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Robust Nanoparticles Detection From Noisy
Background by Fusing Complementary
Image Information

Yanjun Qian, Jianhua Z. Huang, Xiaodong Li, and Yu Ding, Senior Member, IEEE

Abstract—This paper studies the problem of detecting the
presence of nanoparticles in noisy transmission electron micro-
scopic (TEM) images and then fitting each nanoparticle with
an elliptic shape model. In order to achieve robustness while
handling low contrast and high noise in the TEM images, we
propose an approach to fuse two kinds of complementary image
information, namely, the pixel intensity and the gradient (the
first derivative in intensity). Our approach entails two main steps:
1) the first step is to, after necessary pre-processing, employ both
intensity-based information and gradient-based information to
process the same TEM image and produce two independent sets
of results and 2) the subsequent step is to formulate a binary
integer programming (BIP) problem for conflict resolution among
the two sets of results. Solving the BIP problem determines the
final nanoparticle identification. We apply our method to a set of
TEM images taken under different microscopic resolutions and
noise levels. The empirical results show the merit of the proposed
method. It can process a TEM image of 1024 x 1024 pixels in a
few minutes, and the processed outcomes appear rather robust.

Index Terms—Binary integer programming, complementary
information fusion, image segmentation, multi-expert system,
nanoparticle analysis.

I. INTRODUCTION

S MORE and more nanoparticle-embedded materials
are moved from labs to commercial use, we witness
an increasing need for automated nanoparticle detection and
characterization based on the electron microscopic images
of nanoparticles [1]-[3]. The images include those from
both transmission electron microscope (TEM) and scanning
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electron microscope (SEM). Once the images are processed,
material scientists would like to characterize the morphology
of nanoparticles, or to quantify the dispersion of nanoparticles
in the host material, as both traits are believed to have
profound impact on the final material properties [4], [5].
To achieve these goals, the first job is to locate individual
nanoparticles as accurately as possible, and then to character-
ize the shape and size of the nanoparticles. As such, automated
detection and characterization of nanoparticles play important
roles on nanomaterial exploration and production.

Park et al. [6] summarized the challenges associated
with detection and characterization of nanoparticles from
TEM images. The challenges lie in the facts that the nanopar-
ticles are numerous and overlapped, and the variety of their
shapes and sizes is also large. Park et al. [6] reviewed a
number of image processing methods, including watershed
transforms with different stopping criteria [7], [8], sliding
band filter [9], graph cut [10], active contour [11], iterative
voting [12], and a multiscale morphological method (a sophis-
ticated variant of watershed) [13]. They argued that these
methods can not be directly applied to the TEM images due
to the technical challenges mentioned above. Park and his
colleagues [6], [14] proposed image processing and shape
analysis approaches, tailored to nanoparticle image processing.
There are also some recent developments on detecting and
measuring nanoparticles in TEM images. Yang and Ahuja [15]
proposed a segmentation method to isolate the granular objects
using a local density clustering and gradient barrier watershed.
De Temmerman et al. [16] designed a semi-automatic
approach to measure the size of the primary parti-
cles in the TEM images of powdered nanomaterials,
also relying on the watershed transfer for segmentation.
Muneesawang and Sirisathitkul [17] proposed a multi-level
segmentation method for identifying nanoparticles. They
applied a k-means method to segment the TEM image into
several layers and then produced multiple binary images
associated with different thresholds. After that, they separated
particles by applying the watershed method to each binary
image and merged the results to remove over-segmentations.
Overall, these developments advance the state of the art
in handling TEM images for material characterization and
exploration. However, when we try to apply these methods
to a set of TEM images at hand, the resulting performances
are not satisfactory. In particular, the quality of detection and
characterization is not robust under different resolutions and
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Fig. 1. Two examples of the TEM images of silica nanoparticles. (a) F3-2_7.
(b) F10_8.

noise patterns. To understand the reason, we should discuss the
difference between the TEM images we have and the images
processed in those works.

Our TEM images are taken from an important kind of
nanocomposite, which has bisphenol-F epoxy resin as the host
material, blended with silicon dioxide nanoparticles, through
a sol-gel process [18]. With epoxy resin as the polymer matrix
and nanosilica as the nanofiller, it has enhanced mechanical
properties such as modulus, hardness and fracture toughness
while maintaining the optical properties (e.g., transparency),
and is widely used in both academic research and industrial
applications [19]. To attain a TEM image for such material,
one typically takes a thin slice of sample, which has the
thickness of 50 to 100 nanometers (nm) and is transparent
to naked eyes. The slice is thin enough for electrons to
pass through, producing an image. Two examples of the
TEM images, under different instrumental resolutions, are
shown in Figure 1, labeled as “F3-2_7” and “F10_8,” respec-
tively. In the images, the darker dots represent the nanoparti-
cles, whereas the gray background represents the host material.

Compared with the nanoparticle images processed
in [6] and [14]-[17], the TEM images at our disposal have
much lower contrast and higher level of noises. This is due to
the fact that our nanoparticles are silica particles, whose ability
of shielding off or bouncing back electrons from passing
through is weaker than metallic particles, and the silica
particles are blended in a solid host material, whose density
is not much less than the particles themselves. Meanwhile,
the nonuniformity of the resin makes the background uneven
(see Fig. 12(d)). By comparison, the nanoparticles used in
most of the above-referenced works are metal ones, e.g., Au
in [6] and [14], Ti in [16] and FePt in [17]. Those metal
particles, considering its large mass, are particularly potent in
bouncing back electrons, producing a sharp contrast between
the particles and the background. The noisy nature of our
TEM images makes the detection and characterization task
more challenging. In this paper, our focus is to develop a new
method for image segmentation targeting the nanoparticle
detection problem in noisy and low contrast TEM images.

There are two kinds of information commonly used for
image segmentation: the intensity information and the gra-
dient information [20], [21]. The intensity-based approach
is to classify the pixels with similar intensity to the same
category (be it an object or the background). The gradient-
based information is calculated as the first-order derivative of
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the pixel intensity, signaling the magnitude of change along
the way. A large gradient implies an edge (or a boundary,
or a contour) separating an object from the background.
To our best knowledge, many existing nanoparticle detection
methods, for instance, [14], [16], [17], [22] among others,
make primary use of one kind of image information (the use
of intensity is more popular), causing them to only work well
in certain circumstances. A natural remedy for that problem
is an effective use of both kinds of image information.

