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Turbine operations in a wind farm benefit from an understanding of the near-ground behavior of wind
speeds. This article describes a probabilistic spatial-temporal model for analyzing local wind fields. Our
model is constructed based on measurements taken from a large number of turbines in a wind farm,
as opposed to aggregating the data into a single time-series. The model incorporates both temporal and
spatial characteristics of wind speed data: in addition to using a time epoch mechanism to model temporal
nonstationarity, our model identifies an informative neighborhood of turbines that are spatially related,
and consequently, constructs an ensemble-like predictor using the data associated with the neighboring
turbines. Using actual wind data measured at 200 wind turbines in a wind farm, we found that the two
modeling elements benefit short-term wind speed forecasts. We also investigate the use of regime switching
to account for the effect of wind direction and the use of geostrophic wind to account for the effects of
meteorologic factors other than wind. These at best provide a small performance boost to speed forecast.

KEY WORDS: Multiple time-series; Near-ground wind; Probabilistic modeling; Short-term wind speed
forecasts; Spatial-temporal models.

1. INTRODUCTION

This article is concerned with developing short-term wind
speed forecasts that could potentially benefit turbine operations
and control. Wind speed forecasting is commonly categorized
as short-term, medium-term, and long-term. There is no sharp
division between medium- and long-term forecasts, which can
range from days to years. For medium- and long-term forecasts,
physics-based numerical weather prediction (NWP) methods
(Cassola and Burlando 2012) are typically used. Short-term
forecasts, on the other hand, rely primarily on using past
wind speed measurements and purely data-driven approaches
(Genton and Hering 2007). The literature appears to agree that
short-term forecasts refer to a few hours of prediction horizon
for which data-driven, statistical models generally outperform
the physics-based NWPs. For instance, 6 hours were mentioned
by Giebel et al. (2011) as the separator between short-term and
medium/long-term forecasts. Our article uses forecasts of 2 to
5 hr ahead.

There has been a rich body of literature on short-term wind
speed forecasts; for comprehensive reviews, refer to Giebel et al.
(2011) and Zhu and Genton (2012). This article focuses on
turbine-specific wind speed forecasts, namely, that our model

is constructed based on measurements coming from individual
turbines in a wind farm, as opposed to aggregating the whole
farm data into a single time-series. The need for turbine-specific
wind speed forecasts arises from the need to control turbine op-
erations. For instance, the concept of damage-mitigating control
(Santos 2007) depends on the trade-off between the wind power
generation and the level of stress exerting on the turbine struc-
ture by wind. As a turbine generates more power under high
wind, the resulting high stresses can lead to reliability problems.
Turbine operators employ pitch and yaw controls to reduce the
maximum and accumulative stresses at sensitive locations, for
example, at the root of a blade, although this results in some
loss of production. To perform the damage-mitigating control
(and many other types of control), operators need to know the
types of wind conditions to anticipate in the near future. Once
wind speed is predicted, the expected power generation can be
estimated using, for instance, a nominal power curve converting
wind speed to power (Kusiak, Zheng, and Song 2009). Given
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that such control must be performed on individual turbines, a
turbine-specific wind speed forecast model is more helpful than
using aggregated farm-level data.

This article presents a probabilistic spatial-temporal model
for analyzing local wind fields. We use the spatial information
through selecting the informative neighborhood of a turbine and
then build an “ensemble learner” using the neighboring turbines.
For handling nonstationarity in wind speed measurements, we
employ a time epoch mechanism. We conduct numerical anal-
ysis using 2 years of wind and power data collected on 200
turbines in an inland wind farm and demonstrate the merit of
the proposed model.

The remainder of this article is organized as follows. Section
2 reviews some of the widely used models for short-term wind
speed forecasting. Section 3 presents three proposed models and
discusses the selection of appropriate loss functions. Section 4
applies them and compares their performance with four com-
monly used models. Section 5 summarizes this article and offers
suggestions for future research.

2. COMMONLY USED SHORT-TERM WIND SPEED
FORECAST APPROACHES

In this section, we review some existing models for short-
term wind speed forecasting. Let Yi(t) = Y (si ; t) denote the
wind speed at time t measured at location si for i = 1, 2, . . . , I .
Let Y(t) = [Y1(t), Y2(t), . . . , YI (t)]T . Suppose we observe the
wind speed at locations si , i = 1, 2, . . . , I , and at times t =
1, 2, . . . , T . We want to make an h-step ahead prediction, de-
noted as Ŷi(t + h). Assume the temporal resolution is in hours,
so that h-step ahead means h-hour ahead. For the short-term
forecasts made in this article, h is up to 5 hr.

We note that some studies directly forecast the wind power,
that is, they define Yi(t) as the power output from a turbine or
a wind farm, rather than wind speed. Since methods used for
power forecasts do not differ fundamentally from those for wind
speed forecasts, we focus on different mechanisms of using the
temporal and spatial information for forecasts without differen-
tiating whether it is for wind speed forecasts or power forecasts.

Statistical models developed for short-term wind speed fore-
casts can be categorized into temporal models and spatial-
temporal models. The basic idea behind temporal models is
that wind speed at each time point is partially predicted by the
wind speed in its near past, and thus time-series models can be
built for producing short-term forecasts. There is a rich body of
literature on time-series models for short-term forecasts, partic-
ularly autoregressive models (Brown, Katz, and Murphy 1984;
Huang and Chalabi 1995; Schlink and Tetzlaff 1998), autore-
gressive moving average models (Torres et al. 2005; Erdem and
Shi 2011), and autoregressive integrated moving average models
(Palomares-Salas et al. 2009).

Specifically, temporal models use an independent model
for each respective time series {Yi(t) : t = 1, 2, . . . , T }, for
i = 1, 2, . . . , I . The simplest case, known as persistence fore-
casting, assumes

Ŷi(t + h) = Yi(t), for i = 1, 2, . . . , I, (1)

that is, the wind speed “persists” over time for the following
h hours. Despite its simplicity, the persistence model has been

considered as a reference model in the literature (Giebel et al.
2011).

More sophisticated methodologies include the autore-
gressive moving average model of order (p, q), denoted by
ARMA(p, q), and expressed as

Yi(t) = c +
p∑
�=1

φ�Yi(t − �) +
q∑
�=1

θ�ε(t − �) + ε(t),

for i = 1, 2, . . . , I, (2)

where c is a constant, φ� and θ� are the autoregressive and
moving average parameters, respectively, and ε(t) ∼ (0, σ 2) for
t = 1, 2, . . . , T . A special case is when q = 0; this results
in an autoregressive model of order p, denoted by AR(p).
Brown, Katz, and Murphy (1984), by explicitly considering
non-Gaussian distribution and diurnal nonstationarity, found
that AR(1) and AR(2) models outperform the persistence model
for hourly data. In general, low-order AR models are considered
most suitable for short-term forecasts (Katz and Skaggs 1981;
Huang and Chalabi 1995). However, successful implementation
of higher-order AR models for short-term forecasts has also been
reported, for instance, by Schlink and Tetzlaff (1998). Sophis-
ticated AR models, for example, those built upon generalized
logit-normal distributions (Pinson 2012), or Markov-switching
autoregressive models that handle seasonal fluctuations
(Ailliot and Monbet 2012), have been proposed to model wind
power/speed time series (Ailliot and Monbet 2012). In addition,
ARMA models, that is, q �= 0, have been used for short-term
forecasts (Daniel and Chen 1991; Kamal and Jafri 1997; Torres
et al. 2005). Other temporal models for wind power/speed fore-
casts include the Kalman filter (KF; Crochet 2004; Louka et al.
2008), KF in combinations with NWP (Cassola and Burlando
2012) as well as hybrid time-series KF (Liu, Tian, and Li 2012),
hybrid intelligent algorithms (Wan et al. 2014), and kernel den-
sity estimation (Qin, Li, and Xiong 2011; Bessa et al. 2012).

