servable xo

∗, the linkage function g(·) would determine an
associated unobservable input component xm

∗ that repre-
sents the average value of the unobserved latent variables
for the input xo

∗. With both xo
∗ and xm

∗ , the correspond-
ing low-fidelity simulation response (or its GP surrogate
model response) as well as the bias correction can be
computed. Adding the low-fidelity simulation response (or
its GP model response) and the bias correction together
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Multi-fidelity analysis involving latent variables 147

produces a multi-fidelity prediction for the input xo
∗. Specif-

ically, given xo
∗, we have xm

∗ = g(xo
∗) and the predicted value

y∗ = Ŝ(xo
∗, xm
∗ )+ B(xo

∗, xm
∗ ). Furthermore, as the optimiza-

tion yields the functional relationship g(.), one can utilize
that information for a better understanding of the process.
Indeed, understanding how the latent and observed vari-
ables connect can provide insight into the physical process.
This fact could be of significant importance for engineers
who design or operate the application process.

Using the notations and specific models presented in
Sections 3.1, 3.2, and 3.3, we can further simplify the opti-
mization problem (12) as

minθ∈� u(θ) =
n∑

i=1

(
ȳi − Ŝ(pi , g(pi ))− B

)2
,

s.t. � = {(a, b, B) ∈ R
3 | a × b < 0}, (13)

where � is used to collect the parameters in both �B and
�G .

We solve this constrained optimization problem (13) nu-
merically using a steepest descent algorithm. We sequen-
tially update the parameter values by moving opposite the
gradient direction for each parameter. The steps for this
procedure are summarized in Algorithm 1. The parameter
ω∗ in the algorithm determines the length of each opti-
mization step. Specifically, to find the value of ω∗ at each
step, we discretize the interval (0, 1) and choose a value that
provides the largest decrease in the objective function:

ω∗ = arg min
ω∈(0,1)

u(θω
� ) for � = 1, 2, 3, (14)

where θ� is the �th parameter in �. Here we have three θ pa-
rameters, namely, θ1 = a, θ2 = b, and θ3 = B. In the above
expression, θω

� = θ� − ω∂u(θ)/∂θ� and u(θ) is defined in
Equation (13). The derivatives of Ŝ(pi , g(pi )) with respect
to a and b are computed numerically. Also, to ensure the re-
lation a · b < 0 holds, the step to update b is performed only
if the resulting b has a different sign from the current value
for a. As the value of objective function decreases at each
stage, the algorithm continues until the change in the objec-
tive function is negligible, with the algorithm determining
that location as a local optimum. The parameters of the co-
variance function (8) for the GP remain unchanged as the
algorithm proceeds, because those values were estimated
solely using the low-fidelity data prior to the iterations of
the algorithm.

In fact, our multi-fidelity analysis problem can be seen
as a special case of matching a one-dimensional (1D) curve
to a two-dimensional (2D) surface in the three-dimensional
Euclidean space. Here the Euclidean space is generated by
(p, α) together with the Young’s modulus, whereas the 2D
surface is the response surface generated by the simulation
model and the 1D curve is formed by the responses of the
physical experiment. Once the 2D surface is constructed,
one can choose to position the 1D curve such that the re-
sponse values associated with different locations (i.e., PVA

Algorithm 1 Sequential Update for Optimization Problem
(13)

1: Set θ = (1,−0.1, 500)
2: repeat
3: Calculate ω∗ according to Equation (14)
4: a← a + 2ω∗

∑n
i=1

{(
ȳi − Ŝ(pi , g(pi ))− B

)
∂
∂a Ŝ(pi , g(pi ))

}
5: b← b + 2ω∗

∑n
i=1

{(
ȳi − Ŝ(pi , g(pi ))− B

)
∂
∂b Ŝ(pi , g(pi ))

}
6: B← B+ 2ω∗

∑n
i=1

(
ȳi − Ŝ(pi , g(pi ))− B

)
7: Re-evaluate Ŝ(pi , g(pi )) based on (a, b)
8: θ ← (a, b, B)
9: until Local minima are found

10: θ̂ ← θ

levels) on the curve can be matched to those on the 2D sur-
face as close as possible, after a bias adjustment. Once such
a match is found, it reveals the linkage function between the
two variables, as illustrated in Fig. 3. In our solution pro-
cedure, the manipulation of the position of the 1D curve is
in fact done through specifying and solving for the linkage
function, as we presented in the preceding sections.

4. Results

In this section, we evaluate the performance of the proposed
multi-fidelity analysis method. In the first subsection, we
compare the performance of the proposed method with
two alternatives, and in the two following subsections we
investigate the impact of the amount of high-fidelity data on
the multi-fidelity analysis and the effect of different choices
of the linkage function.