The desire of combining the two kinds of image information
has been raised. One strategy of combining information is
to use different kinds of information sequentially, i.e. amend
or enhance the segmentation results coming from the one
kind of information by the other. For example, the method
in [23] first over-segments an object based on the intensity and
then subsequently removes false boundaries by using gradient
information. Another example is the boundary refinement
method [24], in which the initial boundary of an object
comes from the intensity information, and the boundary is
then adjusted by taking into account the gradient of pixel
intensity. In the recent development, the sequential strategy
is also tailored to handle specifically nanoparticle images.
For instance, the approach in [6] is to first segment the
foreground based on pixel intensity and find the location
of centers via a modified watershed transform [7]. Then, a
center is matched with the edge/boundary of the same particle,
produced by Canny’s edge detector [25]. At last, the approach
in [6] combines the two image features (center and boundary)
to locate each particle. This type of information-combining
approaches work well when the boundaries detected based
on gradient are similar to that of the intensity-based results,
to make sure that combining the two kinds of information
through a compromise could produce a better result. However,
those approaches are not applicable to the noisy TEM images,
since the segmentation outcomes produced by using each kind
of image information alone can be drastically different (refer
to Figure 8(a) and (b)), leaving little common ground for a
compromise.

Another strategy of information combining is to design
an energy functional, say the Mumford-Shah functional [26],
integrating both kinds of information. Then the boundary of
the foreground is evolving to maximize the energy functional
until the local optima is found; doing so is supposed to produce
the optimal separation [27]. To use the intensity informa-
tion, Chan and Vese [11] assume that inside (or outside)
the boundary, the variance of intensities of image should
be small and Li et al. [28] assume that the intensities of
pixels should change gradually, whereas to use the gradient
information, Caselles et al. [29] assume that the gradient of
the image along the boundary should be strong. Many recent
works [30]-[32] consolidate these assumptions and design
their versions, which, to certain extent, make use of both
intensity and gradient information. However, applying this
strategy alone cannot handle the segmentation problem of
overlapped nanoparticles, because nearly all such methods,
including [11], [32], can only segment the foreground from the
background, leaving the overlapped objects intact within the
foreground. Methods considering multiple objects detection,



QIAN et al.: ROBUST NANOPARTICLES DETECTION FROM NOISY BACKGROUND

5715

Binary Segmented
Preprocessed ; articles
Fi)mage image P Fitted
K-means Watershed particles Locate particles and
_TEM Transform estimate the shape
image
—>g Bi Post-process Resolve |Parameters
ALl ir;';zrg (Fitting a conflicts
Active contour shape model)
Iterative voting
c Segmented
e,n_ter particles
positions
Fig. 2. The two pipelines of processing to make use of the complementary image information.

such as [28], require the objects at the foreground to have
unconnected boundaries, namely that the multiple objects
cannot overlap.

Recognizing the shortcomings (and strengths) of those
strategies, we propose a new framework to fuse the two kinds
of image information via a parallel approach. Our approach
starts off with focusing the two kinds of image information
separately on the same TEM image. In other words, a TEM
image is handled by two pipelines of processing in parallel.
One pipeline is using primarily the intensity information,
segmenting the foreground by a k-means clustering [33] and
then separating the particles according to the shape of the
foreground found by a watershed transform [7], whereas the
other pipeline is using primarily the gradient information,
going through an active contour [11] procedure to find the
foreground, followed by an iterative voting method [12] that
finds the center of each particle. Intensity information is also
used in the second pipeline but the main driving force therein
is the gradient information, differentiating it from the first
pipeline of processing.

The two pipelines of processing produce two sets of out-
comes for the same image, and as expected, some of the par-
ticle detection outcomes agree with each other (which means
two detections by different methods are almost the same),
while many others do not. When the detection outcomes agree,
it reinforces the belief that they both indicate a good detection,
and when the detection outcomes differ, we then need to
resolve the conflict and choose one of the outcomes. Based
on a fitness criterion to be introduced later, we select the
particle detection with the highest fitness score and discard
those conflicting with it. A binary integer programming (BIP)
is formulated and solved to obtain the optimal solution.
In order to handle TEM images containing numerous particles,
we also accelerate the optimizing procedure by using a sub-
graph decomposition technique. Our framework is illustrated
in Figure 2.

We want to note a similarity between our fitness score
approach and that in [34], which is in the context of tree
detection. The approach in [34] is based on random point
process and can be seen as a soft version of the optimiza-
tion problem formulated in our paper, where overlapping is
penalized but not forbidden. The random point processes are
solved through Markov chain Monte Carlo, which is rather

complex to optimize than the BIP formulation used in our
approach.

The remaining parts of the paper are organized as follows.
In Section II, we describe the basic thoughts behind the
choice of the components in each processing pipeline.
In Section III, we present the formulation and solution that
resolves the conflicts between the two sets of processing
outcomes. In Section IV, we apply our method to a set of TEM
images, obtained under different instrumental resolutions and
noise conditions, and assess the method’s effectiveness and
efficiency. Finally, we summarize our work in Section V.

II. BASIC COMPONENTS IN PROCESSING
NANOPARTICLE IMAGES

The processing of nanoparticle images, illustrated
in Figure 2, consists of three main steps: the preprocessing,
the two pipelines of processing, and the postprocessing.
This section intends to provide an overview of the basic
components in the proposed framework.

The preprocessing is to enhance the image features from
the noisy raw images, while the postprocessing is to fit a
parametric shape model, once a nanoparticle is isolated. The
two pipelines of image processing in between intend to locate
the nanoparticles and isolate each of them as accurately as
possible.

The two pipelines of processing are carried out on the same
image in parallel. Specifically, one pipeline of processing uses
primarily the intensity information, whereas the other uses pri-
marily the gradient information. Each pipeline further involves
two methods for separating and identifying the nanoparticles.

In this framework, many existing methods are used. In order
to produce better results, however, certain methods, especially
those used in the two pipelines of processing, are tailored
towards the uniqueness of TEM images.

A. Preprocessing

The preprocessing intends to strengthen the contrast of the
nanoimages and remove the unevenness in background. The
background unevenness is a result of having non-uniform
thickness in the slice of resin samples. Consequently, the
resulting images are usually lighter on one corner/side and
darker on the opposite corner/side; please see Figure 1 for
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Fig. 3. The preprocessing results of the two image examples in Fig. 1.
(a) F3-2_7. (b) F10_8.

an example. Two operations are used in the preprocessing:
Butterworth high-pass filtering (4th order) [35] and Gaussian
filtering [36].

Butterworth high-pass filtering removes the low frequency
components of the image (related to the unevenness in back-
ground). A low frequency cutoff is used to identify background
patterns of large size, supposedly far greater in size than a typ-
ical particle. We set this value as 1, 024 divided by four folds
of the average particle diameter, where the factor of four is
chosen empirically. Meanwhile, using a Gaussian filter intends
to remove the high frequency components, weeding out the
small objects that cannot possibly be a particle. The parameter
in the Gaussian filter is set to be one-tenth of the nanoparticle’s
average diameter. By linking the filtering strength to the
particle’s average diameter, the strength of Gaussian filter’s
smoothing strength can be adaptively adjusted. We show the
results of the preprocessing in Figure 3.