The basic idea of spatial-temporal models is the wind speed
characteristics of a region resemble the characteristics of neigh-
boring regions. This idea has encouraged researchers to incor-
porate the spatial dependency of wind speed into their models
(Alexiadis, Dokopoulos, and Sahsamanoglou 1999; Gneiting
et al. 2006; Hering and Genton 2010; Kusiak and Li 2010; He
et al. 2014; Tastu et al. 2014). For example, a straightforward
extension of the AR(p) model yields the Vector AR(p) model
(Johansen 1995), or simply VAR(p), which considers wind
speed at multiple locations. VAR(p) is defined as

Y(t) = c +
p∑
�=1

��Y(t − �) + ε(t), (3)

where c is an I × 1 constant vector, �� is an I × I matrix
of autoregressive coefficients for � = 1, 2, . . . , p, and ε(t) is
the I × 1 error vector such that E{ε(t)} = 0, E{ε(t)ε(t)T } = �,
where � is a diagonal matrix with nonnegative entries, and
E{ε(t)ε(t − k)T } = 0, for k �= 0. See de Luna and Genton
(2005) for an application of VAR(p) for wind speed forecasts.

It is important to understand how the spatial information helps
with wind speed forecasts. When multiple wind farms are ge-
ographically dispersed and far away from each other (e.g., 100
miles in distance), wind measurements at an upstream loca-
tion can inform wind speed forecasts at a downstream location.
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Under a typical traveling speed of the weather system, using
multiple wind farm measurements can improve wind prediction
for a few hours ahead. When the wind measurement locations are
closer, say a few tens of miles apart, the look-ahead time is natu-
rally shortened to a few or tens of minutes. Most spatio-temporal
models for wind speed forecasts, including Alexiadis, Dokopou-
los, and Sahsamanoglou (1999), Gneiting et al. (2006), Hering
and Genton (2010), and Tastu et al. (2014), employ weather sys-
tem information. This approach, which we call between-farm
spatial models, is most effective when multiple wind measure-
ments come from relatively large regions for a small number of
locations.

Unlike the between-farm setting, our interest is to make
turbine-specific forecasts for up to a few hours using wind speed
data measured at all turbine sites within a wind farm. In other
words, we consider a set of measurements in a relatively small
region for a large number of locations within a wind farm. Given
the close vicinity between turbines within a farm, the informa-
tion propagating through the weather system is not the primary
reason for prediction enhancement. But the wind measurements
taken at other turbine sites do bear relevance. For example, Ku-
siak and Li (2010) and He et al. (2014) used either an artificial
neural network or a linear regression to take wind measurements
at multiple turbine sites as inputs and predicted the wind power
aggregated at the farm level.

One important question in modeling spatial dependency in
local wind fields for individual turbines is selecting the subset
of relevant turbine sites. He et al. (2014) allowed their linear
regression model to assign weights to different turbine sites
based on historical observations, whereas Kusiak and Li (2010)
set a threshold on the correlation between a turbine site and
the target site. The two approaches are similar as they both
depend on correlations calculated by using the original wind
speed measurements. Our proposed model selects the informa-
tive neighborhood of turbine sites based on similarity in the rate
of change in wind speed, rather than that in the wind speed
itself. The proposed model also uses the time epoch mecha-
nism to model nonstationarity. The spatio-temporal treatments
collectively are an improvement over the use of the persistent
model and other time series models.

3. SPATIAL-TEMPORAL AUTOREGRESSIVE
MODELS

We treat wind speed at each location as a random variable.
Different probability distributions have been proposed in the lit-
erature to model wind speed, including Weibull (Yu and Tuzuner
2008) and truncated normal (Gneiting et al. 2006). We use the
truncated normal distribution, because it can model nonnegativ-
ity of the wind speed and its quantiles can be easily computed.
Assume the wind speed Yi(t) = Y (si ; t) follows a truncated nor-
mal distribution N+(μi(et ), σ 2(et )) at time t and location si for
i = 1, 2, . . . , I (location si will be often shortened as location
i), where et denotes the “epoch” at time t, that is, a section of
days in a period of time in which the wind speed can be assumed
stationary (He et al. 2014). For example, 6 a.m. to 12 p.m. in
the month of January is selected as one epoch in our analysis.

Our objective is to develop a model for the parameters of
the truncated normal distribution by considering both temporal

and spatial dependency in the field. The use of epochs as just
mentioned is a way to accommodate nonstationarity in wind
speed. Below, we explain how to handle the spatial depen-
dency through a regularized learning formulation and then deter-
mine how best to evaluate forecasts out of sample through loss
functions.

3.1 Gaussian Spatial-Temporal Autoregression

To begin, we note that single time-series models can be de-
rived from the assumption that wind speed is some (parametric
or nonparametric) function of the past wind speed values. To ac-
count for the spatial dependency of the wind speed, we assume
that the conditional mean of the wind speed is a function of the
wind speeds at not only the target site but also other locations in
the region. Specifically, the conditional mean of the wind speed
at location i can be written as

μi(et ) = c +
p∑
�=1

∑
j∈Ji

aij�Yj (t − �), for i = 1, 2, . . . , I, (4)

where c is a constant, p represents the history of time that can
be informative to model the mean of the distribution, aij� are
the parameters that show the spatial-temporal dependency, and
Ji ⊂ 1, 2, . . . , I is a set of locations whose wind speeds have
predictive power of the wind speed at the target location i. Here,
we fix the order of temporal part p; Section 4.3 discusses its
determination. Section 3.2 discusses the data-driven selection
of the informative neighborhood Ji , and Section 4 discusses the
selection of time epochs, et .

Dealing with large-scale datasets that influence the model
through Ji , we proceed by imposing a natural structure on the
spatial-temporal coefficients through parameterization. Subse-
quently, we adaptively select the neighborhood size such that
most important information is captured via employing a smaller
number of locations. These tasks, while maintaining the model
interpretability, facilitate the solution procedure enormously as
we explain below.