4.1. Performance comparison

Concerning the multi-fidelity analysis problem involving la-
tent variables, we note two alternatives to what is presented
in this article.

1. Since the effectiveness of PVA is not observable, one may
argue that we should simply ignore its existence and
use whatever is observable to conduct a multi-fidelity
analysis following the procedure, say, in Kennedy and
O’Hagan (2001) or in Reese et al. (2004).

2. Because the response of the low-fidelity computer exper-
iment, while using the observable variable alone (i.e., the
PVA amount), could possibly mislead us, it may be ap-
propriate to rely solely on the data of the physical exper-
iment to make predictions at an input level where experi-
mental data are not available. To do this, a GP model can
be used to fit the physical data and make predictions. We
refer to option (1) as the Multi-Fidelity Analysis with-
out considering the latent variables (“MFA w/o LA”),
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148 Pourhabib et al.

Fig. 3. The curves are the level sets for the simulation surface with step size of 50. The sidebar represents the Young’s modulus from
the simulation model, where smaller values are represented by darker colors. The dashed curve shows the linkage function. The values
close to the dark circles are the Young’s modulus from the physical experiment given the corresponding PVA values. The linkage
function is decided such that the overall difference between the physical experiment responses and the simulation responses, plus
some constant bias, is minimized.

option (2) as a Single-Fidelity Analysis (SFA), and our
proposed method as “MFA with LA.”

More specifically, in MFA w/o LA, we assume that the
physical experiment value for run i (i.e., P(pi )) could be
modeled after a bias and scale change on the simulation
response Ŝ(pi ). Here, Ŝ(pi ) is the average of the surrogate
model Ŝ(pi , α) over all possible values of α. The calibration
model can be expressed as

P(pi ) = β0 + β1 Ŝ(pi )+ γi , (15)

where β0 and β1 are constants and γi ∼ N (0, σ 2
γ ). Then

the model can be readily solved following the procedure in
Kennedy and O’Hagan (2001).

On the other hand, when choosing option (2)—i.e.,
SFA—we simply train a one-dimensional GP using the
training data {(pi , yi j ), i = 1, 2, . . . , n; j = 1, 2, . . . , ni }.

To evaluate the performance of a method, we divide the
physical experiment data into the training set and test set:
use the training set to fit a model during the analysis step
and use the test set to compute a performance measure.
Note that the low-fidelity data are only used in the training
(model fitting) stage not in the testing stage, because the
outcome from a MFA is supposed to be better than the low-
fidelity response; otherwise, it is of no value to conduct the
MFA. One performance measure we use is the Standardized

Root Mean Squared Error (SRMSE):

SRMSE =
√∑nt

i=1 [(ŷi − ȳi ) /ȳi ]
2

nt
, (16)

where ŷi denotes the predicted value (i.e., a method’s out-
put) when given the i th observable input xo

i in the test
set and nt is the number of data points in the test set. In
addition, as suggested by a reviewer, we consider the Stan-
dardized Maximum Absolute Deviation.

SMAD = max {(ŷi − ȳi ) /ȳi } ; i = 1, . . . , nt. (17)

Depending on how the training/test data sets are gener-
ated, we produce the following three types of performance
measures:

1. Leave-One-Out (LOO): For the details of LOO cross-
validation, please refer to Hastie et al. (2001). The
reported LOO SRMSE is the average of 13 SRMSEs
computed when one of the physical data points was left
out during the training stage for the physical data in
the range of 0.5 ≤ p ≤ 1.1 (therefore n = 12 for each
case).

2. Extrapolation (EXT): Under this circumstance, the
training data set contains all of the physical data in
the range of 0.5 ≤ p ≤ 1.1. Four pairs of data points
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Multi-fidelity analysis involving latent variables 149

Table 1. Comparison of methods: the two rightmost columns show the improvement percentage
of the proposed method over the other two methods

SRMSE Improvement (%)

MFA with LA SFA MFA w/o LA over SFA over MFA w/o LA

LOO 0.0032 0.0045 0.0140 29 77
EXT 0.0392 0.0806 0.1501 51 73
INT 0.0383 0.0547 0.0681 30 43

SMAD Improvement (%)

MFA with LA SFA MFA w/o LA over SFA over MFA w/o LA
LOO 0.0092 0.0097 0.0195 5 20
EXT 0.0885 0.0993 0.1666 11 47
INT 0.0612 0.0818 0.0923 25 34

outside this range, two with p < 0.5 and two with
p > 1.1, were used as the test set (therefore n = 13).