B. Intensity-Based Processing

In the first pipeline of processing, pixel intensity is used.
This line of processing entails two steps: the first step is a
k-means method [37] to separate the foreground from the
background, producing the nanoparticle agglomerates, namely
nanoparticle clusters. The second step is to use a watershed
transform on the segmented foreground that further breaks
the overlapped particles in the nanoparticle agglomerates into
individual particles.

Each pixel in the first step is classified based on not only
its intensity but also its coordinates. In [38], the image data is
converted into a 5-dimensional vector [x, y, [, u, 0] for each
pixel, where the x, y are the coordinates and [, u,v are the
color values in LUV color space. For our gray-level TEM
image, the input vector is set as [wsx, wsy, R], where R is
the intensity and w; is a weighting coefficient to balance the
effects between the coordinate value and the image intensity
value. In this work, we set wy = 0.2, as it is close to the ratio
of the largest grayness value over the size of the TEM image,
so we will have the similar ranges of the three coordinates.
Then, we seek to find k = 2 clusters among the image pixels,
corresponding to the foreground and background, respectively.

The second step is a watershed transform based on the shape
of the foreground. A watershed transform goes through an
erosion-dilation cycle, in which erosion produces the cores of
neighboring objects (called markers) and dilation identifies the
separating boundary lines between the objects. The specific
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Fig. 4. The comparison of two watershed segmentations: (a) the result of
the original UECS; (b) the result of the revised UECS with a timed erosion-
dilation process.

variant of watershed transform we adopt is the Ultimate
Erosion for Convex Sets (UECS) proposed by [6], which
tailors its erosion stopping criterion towards convex objects,
as the physical-chemical forces behind nanoparticle formation
do drive nanoparticles to have convex shapes.

In the implementation of UECS, we found that the number
of erosion steps can vary widely on different particles. One
shortcoming of this variation in erosion steps is that the
separating lines between particles tend to over-erode one of
the particles. This phenomenon is illustrated in Figure 4(a);
please note the over-erosion of boundary lines inside
particle 2 and particle 3.

The remedy we devise to alleviate the over-erosion problem
is to record the number of erosion steps, following a generic
idea first introduced in [13]. Provided the number of erosion
steps associated with each particle, the dilation process is then
timed following the descending order of the number of erosion
steps that had been performed on respective particles. For
instance, suppose particle 1 was eroded 10 times to its final
marker, while particle 2 was eroded 20 times. In dilation, we
start with particle 2 and dilate its marker 10 times, and at
which time, start the dilation of the marker of particle 1 in
parallel, until the two dilated markers meet. It appears that
this simple revision improves the accuracy of the boundary
lines between particles appreciably; please see Figure 4(b).

C. Gradient-Based Processing

Gradient-based processing makes use of the gradient of an
image to detect and separate the nanoparticles. As mentioned
before, gradient-based processing also uses pixel intensity
information; it is just that the gradient information plays a
more deciding role here. This line of processing also entails
two elements: an active contour method [32] that is based on
the level set formulation and the iterative voting method [12].

The active contour method identifies the boundary (or edge)
for the nanoparticles, without necessarily separating a particle
agglomerate into individual particles. Then the iterative voting
method locates the centers of individual particles from the
preprocessed TEM images. Once the centers of individual
particles as well as the boundaries of particle agglomerates
are available, the connected particle contours can be separated
and then assigned to individual particles by using an edge-
to-marker association technique, similar to what was initially
proposed in [6].

One difficulty of using the active contour method for the
low-contrast, noisy TEM images is that the boundary of
particles is blurred and the background is noisy, making the
convergence of the recursive method sensitive to the choice
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Fig. 5. The process of active contour with different initializations. (a) The
original image; (b) The large mask My; (c) The convergent result By from
the large mask Mp; (d) The small mask M»; (e) The convergent result By
from the small mask M,.

of the initial contour (also known as a mask). We propose
two remedies to ensure a robust convergence. Firstly we
choose the active contour method, proposed by [32], that uses
both intensity and gradient information, as it has a better
convergence property than its counterparts that use only the
intensity or the gradient information (e.g., [11], [29]).

Even with a capable method like [32], the choice of
the initial contour still has a profound impact on the out-
comes of contour detection for the silica nanoparticles.
To find a proper initialization, we start the active contour
method from either a large mask or a small mask of the
foreground. Then the active contour algorithm can shrink
the large mask or expand the small one to get the esti-
mated contour. To see which mask leads to good detec-
tion outcome, we first apply Otsu’s method [39] to get
a binarization threshold R;. And then we select an offset
value Ry, so that we can choose masks of different sizes.
Then the large mask, denoted by M;, can be obtained by

= {(x,y)|R(x,y) < R; + Ry}, whereas the small mask,
denoted by My, by M = {(x,y)|R(x,y) < R/ — Rs}.
Once M; and M; are used, the convergent outcomes are
denoted by B; and B, respectively. We find that with Tian
et al. [32]’s algorithm, B; (expanded from a small mask)
is much better than B; (shrunk from a large mask); see an
example in Figure 5. We believe that the noisy background
of the TEM images makes the use of large masks ineffective
(algorithm trapped in local optima). Therefore, we choose the
small mask as the initial contour in the chosen active contour
method.

Concerning the use of the iterative voting method, we also
tailor the original method in [12] to our nano imaging problem.
In the original approach, Parvin et al. [12] choose the pixels on
the edge that are detected by Canny’s edge detector [25] and
use them to vote for locating the centers. The problem with
this approach is that when some edges are hard to detect, such
as in our noisy nanoparticle images, some nanoparticles will
be missed. Figure 6(a) shows that using the original iterative
voting method in a small region of about 20 particles produces
three misses and two false detections; to produce Figure 6(a),
we use the Tmaged plugin of the iterative voting method [12].

Our tailoring works as follows. Note that a large magnitude
of gradient indicates that the corresponding pixel is more
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Fig. 6. The results of iterative voting: (a) ImageJ plugin. The three misses
are indicated by yellow X’s and two false detections are marked by yellow
circles. (b) Our implementation outcome.

(b) (

(a)

Fig. 7. Post-precessing: (a) Parametrization of an elliptical shape; (b) The
fitting outcomes based on contour alone; (c) The fitting outcomes based on
all the pixels in a detected particle region.

likely to be on the edge. We hence select all pixels of the
preprocessed image whose gradient is larger than a threshold
in magnitude, and deem them as our potential voter pixels.
We then set the weight of each voter proportional to its
magnitude. The threshold here is chosen as one-fifth of the
maximal magnitude of gradient in the whole image. Because
we skip the action of Canny’s edge detection, we could
not initialize the iterative voting procedure using the normal
direction to the detected edges, as recommended in [12].
Instead, we let the voting direction initialized as opposite to
the gradient direction at a voting pixel. Figure 6(b) shows
the outcomes of our tailored approach, which is carried out
on the same image and produces a result without misses and
false detections.