Assume the spatial-temporal parameters aij� can be decom-
posed into the respective spatial and temporal parts,

aij� = asij a
t
i� for i = 1, 2, . . . , I, j ∈ Ji,

� = 1, 2, . . . , T . (5)

A key observation in modeling the spatial parameter asij is that
wind speeds at closer geographic proximity contribute more
in explaining the change in the wind speed at the target site,
whereas the speeds at distant locations give less information.
One way to model this type of dependency is through a Gaussian
kernel. Specifically,

asij = exp
[
− (

si − sj
)T

�i

(
si − sj

)]
, for i = 1, 2, . . . , I, (6)

where �i = diag{λi1, λi2}, and λi1 and λi2 are the parameters
modeling the spatial decay in the longitudinal and latitudinal
directions, respectively. In other words, this Gaussian kernel as-
signs “weights” to different locations and the weights continu-
ously diminish as the distance increases. Therefore, this strategy
is based on a continuous modeling of the spatial dependency,
that is, we replace the spatial part of the coefficients in Equation
(4) by new location-specific parameters �i .
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SHORT-TERM WIND SPEED FORECAST 141

For the temporal part ati�, we can make a similar argument,
that is, an exponential delay in weighting but in terms of time
distance. This leads to the following equation,

ati� = exp [−λi3�] , for i = 1, 2, . . . , I, (7)

where λi3 is a parameter modeling the temporal decay. Us-
ing Equations (5)–(7), we reduce the large number of spatial-
temporal parameters for location i to the three parameters λ1,
λ2, and λ3.

Let Ai denote an I × p matrix of spatial dependency for
location i. This means if j ∈ Ji , the (k, �) entry of the matrix is
asij , otherwise it is zero. Define matrix Di as a p × p diagonal
matrix whose (�, �)th entry is ati�. Then write Equation (4) as

μi(et ) = c + tr
(
AiDiYT (t)

)
, for i = 1, 2, . . . , I, (8)

where Y is an I × p matrix whose �th column is Y(t − �), and
the superscript T denotes the transpose. We call model (8) the
Gaussian spatial-temporal autoregression of order p, or, simply
GSTAR(p).

To estimate the parameters in Equation (8), we follow a regu-
larized least-square estimation procedure. Specifically, we con-
sider the optimization problem,

minU (λi1, λi2, λi3) =
T∑
�=1

L {
Yi(�+ h) − Ȳi , tr

(
AiDiYT (�)

)}
+ γPen (Ai) , (9)

where Ȳi = 1
T

∑T
�=1 Yi , L{., .} is a loss function (see Section 3.5

for details), γ is a penalty coefficient, and Pen (Ai) is a penalty
term that controls the size of the neighborhood, as discussed in
more detail in Section 3.2. We solve optimization problem (9)
using numerical steepest descent methods.

We model the variance of wind speed as a linear combination
of volatility, which measures the magnitude of recent changes
in wind speed (Gneiting et al. 2006). Specifically,

σ 2
i (et ) = b0 + b1νi(t), for i = 1, 2, . . . , I, (10)

where

νi(t) =
⎡
⎣ 1

2|Ji |
∑
j∈Ji

1∑
�=0

{(
Yj (t−�) − Yj (t − �− 1)

)2
}⎤
⎦

1
2

, (11)

|Ji | is the number of elements in Ji , and we estimate b0 and
b1 through least-square estimation: we use the sample variance
on the left-hand side of Equation (10) and regress it on νi(t) to
estimate b0 and b1. Based on our wind data, which have a large
variability (generally true for almost all wind data), this equation
tends to yield positive estimates of b0 and b1, guaranteeing the
positivity of the estimated σ 2

i (et ). However, if for some data we
observe negative values for the estimated σ 2

i (et ), we can replace
the negative estimate with a small positive number.

The predicted value for location i at h-step ahead will be the
α-quantile of the truncated normal distribution,

Ŷ (t + h)=μ̂i(t + h)+α�−1

[
α+(1 − α)�

(
− μ̂i(t + h)

σ̂i(t + h)

)]
,

(12)

where μ̂i(·) is the estimated mean found through Equation (8)
in which t + h denotes a prediction time that falls in the epoch

et (likewise, σ̂i(·) can be found through Equation (10)), and the
value of α should be decided based on the loss function L(·, ·).
Section 4.2 discusses the optimal choice for α.

3.2 Selecting the Neighborhood Through
Regularization

Despite the fact that a Gaussian kernel, as in Equation (6),
has already been used to weigh locations based on their relative
distance from the target site, our analysis reveals that a pure
distance-based determination of informative sites is insufficient
and ineffective. It is important to identify the informative neigh-
borhood for location i, that is, Ji . Based on our study, we find
that two locations are informative to each other if they have sim-
ilar rates of change in wind speed for a given period. In other
words, using the correlation among the rate of change of the
wind speeds can help determine the spatial dependency.

Specifically, let Zi(t) = dY si (t)
dt

≈ Y si (t) − Y si (t − 1), for i =
1, 2, . . . , I , where Y si = Yi

m(Yi )
, where m(Yi) = max{Yi(t); t =

1, 2, . . . , T ; i = 1, 2, . . . , I }. Next, define a sample covariance
matrix for Z as

ρ = 1

T

T∑
�=1

(
Z(�) − Z̄

) (
Z(�) − Z̄

)T
, (13)

where Z(�) = [Z1(�), Z2(�), . . . , ZI (�)]T , for � =
1, 2, . . . , T and Z̄ = 1

T

∑T
�=1 Z(�).

As we have mentioned, including penalty Pen (Ai) helps us
find a sparse representation of the informative neighborhood
by using the information embedded in ρ. To ensure that we
select a small neighborhood having a high correlation in the rate
of change with the target site, Pen (Ai) performs three steps:
(a) it thresholds the entries of ρ with respect to β ∈ [0, 1]; (b)
it creates a new matrix whose entries are the inverse of the
entries of the matrix obtained in step (a) (with the convention
that inverse of zero is ∞); and (c) it calculates the Frobenius
norm of the product between the matrix obtained after step (b)
and Ai with the convention that 0 × ∞ = 0. Specifically, let
ρβ denote the matrix ρ after thresholding with respect to β,

ρ
β

jk = ρjk if ρjk ≥ β otherwise ρ
β

jk = 0, (14)

where ρβjk and ρjk are the (j, k)th entries of ρβ and ρ, re-

spectively, for j, k ∈ {1, 2, . . . , I }. Then, let ρ
β

inv define the
entrywise inverse of matrix ρβ ,

ρ
β

inv,jk = 1

ρ
β

jk

, (15)

where ρβinv,jk is the (j, k)th entry of ρ
β
inv for j, k ∈ {1, 2, . . . , I }.

Assume ρβjk = 0 implies ρβinv,jk = ∞. Finally, define

Pen (Ai) = ‖AT
i ρ

β

inv‖F , (16)

where ‖.‖F denotes the Frobenius norm, and again, use the
notational convention that 0 × ∞ = 0.