3. Interpolation (INT): Under this circumstance, we select
eight of the physical data points, evenly spread over the
input region, as the training set and use the remaining
as the test set (therefore, n = 8).

Table 1 shows a comparison of results from the three
different methods, where the numbers in the “Improve-
ment” column are the reduction of SRMSE or SMAD, ex-
pressed as a percentage, when the proposed MFA method
is compared with the other two methods. As evident in the
table, the proposed method outperforms the other two al-
gorithms for all evaluation measures. When the latent vari-
able is present, and thus the low-fidelity response deviates
significantly from the high-fidelity response over certain
areas of the input space, the existing multi-fidelity analysis
(“MFA w/o LA”) performs even worse than the SFA. This
outcome suggests that without a new methodology to han-
dle the latent variables, we would be better off by ignoring
the low-fidelity responses.

It is interesting to note that the proposed MFA performs
much better than the SFA and MFA w/o LA when they are
used for extrapolation. Extrapolation is considered more
valuable for product development and process control pur-
poses because a good extrapolation tool can save time and
cost while exploring a large response surface. It is a common
understanding that SFA does not have a good extrapola-
tion ability since it is purely data-driven. The MFA is sup-
posed to improve SFA’s extrapolation ability, because the
low-fidelity model is supposed to be still physics-based and
can guide its response when performing extrapolation. Of
course, this is only true when the low-fidelity model uses the
right physics to guide its response. We believe this is one crit-
ical reason why it is important to understand the role of the
latent variables and then incorporate them into the MFA.

4.2. Impact of the amount of high-fidelity data

We are interested in knowing how the amount of high-
fidelity data impacts the quality of the MFA. Here our

benchmark is the SFA, since the previous subsection es-
tablishes that with the presence of latent variables the SFA
outperforms the MFA that does not consider the latent
variables.

To this end, we selected a subset of data points from the
physical experiment and conducted both SFA and MFA
(with LA) using the same set of data. We kept the same
number of replications per input level as before but chose a
subset of the amount PVA. We started with four PVA levels,
which were randomly selected, as the training data, and
then we added one extra PVA level at a time and observed
the difference between the SRMSEs when using the two
methods; the SRMSEs were obtained by comparing the
predicted values at the PVA levels not used in the training
data with their counterparts from the physical experiment.

Figure 4 displays the results. If we look at the right-hand
side of the figure when there is a large amount of high-
fidelity physical data, there is not much difference between
SFA and MFA. This is expected, as we previously argued,
with a sufficient amount of high-fidelity data SFA can do

Fig. 4. Improvement of MFA with LA over SFA as a function of
the number of high-fidelity data points.
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150 Pourhabib et al.

an adequate job of making predictions and, consequently,
the low-fidelity data may no longer be needed. As we move
along the horizontal axis to the left and the amount of the
high-fidelity physical data gets smaller, the benefit of using
MFA becomes obvious, due to MFA being able to borrow
strength from the simulation responses.

As the high-fidelity data points become fewer, the dif-
ference between MFA and SFA once again diminishes. We
believe that there are two reasons behind this behavior.
The first reason is common to all MFA problems. When
the high-fidelity data points are sparse, the dominance due
to large amount of low-fidelity data is much more pro-
nounced and the benefit of using a combining with MFA
becomes compromised. This reason alone, however, can-
not explain the trend shown in Fig. 4, in which for three
or four high-fidelity data points, MFA produces a slight
improvement over SFA. Previous studies in the literature
concerning MFA w/o LA have reported a somewhat dif-
ferent insight: when the number of high-fidelity data points
becomes very small, the benefit of using MFA, albeit com-
promised, remains significant; for an example, please see
table VII of Xia (2008, p. 90).

That is why we believe that for the problems of MFA
with LA, the second reason is more important. The exis-
tence of latent variables forces us to include another layer
of estimation, which is to use the multi-fidelity data to find
out the linkage function between the observable and un-
observable variables. The quality of this estimation action
suffers when the number of high-fidelity data points is too
few. In turn, a poorly estimated linkage function does not
result in making the combined predictions better than that
from SFA.

This analysis tells us that an MFA with LA analysis will
be effective only for the right range of the number of high-
fidelity data points. The lower bound of this range depends
on the number of data points that can provide a quality
estimation of the linkage function, and the upper bound
is decided by the number of data points that can make
SFA self-sufficient. Our experience indicates that there is
generally a considerable gap between the two bounds for
practical problems, thereby rendering the MFA with LA
approach a useful methodology.