D. Postprocessing

In post-processing, we fit each identified nanoparticle with
a parametric shape model. Unlike in [6] where a particle is
modeled by a B-spline, our treatment here is much simpler
— we use an elliptic shape model that can be parameterized
using five parameters [xo, yo, ao, bo, 8p] (Figure 7(a)), where
xo and yop are the coordinates of the center, ap and bg
are the lengths of the long and short axes, and 6y is the
orientation of the particle. The reason that we choose a simple
shape model is that the silica nanoparticles produced by the
sol-gel process are mostly of round or ellipse shapes; by
contrast, the nanoparticles processed in [6] have shapes of
wider varieties. In the meanwhile, given the noise level in the
nanoimages processed in this work, it becomes less robust to
use complicated shape models with too much flexibility, as
a flexible shape model may be too eager to adapt itself to
background noises surrounding a particle.

When it comes to the fitting of an elliptical shape, we choose
to use the second-moment fitting method [40], which finds
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(a) (b)

Fig. 8. The comparison of the results of the intensity-based and the gradient-
based processing. (a) Intensity-based pipeline. (b) Gradient-based pipeline.

an ellipse that has the same mass center and same second
moments as those of a detected particle region. This treatment
uses all the pixels inside the contour of a detected particle,
rather than rely on the detected contour of a particle. The draw-
back of using the detected contour alone is its sensitivity to
shape noises, because many detected contours can end up with
an irregular shape; see the example in Figure 7(a) (the gray
region). This second-moment method produces much more
robust shape fitting outcomes, as evident by the comparison
between Figure 7(b) and (c).

E. Pros and Cons of the Two Pipelines of Processing

In Figure 8, we highlight four examples to illustrate the
pros and cons of the two pipelines of processing. In example
#1, the gradient-based processing produces a better boundary
of the right-side particle than the intensity-based processing
does. In example #2, the iterative voting in the gradient-based
pipeline successfully segments two overlapped particles based
on the intensity change inside the foreground region, whereas
the intensity-based processing fails to do so. In example #3,
the gradient-based processing fails to identify the right-side
particle because of the blurred boundary, whereas the intensity-
based process does detect. In example #4, the gradient-based
processing over-segments the left-side particle, whereas the
intensity-based processing over-segments the right-side one.

Generally speaking, our observations suggest that when the
gradient is clear and accurate, the gradient-based process-
ing works better (#1 and #2); otherwise the intensity-based
processing will be more robust (#3). For some harder cases,
such as #4, each pipeline of processing does half right,
so only combining the two sets of the results can further
improve the accuracy of the final detection. While the general
observations make intuitive sense, it is not always so easy to
tell which pipeline of processing will do better under a specific
circumstance. This implies that the criterion that gradient
information is clear and accurate sometimes can be difficult to
assess and quantify manually. What is needed is an automatic
confict resolution procedure that can pick the better of the two
detection outcomes.

III. FUSING THE COMPLEMENTARY INFORMATION

The next step is to make use of the detection results from the
two pipelines of image processing and produce an enhanced
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(a) (b) (c)

Fig. 9. Three possible relationships between (i) (blue) and G(j) (red):
(a) Two detection results are not related to the same particle. (b) Two results
coincide with each other. (¢c) Two results are in conflict.

detection outcome. The problem is similar to multi-expert
decision making [41], where the two pipelines of detection
act as two experts and the sets of detected particles are
their decisions. If both experts agree with each other on all
decisions, then the problem is trivial, as one can choose either
set of the outcomes. Otherwise we should devise a conflict
resolving procedure to choose one of them or discard both.

Let us first introduce some notations. Let I = {I(i),
l,---,N;} and G = {G(j),j = 1,---, Ng} denote
the detected particles, respectively, by the intensity-based and
gradient-based pipeline, where N; and Ng are the correspond-
ing numbers of particles detected.

—

The five shape parameters of [(i), defined in
Section II-D, are expressed as [xo(I(i)), yo(I(@)),
ao(1(i)), bo(1(i)),00(1())]. The set of pixels within

the fitted ellipses is labeled as Pj;), and its cardinality
| Pr(iy| represents the area of the corresponding region. The
corresponding notations for G(j) can be defined similarly.

We use the binary variables b;(;y and bg(;) to indicate
the outcome of our resolution: if 7(i) (or G(j)) is chosen
as the final detection outcome, then by (or bg(;)) will
be set as 1, otherwise it is set as 0. Aggregating all the
decision variables associated with individual detections, the
decision vector for the intensity-based approach is expressed
as by = [bjqy, - ,bI(NI)]T, and that for the gradient-based
approach is bg = [bg(1), - - ,b(;(NG)]T. Our goal is to find
an optimal solution of b; and bg, which is to properly set
elements of by and bg to 1 or 0, according to an optimality
criterion introduced below.

A. Basic Formulation for Conflict Resolution

One crucial step in making good use of the two types of
detection outcomes is to understand the three possible relation-
ships between I(i) and G(j). The relationship is illustrated
in Figure 9. When two detection outcomes have only a slight
overlap or no overlap at all, as shown in Column (a) of
Figure 9, it is unlikely that they are related to the common par-
ticle in the image. When the two outcomes virtually coincide
with each other, manifesting in a heavy overlap between the
detection regions, they point to the same underlying particle
and are then referred to as a consensus detection. When
the two outcomes occupy the same region in the image,
but the detected particles have serious disagreement, either
in number (one approach detects one particle, while the
other detects two, for instance) or in key shape parameters
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(including the center location), these outcomes are referred to
as the conflicting detections. The consensus detections and the
conflicting detections are illustrated in Columns (b) and (c) of
Figure 9, respectively. The unrelated and consensus detections
are relatively straightforward to deal with. It is the conflicting
detections that need further processing to decide which one to
be the final detection outcome.

As such, there are two primary questions to be addressed:

1) How to determine which category of relation (unre-

lated, consensus, and conflicting) 1(i)-versus-G(j)
belongs to?

2) Once this relation is determined as a conflicting detec-

tion, what criterion to use to make the final selection?

The answer to the first question apparently depends on
the degree of overlap between two detections; the above
description of the three relationships provides the intuition
behind it. The specific formula will be presented later in
Section III-B.

To address the second question, we assign each particle
detection with a score, assessing its fitness to the original
image. Intuitively speaking, the higher the score, the better
a detection fits the original image. We denote the fitness score
vector of a detection as s; = [sy(1), - ,sI(N,)]T for the
intensity-based approach and s¢ = [sg(1), - ,sG(NG)]T for
the gradient-based approach. The specific definition of the
fitness score is provided in Section III-C.