In other words, Pen (Ai) is a scalar obtained by imposing a
sparse structure on Ai in which entries with associated sam-
ple correlation of the derivative smaller than β are 0. If the
sample correlation of the derivative is small (but larger than
β), the associated entry in Ai is penalized more, whereas if
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the sample correlation of the derivative is large, the associated
entry in Ai is slightly penalized. This defines the informative
neighborhood Ji = {j : ρβij �= 0}. Section 4.1 uses this approach
to select neighborhoods.

3.3 Regime Switching Gaussian Spatial-Temporal
Autoregression

Following the regime switching approach developed by
Gneiting et al. (2006), we extend model (8) to account for ef-
fect of wind direction. Regimes are determined according to
the wind direction, denoted by θ . Consider a partition of the
interval [0◦, 360◦), with 0◦ representing due north, where each
segment of the partition defines a regime. For example, represent
an east–west two-regime partition as r = {[0◦, 180◦)}, meaning
that when 0◦ ≤ θ (t) < 180◦, it is the east regime, whereas when
180◦ ≤ θ < 360◦, it is the west regime. Fit a separate model for
each regime as

μi(et ) = c + tr
(
Ai(θ (t), r)DiYT (t)

)
, for i = 1, 2, . . . , I,(17)

where r denotes the forecast regimes, and θ (t) is the current wind
direction at location i. Note that matrix Ai(θ (t), r) is similar
to Ai as defined in Section 3.1 and that the dependency on
(θ (t), r) means considering only those observations that fall in
the specific range determined by (θ (t), r) in the training stage
for each regime. Based on the regime at time t, predict the wind
speed at time t + h, according to the specific trained model
for that θ . We call model (17) the regime-switching GSTAR of
order p and denote it by RGSTAR(p). Specifically, we solve

minU (λi1, λi2, λi3) = c +
T∑
�=1

L {Yi(�+ h)

− Ȳi , tr
(
Ai(θ (t), r)DiYT (�)

)}
+ γPen (Ai) , (18)

which, given a regime, is solved similar to optimization problem
(9).

Next, find the regimes in each calendar month by using the
previous year’s data. Select a group of candidate regimes, for
example, east–west or north–south. For each of the candidate
regimes fit the model (17) and then choose the regime that yields
the smallest training error. Specifically,

r∗ = arg min
r

Em(r), for mo = 1, 2, . . . , 12, (19)

where Em(r) denotes the prediction error based on some loss
function for month mo. In other words, for each month we
choose the regime that yields a smaller prediction error, bearing
in mind that selecting a regime with too many partitions
reduces the number of data points needed for training in each
regime and thus reduces prediction accuracy. For the cases
used in this article, we choose the following candidate regimes:
(a) two-partition: east–west, north–south, northwest–southeast,
southwest–northeast, (b) three-partition: {[0◦, 120◦)} ∪
{[120◦, 240◦)} ∪ {[240◦, 360◦)}, (c) four-partition:
{[0◦, 90◦)} ∪ {[90◦, 180◦)} ∪ {[180◦, 270◦)} ∪ {[270◦, 360◦)},
and (d) five-partition: {[0◦, 72◦)} ∪ {[72◦, 144◦)} ∪
{[144◦, 216◦)} ∪ {[216◦, 288◦)} ∪ {[288◦, 360◦)}. We note
that for some cases, the regimes with higher partition numbers

are not feasible because one of the partitions has no data points.
We suggest that regimes with two or three partitions are best
and that two-partition regimes constitute the majority of the
regimes in this study.

3.4 Using Geostrophic Wind in Regime Switching
Gaussian Spatial-Temporal Autoregression

Temperature and air pressure measurements are also used to
model wind speeds (Xie et al. 2014). Geostrophic wind is a
type of theoretical wind obtained by assuming an exact balance
between the air pressure gradient force and the Coriolis force
(Focken and Lange 2006). Geostrophic wind can be obtained
after some simple calculations on temperature and air pressure
measurements (Xie et al. 2014). The actual value of geostrophic
wind is in general assumed to be in good accordance with the
wind speed close to the ground. “Close to the ground” in this
context is about 100 m above ground, that is, the hub height of
a typical turbine.

Letωi(t) denote the geostrophic wind at location i at time t and
extend model (17) to incorporate geostrophic wind. Specifically,

μi(et ) = tr
(
Ai(θ (t), r)DiYT (t)

) +
w∑
�=1

ψ(t − �)ωi(t − �),

for i = 1, 2, . . . , I, (20)

where ψ(�) denotes the coefficient of the geostrophic wind at
time � and w is the order of the model associated with the
geostrophic wind. We call model (20) the RGSTAR Geostrophic
Wind of order (p,w) and denote it by RGSTARGW(p,w). We
use a two-step approach to find the optimal values of the pa-
rameters in model (20). First, given p and w, we fit data to
the model RGSTAR, for each respective regime, based on the
model discussed in Section 3.3, namely, optimization problem
(18). Second, we regress the residuals on the geostrophic wind
using least-square estimation,

Ŷi(t + h) − tr
(
Âi(θ (t), r)D̂iYT (t)

)
= c +

w∑
�=1

ψ(t − �)wi(t − �), for i = 1, 2, . . . , I, (21)

where Âi(θ (t), r) and D̂i are the estimated values for the matrix
Ai(θ (t), r) and Di , respectively, and Ŷi(t + h) is the predicted
value obtained in the first step.

So far, we have discussed how to incorporate the spatial infor-
mation into our model for a given order of temporal dependency,
namely, for fixed p, q, and/or w. Section 4.3 discusses selecting
the temporal order.

3.5 Choice of Loss Functions

In practice, prediction evaluation is based on the loss func-
tions used by the wind industry. Thus, if Ŷi(t + h) denotes the
predicted wind speed for h-step ahead forecasts at location i for
i = 1, 2, . . . , I , a common choice is the mean absolute differ-
ence,

MAD = 1

I

I∑
i=1

∣∣Ŷi(t + h) − Yi(t + h)
∣∣. (22)
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Figure 1. Power curve for a wind turbine.

Hering and Genton (2010), who instead favor measuring the
final response affected by the wind speed forecast, used a non-
linear mapping like the power curve associated with a turbine to
convert wind speed to a turbine response. As shown in Figure 1,
for a wind speed smaller than cut-in speed the energy produced
by the turbine is zero. For wind speeds between cut-in speed
and rated speed, the energy produced increases monotonically.
If the wind speed is beyond the cut-out speed, the operator shuts
down the turbine for safety, that is, it produces no energy.

To consider the impact on a turbine’s power response, Hering
and Genton (2010) proposed the following power curve error
(PCE), defining it as

PCE(Y, Ŷ ) =
{
α

(
g(Y ) − g(Ŷ )

)
if Ŷ ≤ Y ,

(1 − α)
(
g(Ŷ ) − g(Y )

)
if Ŷ > Y ,

(23)

where g(.) is the power curve andα ∈ (0, 1), which is introduced
to penalize underestimation and overestimation differently; be-
cause in practice, underestimating incurs more cost than over-
estimating. Therefore, for practical purposes α > 0.5. Provided
that the PCE is used as the loss function, α in Equation (23)
is the quantile of the optimal predictor and is the same as the
α shown in Equation (12).