4.3. Choices of linkage functions

We compared different linkage functions g that could po-
tentially be used in the proposed method. Our aim was to
investigate the effect of the functional form specified for
linking the two sets of data sources and substantiate the
specific choice of the linkage function made in the previous
sections.

We considered two sets of alternatives. The first was a
more complex class G whose elements were expressed as
the sum of two decreasing splines. Specifically, for the form
defined in Equation (9), we let Q = 2, which means that
each function in G is the sum of two exponential func-

Table 2. Comparing different linkage functions in terms of
SRMSE: the rightmost column denotes the linkage function
used in Section 4.1

SRMSE
SRMSE

Linear Quadratic Q = 2 Q = 1

EXT 0.0490 0.0570 0.0898 0.0392
INT 0.0409 0.1753 0.0504 0.0383

tions. Comparing the choice between Q = 1 versus Q = 2
was intended to provide some insights into the question of
whether a more complex class of functions would improve
the prediction accuracy. The second set was the consid-
eration of polynomial functions that are popularly used
in curve fitting. Specially, we considered the linear and
quadratic functions. Our experience with the buckypaper
fabrication process indicates that using a very complex form
for the linkage function does not make the final model
effective because as the number of parameters to be esti-
mated in the subsequent optimization problem increases,
the efficiency of the subsequent optimization procedure
deteriorates.

Table 2 compares the different linkage functions in terms
of SRMSE values for both extrapolation and interpolation
cases. As evident in the table, using the class G with Q =
1, which was the linkage function chosen in Section 4.1,
produces the best results, whereas using a more complex
function does not appear to benefit the final prediction
objective. This is not only true from the Q = 1 versus Q =
2 comparison but also from the linear versus quadratic
comparison (that is, a linear function works better).

We believe that the reason the simple linkage function is
favored in our problem is based on the fact that the problem
has only one observable and one unobservable variable and
that the two variables appear to have a rather monotonic
relationship. This may not be true for other problems. We
stress that the linkage function should be chosen based on
the structure of a specific problem and the availability of
data. One can choose other classes of functions in the case
of a viable justification for the problem of interest. Also,
more data points can offer the opportunity to use a linkage
function that consists of more parameters and thus can
handle a linkage relationships with complicated forms.

5. Conclusions

We have developed a method for predicting the Young’s
modulus of PVA-treated buckypaper. The new method ag-
gregates information from physical experiments and a finite
element analysis–based simulation model. Not knowing
the exact values of some inputs yields a unique data struc-
ture that hinders the use of existing MFA models such as
those in Kennedy and O’Hagan (2001) and Qian and Wu
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Multi-fidelity analysis involving latent variables 151

(2008). We aggregated the information in the two data sets
by introducing a latent variable that represents the level of
effectiveness of the PVA in each sample. The latent variable
in turn helps determine the functional relationship between
the effectiveness and the PVA level. Solving for the linkage
functional relation leads to a multi-fidelity model that al-
lows predictions to be made at any untried levels of the
PVA.

The implementation of the proposed method in the PVA-
treated buckypaper fabrication process showed that it out-
performed both the existing MFA w/o LA and the SFA that
ignores the low-fidelity data. A closer look revealed that in
problems of MFA with LA, the proposed method appears
effective when the amount of high fidelity data is in the right
range. Too few high-fidelity data points does not allow a
good estimation of the linkage function, and too many
high-fidelity data points renders the SFA self-sufficient. In
between, the proposed MFA method can exploit the valu-
able information in the low-fidelity (simulation) data and
make an overall better prediction.

The proposed method can certainly be improved in sev-
eral aspects. In particular, we believe that one critical line
of research to pursue is in regard of the relation between
unobserved and latent variables that we modeled through
Equation (11). An alternative approach would be to uti-
lize an EM algorithm (Dempster et al., 1977) to impute
the unobserved variables. Of course, this requires making
assumptions on the distribution of unobserved input vari-
ables. Furthermore, one needs to express the optimization
problem (1) in terms of likelihood maximization. This does
not appear to be straightforward.

In terms of practicality, it would be useful to develop
guidelines to evaluate the similarity between the simulation
outputs and the physical responses, which should be used to
justify the action of integrating the simulation and physical
responses. Not much has yet been published on a specific
guideline or quantitative measure. One work that alludes
to this aspect is Xiong et al. (2013), which sets a threshold
on testing the cross-validation error for continuation in
a sequential design. Using this cross-validation measure
does shed light on how a multi-fidelity model improves the
predictive outcome, but one would still not know whether
a multi-fidelity design is worth it or not until the cross-
validation error is computed (which has to be done after
the multi-fidelity model is established). We believe that this
is an unsettled issue needing attention from the academic
community.
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