When the two pipelines of processing reach a consensus,
it enhances the credibility of the detection and makes such
detection more reliable and trustworthy. It is safe to take the
consensus outcomes and add them into the final detection
results without further processing. We compute the shape
parameters of the final particle by averaging the corresponding
parameters of the two detections. Then we remove these
particles from the sets of I and G, so that only the conflicting
detections are left to be resolved. Denote the sets of the
remaining particles as I = {i(l),--- ,i(Ni)} and G =
(GQ),---, G(NG)}, where Nj and Ng are the numbers of
particles in the two revised sets, respectively. In the subsequent
conflict resolving procedure, we only need to solve for b; and
bG, which are a subset of b; and bg, respectively, and have
usually fewer than half of the original elements.

For the remaining conflicting detections, we use a conflict
matrix M = (M;;) to connect them. M is an Nj x Ng binary
matrix, with each row representing one particle in I and each
column representing one particle in G. If 1(i) and G(j) are
conflicting, M;; = 1; if they are unrelated, M;; = 0. Figure 10
shows a simple example of conflicting detections and the
corresponding conflict matrix. In Figure 10, we observe that
1(1) is conflicting with G(1), while 7(2) is conflicting with
both G(2) and G(3); this is reflected in the 2 x 3 conflict
matrix to the right.

With a fitness score chosen, we present the following
constrained binary integer programming (BIP) problem for
selecting the final detection out of a conflict:

Th_ | Th.
g{la)f Sib1+5(;bG’
"7G

subject to bl Mbg = 0. (1)
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Fig. 10. An example of conflicting detections (left) and the corresponding
conflict matrix (right).

The objective function is the summation of the fitness scores
of all detections, and we aim to obtain the highest total fitness
score for an image. The constraint function is to ensure that
only one of the conflicting detections will be chosen. To see
this, rewrite the constraint as

Ni Ng
2.2 biMiibe(, =0, 2)

i=1 j=1

meaning that if /(i) and G(j) are a pair of conflicting
detections, namely M;; = 1, then bi(i) and bé( o cannot
be 1 simultaneously. We solve this BIP problem by using
the MATLAB solver ‘bintprog’. To use it, we multiply a
negative sign to the objective function to change the problem
to a minimization problem.

We want to note that the authors in [34] also used model
fitness in an application of tree detection. More specifically,
they first use an unknown number of ellipses to model the
trees on a plantation and then calculate the prior energy and
the likelihood according to prior knowledge and the observed
images. At last, they minimized the Bayesian energy using
Markov chain Monte Carlo to find the ellipses that fit the tree
crowns the best. There are a couple of differences between
their method and our conflict resolution approach. Firstly, the
approach in [34] is based on random point process. They
wanted to minimize the overlapping of different ellipses, which
penalizes the overlapping but does not forbid it, whereas in our
approach, we have to choose one of the outcomes. Secondly,
their Bayesian based solution procedure is more complicated
than the BIP formulation we use.

B. Consensus and Conflicting Detections

From Figure 9, we can see that the degree of overlap
between the two detection outcomes can be used to decide
which category a pair of detections belongs to. When the
Euclidean distance between the centers of the two detections
is larger than (ao(1(i)) + ao(G(j)))/2, it means that there
is no overlap between the two detected particles. The pair is
then unrelated. When the distance is smaller than (ag( (i)) +
ap(G(j)))/2, we need to quantify the degree of overlap. The
area of overlap is | P;(;y N Pg(j)|. We calculate the maximum
overlapping ratio rpax and minimum overlapping ratio rpi, as
follows:

. G(j [Py N Popl 1Py N Poyl
rmax(1 ({), G(j)) = max{ @ () @) ()

| Pr(iyl | PGl
. . . NP1y N Popl |Priy N Pojl
rin(1 (1), G(j)) = min{— o —UR, 20— 0)
[ Preiyl | PGl

3)
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Fig. 11. The foreground region P (blue) and its neighboring region Q (green)
for a detected particle.

We then set two thresholds, an upper ratio ry and a lower
ratio rp, such that if rp,(7(), G(j)) < rr, we deem the
overlapping region small enough to declare /(i) and G(j)
unrelated; if rmin(1 (), G(j)) < ru and rmax (1 (D), G(j)) >
rr, we believe that the two detection outcomes are related
but different, namely that they form a pair of conflicts; if
rmin(Z (@), G(j)) > ry, we consider this as a consensus
detection.

C. Fitness Score of Detections

Essentially, calculating the fitness score for each particle is
equivalent to evaluating the quality of the image segmentation,
in which a regional part of TEM images is separated into the
particle and its surrounding area. Zhang et al. [42] surveyed
different evaluation methods for image segmentation quality
when the ground truth is unknown. They pointed out a simple
principle that is still widely used: the inter-region disparity
should be large and intra-region variability should be small.
For instance, Fisker et al. [43] maximize the difference in the
average intensities between the foreground and its surrounding
background for detecting a particle. To measure the inter-
region disparity and the intra-region similarity, we need to
define a neighboring region Q for particles in I and G.
Consider a particle I (i) (the same can be done to G( ).
Its foreground information is in Piay and the surrounding
background information is in Q it (shown in Figure 11).
In identifying Qi(i)’ we double the size of Pi(i)’ namely
|Qi(z‘) U Pi(i)l = 2|Pi(i)|’ so that |Qi(i)| = |Pi(i)|'

Our measure of the inter-region disparity and the intra-
region similarity is based on the sum of squares of pixel
intensities. The sum of squares are proportional to the variance
of the intensities within a region, so a large value indicates
disparity while a small value indicates similarity. For a good
segmentation, the sum of squares of the whole region should
be much larger than that of separated background or fore-
ground. For an arbitrary region A in the image, its sum of
squares of the intensity, denoted by SS(A), is calculated by:

SS(A) = D [R@x,y) — R(A), “)
(x,y)eA

where R(A) is the average intensity of all pixels inside A.
We then define the fitness score of I(i) as:

Siay = SS(Pi(,-) U Qi(,‘)) - [SS(Pi(,-)) + SS(Q[(,‘))]
_/“Pi(,') U Qi(,‘)|7 (5)
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where the first term SS(Pi(i) U Q i(i)) measures the inter-

region disparity, and the second term [SS(Pi(l.)) + SS(Qi(i))]
measures the intra-region similarity. The greater their dif-
ference, the stronger indication it is to think that I @) is
part of the particle’s foreground. The third term is a noise
filter. Its inclusion forces the difference between the inter-
region disparity and the intra-region similarity to be great
enough so as to qualify /(i) as a genuine particle, helping
reduce false detections in a noisy image. If I(i) is a single
unrelated particles, which means it has no conflicting detection
in another set of results, it will be selected if and only if s i)
is larger then 0.