To solve optimization problem (9), determine the loss func-
tion L based on the forecast objective. For example,

minU (λi1, λi2, λi3) =
T∑
�=1

PCE
{
Yi(�+ h) − Ȳi ,AiDiYT (�)

}
+ γPen (Ai) , (24)

where PCE replaces L(., .). An alternative criterion is the con-
tinuous rank probability score (CRPS), which is akin to PCE, but
evaluates the forecast from a distribution perspective. Specifi-
cally,

CRPS = 1

I

I∑
i=1

∫ 1

0

(
F̂ (X) − I(X ≥ gi)

)2
dX, (25)

where F̂ (X) is the distributional forecast of power (assuming the
power curve is known), gi is the (normalized) power generated
by turbine i, and I(·) is the indicator function. In this article, we
use CRPS for model evaluation, similar to the approach in He
et al. (2014), but not for parameter estimation.

4. RESULTS

The dataset comprises information collected between 2008
and 2010 from 200 randomly selected turbines and a few me-
teorological mast towers located on a wind farm having mostly
flat terrain. We note that we use 200 turbines rather than all of
them in the wind farm because our industrial partner deems the
exact number of turbines confidential. In this wind farm, the
elevation differences between the highest and lowest locations
are less than 10 m, over a stretch of approximately 160 km2.
Each turbine measures both wind speed every 10 min and the
standard deviation during the 10 min period. Each mast tower
measures temperature, air pressure, and wind direction as a 10
min average. We note that the use of 10 min blocks is standard
industry practice.

We impute the values of the 2%–3% of missing monthly data
by using the iterative singular value decomposition (Beckers
and Rixen 2003; Maadooliat, Huang, and Hu 2015). For our
forecast purpose, we further combine the six 10 min averages in
an hour and produce hourly averages. This means that we use a
temporal resolution of 1 hr.

We consider the three proposed models: GSTAR(p),
RGSTAR(p), and RGSTARGW(p,w). GSTAR(p) is simply the
Gaussian spatial-temporal autoregression of order p as described
in Section 3.1; RGSTAR(p) is the regime-switching GSTAR in
which the regime in each calendar month is decided based on the
data in the previous year; and RGSTARGW(p,w) uses the tem-
perature and pressure measurements in the form of geostrophic
wind as described in Section 3.4.

Assuming that wind speed in each time epoch is a stationary
stochastic process, for each model we define four epochs for
each day in a calendar month: (1) 12:00 am to 6:00 am, (2)
6:00 am to 12:00 pm, (3) 12:00 pm to 6:00 pm, and (4) 6:00
pm to 12:00 am. Consequently, we need to fit individual models
for each epoch, depending on the epoch to which the forecast
horizon belongs. We note that reporting the error average over
all turbine cases for each of the four epochs is computationally
burdensome. For example, fitting the GSTAR model for one
epoch for each month takes about 1 min, but fitting it to 200 tur-
bines for 12 months with four epoch options each takes 6.7 days
(1 × 4 × 12 × 200 = 160 hr). Since we have three model options
and 2 years of data, it would take almost 40 days. Therefore, we
randomly assign each of the 200 turbine cases to evaluate one
of the epochs for a given month to reduce the computational
burden. We report the prediction error for that month, averaged
over roughly 50 evaluation cases. We believe that this reported
average prediction error is a good approximation of the error
that would have been obtained using the entire 200 turbines.

Table 1 summarizes the features of the three models.

Table 1. Features of proposed models

Model Epochs Regimes Geostrophic Wind

GSTAR Yes No No
RGSTAR Yes Yes No
RGSTARGW Yes Yes Yes
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Figure 2. Neighborhood selection in GSTAR for a sample data in January 2009: (a) three different sites and turbines in their neighborhood;
(b)–(d) informative neighborhood selection for each site.

The competing models used in this comparison are
ARMA(p,q), ARMA∗(p,q), vector AR of order p (VAR(p)),
and the persistence model (PER). ARMA∗(p,q) is the same as
ARMA(p,q), but the analysis is performed on the residuals af-
ter removing a diurnal trend. For the VAR(p), we select the
neighborhood based on the geographical distance smaller than
5 km. For these models, we select p = 1, q = 2, and w = 1.
See Section 4.3 for the details of selecting p, q, and w. We
compute h-step ahead predictions for h = 2, 3, . . . , 5. Specif-
ically, for each h-step ahead prediction, we train the model

using 30 days of hourly data and then make predictions for
the next h hours. In doing so, we fit separate models for each
prediction horizon. See Section 3.5 for the details of the loss
function.

4.1 An Example of an Informative Neighborhood

Figure 2 illustrates how the GSTAR models select informative
neighborhoods for the target sites. We note that they select a
neighborhood according to the historical similarity in the rate of

Table 2. Prediction results for 2009 and 2010 using PCE. The numbers in parentheses are the standard deviations of the corresponding
predictions. Imp. % over PER shows the improvement of the best model over PER. The values in bold indicate the best model for each

prediction horizon in each year

Model 2 hr 3 hr 4 hr 5 hr

2009
PER 0.054 (0.013) 0.066 (0.17) 0.076 (0.022) 0.089 (0.025)
VAR(1) 0.109 (0.053) 0.115 (0.044) 0.126 (0.042) 0.127 (0.037)
ARMA(1,2) 0.058 (0.016) 0.077 (0.020) 0.088 (0.028) 0.100 (0.028)
ARMA∗(1,2) 0.066 (0.018) 0.085 (0.022) 0.094 (0.027) 0.104 (0.028)
GSTAR(1) 0.050 (0.012) 0.058 (0.016) 0.066 (0.019) 0.080 (0.025)
RGSTAR(1) 0.055 (0.018) 0.061 (0.020) 0.070 (0.022) 0.085 (0.025)
RGSTARGW(1,1) 0.054 (0.016) 0.059 (0.019) 0.069 (0.021) 0.087 (0.027)
Imp. % over PER 7.4 12.1 13.2 10.1

2010
PER 0.047 (0.012) 0.053 (0.015) 0.069 (0.019) 0.074 (0.023)
VAR(1) 0.110 (0.068) 0.129 (0.075) 0.138 (0.058) 0.148 (0.057)
ARMA(1,2) 0.055 (0.014) 0.068 (0.017) 0.085 (0.023) 0.094 (0.026)
ARMA∗(1,2) 0.096 (0.015) 0.104 (0.017) 0.118 (0.020) 0.121 (0.022)
GSTAR(1) 0.042 (0.013) 0.052 (0.016) 0.063 (0.019) 0.071 (0.020)
RGSTAR(1) 0.043 (0.017) 0.051 (0.017) 0.067 (0.022) 0.073 (0.021)
RGSTARGW(1,1) 0.042 (0.014) 0.054 (0.016) 0.066 (0.021) 0.071 (0.021)
Imp. % over PER 10.6 3.8 8.7 4.1
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change in wind speed (see Section 3.2) instead of geographical
proximity.