In equation (5), the first term is the total sum of squares of
the whole region and the second term is the within-group sum
of squares. According to the property of variance [44], their
difference equals the between-group sum of squares, i.e.,

|Pro)[[R(Pr) = R(Piy U Q)P
5 b 2
+|Qi(i)|[R(Qi(i)) - R(Pi(,') U Qi(,‘))] > (6)
where R(Pi(i)), R(Qi(i)) and R(Pi(i) U Qi(z‘)) are the average
intensities of the foreground, its neighboring region, and
the combined whole area, respectively. By the choice of
neighboring region made above, namely |Q i(z‘)l = |Pi(i)| (they

may not be exactly the same but the difference is negligible),
it means:

R(Pj;y U Qji) = (R(Pi) + R(Q7 /2. (D)

Plugging in equations (6) and (7) into equation (5), we have

D 5 2
R(Pr) — R(Qj;))
iy = 1Priy Y il ( > —At. (8

It is now clear how the third term in equation (5) works — if the
intensity difference between the foreground and background
is smaller than the threshold 24/7, then, the fitness score s i)
turns negative, and consequently, (i ) will not be chosen as a
particle.

D. Decomposition and Linearization

To solve the optimization problem (1) efficiently, we need
to address two more problems: (a) There are hundreds to
thousands of particles in / and G in a TEM image. Solving
the optimization in its current form is time consuming. (b) The
constraint in (1) is not linear, which prevents a straightforward
application of some existing efficient methods. It is necessary
to decompose the original problem into smaller-sized subprob-
lems, and to linearize the constraint.

The way to decompose the original optimization problem is
to decompose the conflict matrix M. If M can be expressed in
a block form with zero off-diagonal submatrices, then, each
block submatrix can be used to form a separate BIP problem
and be solved in parallel. A simple example is a two-block

M, such as
M 0
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then equation (1) can be decomposed into two BIP problems:
Ty. Ty Ty. Tp-
bl:n%)E Sil bIl + Sélbcl ~ %)E SlszZ + SszGZ
11276 1’7 Gy

subject to by Mibg =0 subject to bi Mabg, =0,  (10)

where s; = [51]? s,~2] and sz = [s(;l ; Séz]' After solving those
two subproblems, the minimizer of the original problem can
be easily obtained by combining their individual solutions,
namely b; = [bil; biz] and by = [bél; béz]'

The decomposition of the BIP can also be seen as
a problem to find the connected independent subgraph.
We regard the Nj + Ng particles in I and G as nodes
to build an undirected graph G. Then, we connect two
nodes if they form a fair of conflicting detection and obtain
the corresponding adjacent matrix W. If we can find an
independent connected subgraph containing, for example,
I(1), 1(2) and G(1), G(2), G(3), that means there is no
conflicting relationship between them and any other particles.
So we can form a subproblem only concerning those five
particles, and the solution of that subproblem is the same as the
corresponding part of the whole problem. To find all connected
independent subgraphs in G, we adopt the spectrum analysis
method in [45].

The theory in [45] says that the number of independent
connected subgraphs of G equals to the multiplicity of 0
eigenvalue of its normalized graph Laplacian matrix:

L=I-D IWD 2, (11)
where W is the adjacent matrix of the graph G, I is the
identical matrix which has the same size of W, and D is
the diagonal matrix of the row (or column) sum of W.
Von Luxburg [45] provides a detailed procedure. Following
their procedure, first check if the graph G is decomposable
(i.e., check the multiplicity of O eigenvalue of L), and if this
multiplicity is K > 1, then G can be decomposed to a set of K
independent connected subgraphs. Then we can break M into
K block submatrices {Mk}l.K: 1» and the fitness score vectors s
and sz into {s ik}iK= , and {Sék}iK= |» Tespectively. As such, the
original BIP can be decomposed to K smaller subproblems
that can be solved in parallel. The kth subproblem is:

Ty T 1.
max - s; by, +5¢,bg,
I > "Gy

. T N _
subject to bikMkka =0. (12)

Next, we show that the constraint in equation (1) can be
linearized. Because b i» bg and M are binary vectors/matrix,
the original constraint can be replaced by the following

inequality:

M"b; + Njbg < Nily,, (13)
where IN(; represents an Ng x 1 vector whose elements are
all 1’s.

We can show that the original constraint and equation (13)
are equivalent. For the constraint in (1), it is obvious to see
that the constraint is violated if and only if there exists any
pair of i and j satisfying M;; =1, bi(i) =1 and bé(j) = 1.
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We want to show that equation (13) is violated under the same
condition.

Equation (13) produces Ng linear inequalities. Let us con-
sider the jth inequality:

N;
ZM,‘jbi(i) + Njbg ;) < Nj-

i=1

(14)

1) If bé(j) = 0, because M;; and bi(i) are both binary

variables taking either O or 1, vaz’] Mijbi(i) < Nj is
always true. This suggests that regardless the choice of
b;, the constraint in (14) is satisfied.

2) If bé(j) =1, Nibé(j) equals to Nj. If there exits any i
satisfying M;j =1 and by, =1, then vaz’] Mijbj, is
larger than 0, making the inequality untrue. In order for
the inequality to hold, the first term must be 0, meaning
:.vhen bé(j) =1, M;; and bi(i) cannot be 1 at the same
ime.

The above argument extends to all j’s.

As such, we can replace the original constraint with the
inequality in (13), which is linear. As the objective function
is also linear, we can use efficient linear binary programming
methods (such as a branch-and-bound algorithm [46]) to solve
the optimization problem.

IV. EXPERIMENTAL RESULTS
A. Parameter Selection

One parameter used throughout the algorithm is the average
diameter of the nanoparticle size, denoted by dy. The dy
can be considered as the average effect of ap and bg in the
particle shape model, and it is used as the input to set a
number of other settings in the algorithm. The value of dy
in a TEM image is largely determined by a particle’s actual
size and the resolution level set in the TEM. Informed by
our material science collaborators, we know about the average
physical diameter of the nanoparticles to be blended in the
host material. The physical size is used to estimate dp under
a specific TEM resolution, which is a good enough initial
estimate and can be refined once the TEM image is processed.
The refined estimate of dyp can be used to run the whole
algorithm a second time so as to improve the quality of the
processing.

In the main part of the algorithm, there are two other
sets of parameters: (1) ry and r; that are used to cate-
gorize the detection outcomes into three groups, i.e., unre-
lated, consensus, and conflicting; (2) 4 in the fitness score.
We empirically choose ry = 0.8 and rp = 0.2. We test many
TEM images and find that these choices produce rather robust
categorizations consistent with human interpretation. We want
to set the pixel intensity gap to be about one-tenth of the
grayness levels from the brightest to the darkest in the TEM
images, in order to differentiate a particle’s foreground from
its surrounding background. For noisy TEM images, this gap
appears reasonable. Given that our TEM images have roughly
200 grayness levels, it suggests that the gap is going to be 20,
and according to equation (8), this sets 4 = 100.
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(a) (b) © (d)

Fig. 12. Samples of TEM images. (a) Low resolution. (b) Medium resolution.
(c) High resolution. (d) Uneven background.

TABLE I
ESTIMATES OF d IN THE TEM IMAGES
Low Medium High Uneven
resolution  resolution  resolution  background
do 20 50 100 — 120 20

B. TEM Images Used in the Test

We test a total of 32 TEM images taken of the bisphenol-F
epoxy resin samples that are blended with silica nanoparti-
cles. These images can be grouped into four categories. The
first three categories correspond to different resolution levels
of TEM. All TEM images have 1,024 x 1,024 pixels. So
the low resolution image is taken from a big view field of
about 1,000 x 1, 000 nm; the medium resolution taken from
a view field of about 500 x 500 nm; the high resolution image
taken from the smallest view field of 250 x 250 nm. The last
category, and also the fourth, of the images is the one having
an uneven background of particular patterns. This background
pattern is a result of inconsistency in the resin properties, so
that the nanoparticles do not disperse well as they are blended
in. This set of images with uneven background is taken under
the low resolution. Figure 12 shows one typical image for
each of the kinds, in which Figure 12(a) and (b) are the same
images as those shown in Figure 1.

As we explained earlier, the average particle size dp in an
image is affected by the resolution of TEM. The ranges of
these dy’s in the aforementioned four categories of images are
presented in Table 1.

C. Comparing the Integrated Approach With
Individual Pipeline of Processing

Using the two images in Figure 1, we want to show where
the integrated approach improves upon the individual pipelines
of processing. Figure 13 presents the detection outcomes. The
two images illustrate the results of the integrated processing.
The images are color coded: green means a consensus detec-
tion, blue means that an intensity-based detection prevails,
and yellow means that a gradient-based detection prevails.
In the low resolution image (“F10_8”), there are 721 consensus
detections, out of 1,100 particles finally detected. Among
the 379 conflicting detections, 162, or 43%, final outcomes
come from the intensity-based processing, whereas 217, or
57%, come from the gradient-based processing. The respective
numbers for the medium resolution image (“F3-2_7”) are:
103 total particles, 85 consensus detections, 18 conflicting
detections, and among those particles, 9, or 50%, are from the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 12, DECEMBER 2016

(@) (b)

Fig. 13. Comparison of individual pipelines of processing. The left image
corresponds to Figure 1 (medium-resolution image), whereas the right image
corresponds to Figure 1 (low-resolution image). Green particles are those
from the consensus detections; blue particles are an intensity-based detection;
yellow particles are an gradient-based detection. (a) Medium resolution.
(b) Low resolution.

(a) (b)

Fig. 14. Comparison of individual pipelines of processing for other two
categories. The left image corresponds to Figure “F3-2_11" (high-resolution
image), whereas the right image corresponds to Figure “F8-2_16" (image
with uneven background). Color coding is the same as in Figure 13. (a) High
resolution. (b) Uneven background.

intensity-based processing, whereas the other 9, or 50%, from
the gradient-based processing. Figure 14 presents the outcomes
of the integrated processing for other two categories of TEM
images; the same color code applies. We observe again that the
integrated processing improves upon the individual pipeline of
processing and we believe that this is a key advantage of the
integrated approach, as it makes use of the image information
fully and compensate for the limitations of the approaches
emphasizing too much on one type of image information.

D. Test Outcomes of Four Kinds of TEM Images

To quantify the performance of our method, we run the
algorithm on all 32 TEM images and report the number of
particles they are able to identify. For the medium and high
resolution images, we are able to manually label the particles
and treat the manual outcome as our ground truth. These
detection results are included in Table II. In Table II, for
the individual pipeline of processing, we report the numbers
of the total particle detections as well as the numbers of
the consensus detections and conflicting detections selected
by the integrated method. The percentages of the conflicting
detections selected from each pipeline are also shown in
the table. For further comparison, we define the dissimilarity
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T F32.7 T(b) F82.6

(f) F8-2_10

() F3-2_11

Fig. 15.
(d) F10_10. (e) F3-2_11. (f) F8-2_10. (g) F10_13. (h) F10-2_17.

TABLE I

COMPARISON OF PARTICLE DETECTIONS FOR MEDIUM
AND HIGH RESOLUTION IMAGES

Ground  Intensity ~ Gradient — Consensus  Selected From Intensity — Selected From Gradient  Integrated

TEM image o Based Based  Detections Number  Percentage  Number  Percentage  approach
Medium resolution images
F32.6 103 99 97 g5 56.3% 7 BT% T01
F3-2.7 104 100 99 85 9 50% 9 50% 103
F3-2.8 100 99 98 73 10 35.7% 18 64.3% 101
F8-2.6 113 108 11 98 5 35.7% 9 64.3% 112
F8-2_7 134 126 131 119 1 7.7% 12 92.3% 132
F8-2_8 148 143 142 119 14 51.8% 13 48.2% 146
FI0_10 214 201 195 114 64 66% 33 34% 211
FI0_12 179 175 162 141 30 88.2% 4 11.8% 175
High resolution images
F32.0 21 21 25 4 0 0% 0 T00% 21
F3-2_10 2 26 24 11 4 28.6% 10 71.4% 25
F3-2_11 2 33 25 20 5 71.4% 2 28.6% 27
F8-2_10 42 44 37 17 12 50% 12 50% 41
F8-2_11 44 41 35 20 16 69.6% 7 30.4% 43
FI0_13 37 41 36 23 4 33.3% 8 66.7% 35
FI0_IS 47 50 34 17 24 82.8% 5 17.2% 46
F10-2_17 25 31 25 19 4 66.7% 2 33.3% 25
25 i 25
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Fig. 16. The boxplot of the dissimilarity metric for (a) medium resolution
images and (b) high resolution images.

between the detected outcomes and the ground truth as the
average distance between the nearest centers of different point
sets, and show the boxplots of the comparison results in
Figure 16. The smaller the dissimilarity, the better a detection
outcome. Because of the availability of the results in Table II
and Figure 16, we only present half of the processed images
in Figure 15, as inclusion of all images makes the paper’s file
size too large.
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(©) F8.2.8 (d) F10_10

" (2) F10_13 (h) F10-2_17

The processed outcomes of medium-resolution (top row) images and high-resolution (bottom row) images. (a) F3-2_7. (b) F8-2_6. (c) F8-2_8.