In Section 3.2, the parameter β in Equation (14) affects the
choice of the neighborhood: a smaller β leads to a larger neigh-
borhood for a target site, because it causes ρβ to have fewer
zero entries, whereas a large β creates a smaller informative
neighborhood, because it causes ρβ to have more zero entries.
Recall that for forecasts ranging from 2 hr to 5 hr ahead, the
weather-related information, which propagates through wind,
contributes little to the model’s performance. For this reason, we
choose similar values for each horizon but with a slight ascend-
ing trend. For the 2 hr ahead forecasts, we choose β = 0.85 and
for the 5 hr ahead forecasts, β = 0.92, and then we linearly
interpolate the values of β for the 3 hr and 4 hr ahead forecasts.
The rationale for this ascending trend is because we observe
that as the prediction horizon lengthens, the impact of the in-
formative neighborhood mechanism weakens, which suggests
there is no need to aggregate a large number of models from the
neighboring turbines.

4.2 Forecasts and Comparisons

All models use the wind speed data adjusted according to a
standard industry practice that converts the after-wake wind data
to free stream wind data. We train each model using 1 month of
data and then make h-step ahead forecasts for h = 2, . . . , 5 hr.
Doing so for turbine i = 1, 2, . . . , 200, for each year gives us
200 × 12 prediction results for each model, and we report the
average values and the standard deviations of the prediction
errors obtained based on using the PCE as the loss function,
where we normalize the power curve so the rated power is 1.
We choose α = 0.73 as suggested by Hering and Genton (2010).
The point forecast for the GSTAR models is the α-quantile of
the predictive normal distribution.

Prior to our comparison, we assess the goodness-of-fit of
the GSTAR model. One measure for the goodness-of-fit is the
coefficient of determination R2, which is the ratio between the
variation explained by the model to the total variation. For the
three GSTAR models, we calculate this measure for a given
turbine in each month. For most cases, this measure is greater
than 0.93, suggesting a good fit for the model. We also took a
look at the residual plots (not shown) and did not detect any
obvious patterns.

Table 2 shows the results of our comparison. Generally, the
three GSTAR models consistently outperform the VAR and
ARMA models, sometimes by more than 10% reduction in terms
of PCE. The fact that ARMA performs better than VAR testifies
to the importance of choosing an appropriate neighborhood. A
poor selection of neighborhood, for example, selecting based on
geographical distance, can mislead a model into making worse
predictions.

Table 3 shows the average improvement in prediction made
on individual turbines for the three GSTAR models. The first
number is the percentage of turbines for which the models
work better than the persistence model and the second num-
ber in parentheses is the average percentage of improvement
over the persistence model for those turbines. The table indi-
cates that the GSTAR model that is identified as the best model
in Table 2 outperforms the persistent model for over 50% of

Table 3. Percentage of improvement over PER in 2009 and 2010. The
data pairs in parentheses are the percentage of turbines that see an
improvement and the average improvement percentage for those

turbines. The values in bold correspond to the best model in Table 2

Model 2 hr 3 hr 4 hr 5 hr

GSTAR(1)
(2009)

(66, 18.0) (75, 20.1) (77, 20.3) (70, 19.8)

RGSTAR(1)
(2009)

(53, 23.9) (60, 27.6) (58, 30.1) (57, 27.3)

RGSTARGW(1,1)
(2009)

(49, 24.9) (60, 28.9) (60, 29.1) (49, 30.8)

GSTAR(1)
(2010)

(63, 22.1) (54, 18.6) (63, 19.5) (59, 15.9)

RGSTAR(1)
(2010)

(61, 31.9) (56, 27.1) (54, 28.7) (53, 26.5)

RGSTARGW(1,1)
(2010)

(66, 29.2) (46, 26.3) (54, 28.1) (53, 26.8)

the turbines, and in some cases, the GSTAR model preforms
better on close to 75% of the turbines. Moreover, on those
turbines, the improvements are more than 15% and even as much
as 29%.

However, the persistent model outperforms the three GSTAR
models in some cases of volatility, for example, sudden changes
in wind speeds. This finding suggests the need for a model to
capture more complex temporal patterns and trends.

Table 4 shows some of the results using CRPS to give a sense
of the quality of predictive distribution. We randomly select
20 turbines, apply the GSTAR model, and compare the results
with ARMA(1,2). Table 4 suggests that the GSTAR model does
better than the ARMA(1,2) model for capturing the predictive
distribution.

Finally, we investigate whether the GSTAR model is sensitive
to the value of α used in PCE. In the model building step,
we choose α = 0.73 following the suggestion made by Hering
and Genton (2010). In practice, the optimal value of α may
change over time, and a variation of α around 0.73 is expected.
Hence, we conduct a sensitivity analysis by changing the value
of α between 0.6 and 0.8, and then we average the PCE over
this range. We randomly select 100 turbines and use 2009 data.
Table 5 shows that the performance of the model is not sensitive
to the specific value of 0.73 chosen for the model fitting.

4.3 Role of Informative Neighborhood and Temporal
Dependency

We speculate that the performance of the GSTAR models
depends upon an effective aggregation of a group of predic-
tive models initiated from individual turbines in its informative
neighborhood. Therefore, we compare the change in the neigh-

Table 4. CRPS values using 20 randomly selected turbines and 2009
data

Model 2 hr 3 hr 4 hr 5 hr

ARMA(1,2) 1.166 1.480 1.845 2.353
GSTAR 0.997 1.198 1.478 1.532
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Table 5. Average PCE with α varying in [0.6, 0.8] for 100 turbines in
the year of 2009. The values in parentheses are the average of

standard deviations for each case

Model 2 hr 3 hr 4 hr 5 hr

PER 0.071 (0.007) 0.073 (0.008) 0.064 (0.009) 0.077 (0.010)
GSTAR 0.057 (0.007) 0.066 (0.007) 0.053 (0.009) 0.074 (0.008)

borhood selected by the GSTAR when it performs better than the
persistence model. Intuitively, the selected (informative) neigh-
borhood should change less to give the GSTAR model an edge.

We define a metric of quantifying the changes in a neighbor-
hood ch(i, m), i = 1, 2, . . . , 200 and m = 1, 2, . . . , 12:

ch(i, m) = 1 − |Ji(m) ∩ Ji(m+ 1)|
|Ji(m)| , (26)

where Ji(m) denotes the informative neighborhood selected by
the GSTAR at month m for turbine i, |Ji(m)| is the number of
elements in Ji(m), and ch(i, m) is a number between 0 and 1.
To obtain a robust statistic, we set a threshold, tch ∈ (0, 1), and
find how often the change in the informative neighborhood is
smaller than tch. More precisely,

Sc = 1

12I

∑
i,m

{
I
(
ch(i, m) ≤ tch

)}
. (27)

Simply speaking, when tch is chosen as a small value, Sc in-
dicates the likelihood of a consistent neighborhood; the bigger
Sc is, the more consistent the neighborhood. Based on the in-
tuition expressed above, if GSTAR outperforms the persistence
model, Sc should have a value more than 0.5, implying that
it is more likely for the neighborhood to have a small change
(smaller than tch) than otherwise.

To test this, we randomly select 60 turbines (therefore
I = 60 in Equation (27)), use the data of 2010, and both GSTAR
and the persistence models to produce an h-hour ahead forecast,
for h = 2, . . . , 5. We choose tch = 0.2 and estimate the value of
Sc by counting the proportion of times ch(i, m) is smaller than
0.2 when GSTAR performs better. Table 6 shows that when
the GSTAR model performs better for smaller horizons, the
neighborhood more often stays unchanged, and that the GSTAR
model still maintains its edge for longer horizons when the
neighborhood changes more often. These results indicate that
when predicting for shorter horizons, the informative neigh-
borhood plays a more important role than when predicting for
longer horizons.

We also believe that the GSTAR model is superior as a re-
sult of using epochs for modeling nonstationarity in wind data.
Undertaking an analysis similar to what we presented for neigh-
borhood selection, we observed that the time epoch mechanism
has a bigger impact on longer prediction horizons (4 hr or 5
hr) and a smaller impact on shorter prediction horizons (2 hr
or 3 hr). The combined effect of the informative neighborhood
mechanism and the time epoch mechanism does not appear to
be monotonic in time, which explains why the GSTAR model’s
improvement over the persistent model as shown in Table 2 does
not show any monotonic trend.

We explained earlier that the improvement mechanism of
the GSTAR models is different from that of the between-farm

Table 6. Proportion of the times that the informative neighborhood
stays largely unchanged

2 hr 3 hr 4 hr 5 hr

Sc 0.68 0.59 0.53 0.53

spatial models. The comparisons presented in Table 2 reaffirm
this understanding. We note that RGSTAR and RGSTARGW,
the GSTAR variants using regime-switching and geostrophic
wind, perform no better than the GSTAR model for most of
the cases. The use of regime-switching and geostrophic wind
is believed to benefit the between-farm spatial models when
winds traveling through weather systems play a larger role.
Due to different combination of spatial and temporal scales in
our problem, inclusion of these modeling elements appears to
produce only a marginal benefit.

One final issue regarding model specification is the orders of
the model, p, q, and w. One approach to find the order p is the
partial autocorrelation function (Brockwell and Davis 2009).
Partial autocorrelation of lag k > 0 is the correlation between
the terms with indices t and t + k, with the linear dependence of
the terms t + 1 to t − k + 1 removed. For the datasets used
in this article, the partial autocorrelation of lag 1, for both
geostrophic winds and wind speeds is dominant, which sug-
gests p = 1 in VAR, GSTAR, RGSTAR, and RGSTARGW, and
w = 1 in RGSTARGW. This finding is consistent with the claim
that for meteorological data, a low order for AR models, often
p = 1, would be sufficient (Katz and Skaggs 1981). Similarly,
to determine q in ARMA, we use Bayesian information criterion
(BIC; Torres et al. 2005; Erdem and Shi 2011). BIC suggests
p = 1 and q = 2 for most of the cases, so we use ARMA(1,2)
as a competing algorithm.

5. CONCLUSION

This article presented a model for making short-term forecasts
of wind speed in local wind fields. It focused on turbine-specific
forecasts that can benefit turbine operations and control. Our
proposed model and two variants employed both spatial and
temporal information to enhance the forecast quality. Testing
the three models using 2 years of real data demonstrated that
incorporating spatial information into the proposed models as-
sisted in obtaining more accurate wind speed forecasts and that
the use of the spatial information depended on selecting the
most informative neighborhood. We also found that using the
rate of change in wind speeds as a criterion for selecting the
informative neighborhood was better than basing the selection
on distance only.

The results reported in Table 3 indicate that our proposed
models did not always outperform the persistent model on all
200 turbines. This is in contrast to the large body of literature
using a single time series dataset, claiming to make improve-
ment over the persistent model. Thus, we maintain that it is
unlikely that any temporal-only model can consistently outper-
form the persistent model in a comprehensive comparative study.
Our experience appears to suggest that for the highly volatile
near-ground wind field, any attempts to model the temporal de-
pendency as a linear function will be unlikely to succeed. We
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suggest that future research should examine the use of other
nonlinear mechanisms to fully identify the benefits of captur-
ing the nonstationarity in wind data. Nonlinear models in the
mode of Giannakis and Majda (2012) may be more capable of
handling the nonlinear dependency for meteorological data, but
determining how such models could be applied to wind field
modeling is an ongoing pursuit.

ACKNOWLEDGMENTS

Pourhabib and Ding were partially supported by the grants from NSF
(CMMI-0926803 and CMMI-1300236). Huang’s research was partially sup-
ported by NSF grant no. DMS-1208952.

[Received December 2013. Revised October 2014.]

REFERENCES

Ailliot, P., and Monbet, V. (2012), “Markov-Switching Autoregressive Models
for Wind Time Series,” Environmental Modelling & Software, 30, 92–101.
[139]

Alexiadis, M. C., Dokopoulos, P. S., and Sahsamanoglou, H. S. (1999), “Wind
Speed and Power Forecasting Based on Spatial Correlation Models,” IEEE
Transactions on Energy Conversion, 14, 836–842. [139]

Beckers, J.-M., and Rixen, M. (2003), “EOF Calculations and Data Filling From
Incomplete Oceanographic Datasets,” Journal of Atmospheric and Oceanic
Technology, 20, 1839–1856. [143]

Bessa, R. J., Miranda, V., Botterud, A., Wang, J., and Constantinescu, E. M.
(2012), “Time Adaptive Conditional Kernel Density Estimation for Wind
Power Forecasting,” IEEE Transactions on Sustainable Energy, 3, 660–669.
[139]

Brockwell, P. J., and Davis, R. A. (2009), Time Series: Theory and Methods,
New York: Springer. [146]

Brown, B. G., Katz, R. W., and Murphy, A. H. (1984), “Time Series Models to
Simulate and Forecast Wind Speed and Wind Power,” Journal of Climate
and Applied Meteorology, 23, 1184–1195. [139]

Cassola, F., and Burlando, M. (2012), “Wind Speed and Wind Energy Forecast
Through Kalman Filtering of Numerical Weather Prediction Model Output,”
Applied Energy, 99, 154–166. [138,139]

Crochet, P. (2004), “Adaptive Kalman Filtering of 2-Metre Temperature and
10-Metre Wind-Speed Forecasts in Iceland,” Meteorological Applications,
11, 173–187. [139]

Daniel, A., and Chen, A. (1991), “Stochastic Simulation and Forecasting of
Hourly Average Wind Speed Sequences in Jamaica,” Solar Energy, 46,
1–11. [139]

de Luna, X. and Genton, M. G. (2005), “Predictive Spatio-Temporal Models for
Spatially Sparse Environmental Data,” Statistica Sinica, 15, 547–568. [139]

Erdem, E., and Shi, J. (2011), “ARMA Based Approaches for Forecasting
the Tuple of Wind Speed and Direction,” Applied Energy, 88, 1405–1414.
[139,146]

Focken, U., and Lange, M. (2006), Physical Approach to Short-Term Wind
Power Prediction, New York: Springer. [142]

Genton, M. G., and Hering, A. S. (2007), “Blowing in the Wind,” Significance,
4, 11–14. [138]

Giannakis, D., and Majda, A. J. (2012), “Nonlinear Laplacian Spec-
tral Analysis for Time Series With Intermittency and Low-Frequency
Variability,” Proceedings of the National Academy of Sciences, 109,
2222–2227. [147]

Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., and Draxl, C.
(2011), The State-of-the-Art in Short-Term Prediction of Wind Power: A Lit-
erature Overview (2nd ed.), ANEMOS.plus. Available at http://orbit.dtu.dk/
fedora/objects/orbit:83397/datastreams/file 5277161/content. [138,139]

Gneiting, T., Larson, K., Westrick, K., Genton, M. G., and Aldrich, E.
(2006), “Calibrated Probabilistic Forecasting at the Stateline Wind En-

ergy Center,” Journal of the American Statistical Association, 101,
968–979. [139,140,141,142]

He, M., Yang, L., Zhang, J., and Vittal, V. (2014), “A Spatio-Temporal Anal-
ysis Approach for Short-Term Forecast of Wind Farm Generation,” IEEE
Transactions on Power Systems, 29, 1611–1622. [139,140,143]

Hering, A. S., and Genton, M. G. (2010), “Powering up With Space-Time Wind
Forecasting,” Journal of the American Statistical Association, 105, 92–104.
[139,143,145]

Huang, Z., and Chalabi, Z. S. (1995), “Use of Time-Series Analysis to Model
and Forecast Wind Speed,” Journal of Wind Engineering and Industrial
Aerodynamics, 56, 311–322. [139]

Johansen, S. (1995), Likelihood-Based Inference in Cointegrated Vector Autore-
gressive Models, Cambridge: Cambridge University Press. [139]

Kamal, L., and Jafri, Y. Z. (1997), “Time Series Models to Simulate and Forecast
Hourly Averaged Wind Speed in Quetta, Pakistan,” Solar Energy, 61, 23–32.
[139]

Katz, R. W., and Skaggs, R. H. (1981), “On the Use of Autoregressive-Moving
Average Processes to Model Meteorological Time Series,” Monthly Weather
Review, 109, 479–484. [139,146]

Kusiak, A., and Li, W. (2010), “Estimation of Wind Speed: A Data-Driven
Approach,” Journal of Wind Engineering and Industrial Aerodynamics, 98,
559–567. [139,140]

Kusiak, A., Zheng, H., and Song, Z. (2009), “On-Line Monitoring of Power
Curves,” Renewable Energy, 34, 1487–1493. [138]

Liu, H., Tian, H.-Q., and Li, Y.-F. (2012), “Comparison of Two New ARIMA-
ANN and ARIMA-Kalman Hybrid Methods for Wind Speed Prediction,”
Applied Energy, 98, 415–424. [139]

Louka, P., Galanis, G., Siebert, N., Kariniotakis, G., Katsafados, P., Pytharoulis,
I., and Kallos, G. (2008), “Improvements in Wind Speed Forecasts for
Wind Power Prediction Purposes Using Kalman Filtering,” Journal of Wind
Engineering and Industrial Aerodynamics, 96, 2348–2362. [139]

Maadooliat, M., Huang, J. Z., and Hu, J. (2015), “Integrating Data Transfor-
mation in Principal Components Analysis,” Journal of Computational and
Graphical Statistics, 24, 84–103. [143]

Palomares-Salas, J. C., de la Rosa, J. J. G., Ramiro, J. G., Melgar, J., Agera,
A., and Moreno, A. (2009), “ARIMA vs. Neural Networks for Wind Speed
Forecasting,” in Proceedings of the 2009 IEEE International Conference
on Computational Intelligence for Measurement Systems and Applications,
Hong Kong, pp. 129–133. [139]

Pinson, P. (2012), “Very-Short-Term Probabilistic Forecasting of Wind Power
With Generalized Logit-Normal Distributions,” Journal of the Royal Statis-
tical Society, Series C, 61, 555–576. [139]

Qin, Z., Li, W., and Xiong, X. (2011), “Estimating Wind Speed Probability Dis-
tribution Using Kernel Density Method,” Electric Power Systems Research,
81, 2139–2146. [139]

Santos, R. A. (2007), “Damage Mitigation Control for Wind Turbines,” Ph.D.
dissertation, University of Colorado, Boulder, CO. [138]

Schlink, U., and Tetzlaff, G. (1998), “Wind Speed Forecasting From 1
to 30 Minutes,” Theoretical and Applied Climatology, 60, 191–198.
[139]

Tastu, J., Pinson, P., Trombe, P. J., and Madsen, H. (2014), “Probabilis-
tic Forecasts of Wind Power Generation Accounting for Geographically
Dispersed Information,” IEEE Transactions on Smart Grid, 5, 480–489.
[139]

Torres, J., Garca, A., De Blas, M., and De Francisco, A. (2005), “Forecast of
Hourly Average Wind Speed With ARMA Models in Navarre Spain,” Solar
Energy, 79, 65–77. [139,146]

Wan, C., Xu, Z., Pinson, P., Dong, Z. Y., and Wong, K. P. (2014), “Optimal
Prediction Intervals of Wind Power Generation,” IEEE Transactions on
Power Systems, 29, 1166–1174. [139]

Xie, L., Gu, Y., Zhu, X., and Genton, M. G. (2014), “Short-Term Spatio-
Temporal Wind Power Forecast in Robust Look-Ahead Power System Dis-
patch,” IEEE Transactions on Smart Grid, 5, 511–520. [142]

Yu, Z., and Tuzuner, A. (2008), “Wind Speed Modeling and Energy Production
Simulation With Weibull Sampling,” in Power and Energy Society General
Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,
2008 IEEE, pp. 16. [140]

Zhu, X., and Genton, M. G. (2012), “Short-Term Wind Speed Forecast-
ing for Power System Operations,” International Statistical Review, 80,
2–23. [138]

TECHNOMETRICS, FEBRUARY 2016, VOL. 58, NO. 1

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
3:

37
 1

6 
Ju

ly
 2

01
6 


	Short-Term Wind Speed Forecast Using Measurements From Multiple Turbines&break; in A Wind Farm
	INTRODUCTION
	COMMONLY USED SHORT-TERM WIND SPEED FORECAST APPROACHES
	SPATIAL-TEMPORAL AUTOREGRESSIVE MODELS
	Gaussian Spatial-Temporal Autoregression
	Selecting the Neighborhood Through Regularization
	Regime Switching Gaussian Spatial-Temporal Autoregression
	Using Geostrophic Wind in Regime Switching Gaussian Spatial-Temporal Autoregression
	Choice of Loss Functions

	RESULTS
	An Example of an Informative Neighborhood
	Forecasts and Comparisons
	Role of Informative Neighborhood and Temporal Dependency

	CONCLUSION