The results presented in Table II and Figure 16 demon-
strate the effectiveness of the integrated approach. Both of
intensity-based and gradient-based processing contribute to
the intergraded results and combining their strengths allows
the proposed method to achieve a high degree of accuracy
consistently across the samples. We also conduct an analysis
of variance (ANOVA) [47] on the dissimilarity of three groups
(integrated approaches, intensity-based only and gradient-
based only) for the medium and high resolution images.
For the medium resolution images, the p-value of an one-
way ANOVA test is 0.0124 between the integrated approach
and the intensity-based approach and 0.0013 between the
integrated approach and the gradient-based approach. For
the high resolution images, the p-value is 0.0001 between
the integrated approach and the intensity-based approach and
0.0025 between the integrated approach and the gradient-based
approach.

For the low resolution images including the ones with
uneven background, it is difficult to manually count and
identify all the particles, as they usually have over hundreds
or even thousands of particles. What we do here is to present
the processed outcomes of individual images in Figure 17,
so that people can visually sense how the method performs.
We still only show half of the results due to the images large
size. We present a table, similar to Table II, but it does not
have the ground truth column. For the intensity-based and
gradient-based approaches, we again report the numbers of
particles it detects and the numbers of the conflicted outcomes
selected by the integrated method. Combining both Table III
and Figure 17, we believe that the proposed method presents
an advantage in achieving robust detections when the image
quality varies.

Table II and Table III also suggest that the two pipelines
of processing make similar contributions for the low, medium
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(2) F8-2.4 (b) F8.-2.5

(e) F-2_4 ) 3-2_15

Fig. 17.
(c) F10_8. (d) F10-2_3. (e) F3-2_4. (f) F3-2_15. (g) F8-2_15. (h) F10-2_13.

TABLE III
COMPARISON OF PARTICLE DETECTIONS FOR LOW RESOLUTION IMAGES

Intensity ~ Gradient  Consensus  Selected From Intensity ~ Selected From Gradient  Integrated

TEM image Based Based Number Number Percentage approach
Low ion images
F3-2_16 826 695 403 257 61.6% 160 38.4% 820
F8_8 1197 997 595 425 67.9% 201 32.1% 1221
F8-2_4 871 822 575 189 62.4% 141 37.6% 878
F8-2_5 633 678 510 65 40.4% 96 59.6% 671
F10_7 885 924 667 109 43.3% 143 56.7% 919
F10_8 1041 1077 721 162 42.7% 217 57.3% 1100
F10_9 1115 1153 730 211 46.6% 242 53.4% 1183
F10-2_3 1053 1096 763 153 43.5% 199 56.3% 1115
Uneven background images
F3-2_4 502 487 294 133 60.7% 86 39.3% 513
F3-2_5 465 463 228 150 55.3% 121 44.7% 499
F3-2_15 815 712 466 222 64.5% 122 35.5% 810
F8_13 291 200 95 124 73.8% 44 26.2% 263
F8-2_15 327 309 159 133 65.3% 60 34.7% 332
F8-2_16 556 398 199 247 73.3% 90 26.7% 536
F10-2_12 480 187 102 303 95.3% 15 4.7% 420
F10-2_13 290 259 165 80 60.6% 52 39.4% 297

and high-resolution TEM images. But for those images with
uneven background, more conflicting outcomes are selected
from the intensity-based processing than from the gradient-
based processing. We believe that the unevenness in back-
ground intensity causes confusion in using the gradient infor-
mation, making the intensity-based processing more accurate
and the gradient-based processing less so.

E. Computation Time

People perceive that the time spent to process a TEM
image is proportional to the number of particles in an image.
This turns out untrue. The processing time in fact depends
heavily on the resolution level of an image; see Figure 18.
The horizontal axis is the value of dj related to an image’s
resolution level. As the resolution gets higher, dy gets bigger,
even for particles of the same physical size. Our algorithm
spent longer time to process the high resolution images than
the low-resolution ones. But the overall time is manageable.
For the 32 images, the longest processing time is about
10 minutes. Recall that our method is intended to be an offline
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(d) F10-2_3

(g) F8-2_15

(h) F10-2_13

The processed outcomes of low-resolution images (top row) and the images with uneven background (bottom row). (a) F8-2_4. (b) F8-2_5.

Total time (min)

E] 00
Estimated diamster d,

Fig. 18. Computational time of the algorithm. The horizontal axis is dg, and
the vertical axis is the processing time in minutes.

processing tool, so our material science collaborators deem 10
minutes very much acceptable.

The most time consuming part of our algorithm is the two
iterative processing components: the active contour and the
iterative voting. When processing the high resolution images,
the heavier noise and lower contrast make it harder for the
active contour method to find the optimal solution of their
energy functional. So it takes a longer time to converge. When
the iterative voting is applied to the high resolution images,
the large diameter of particles dy leads to a large voting region
for each step in its iteration, also causing a longer time for
the method to execute.

F. Parameter Sensitivity

In this section, we discuss the effect of the input parameter
do on the detection results. We test a given set of TEM
images using different dyp’s and generate the box-plot of the
dissimilarity and total processing time in Figure 19. We choose
the medium resolution TEM images because (a) these images
contain a good number of nanoparticles and (b) the number
of particles is manageable so that we can manually verify
the ground-truth. The recommended value of dy is 50, which
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Fig. 19. The box-plot and response curve of (a) dissimilarity and (b) total

processing time, with respect to dp, for the medium resolution TEM images.

is the middle value of the parameter’s range. Following the
evaluation methodology suggested in [48] and [49], we also
fit a 3-degree polynomial of dy for its mean values of the
dissimilarity and total time; this 3-degree polynomial is shown
as the black dashed line in the respective plots.

Figure 19 shows that dp does play an importance role in
affecting detection quality as well as detection time. If dp is
chosen too small or too big, both detection quality and process-
ing time will be adversely affected. We also observe that
underestimation of dy harms the detection quality more than
overestimation, while overestimation prolongs the processing
time more. Nevertheless, both detection quality and processing
time remain reasonably stable when dy is chosen between
40 and 60, namely within 20% deviation of the nominal
particle size. This range of allowance makes it practical to
use a rough estimate of the particle diameter in the proposed
method to produce robust detection results.

V. SUMMARY

In this paper, we proposed a new method to detect the
nanoparticles in noisy (TEM) images. The main contribution
of the paper is that we present a framework leading to robust
processing capability. This framework entails two pipelines of
processing in parallel, making use of complementary image
information, followed by a binary integer optimization proce-
dure to resolve detection conflicts and select better outcomes.
Our method can solve the particle detection problem for TEM
images with low contrast and heavy noise, making the new
method particularly useful in the application of non-metallic
nano material analysis.

We want to point out a few possible extensions. When a
new pipeline of processing is discovered to complement the
existing two processing pipelines, our BIP formulation does
allow an extension to include those. What needs to be done
is to amend the constraint conditions to incorporate more
than two detection outcomes and devise a conflict matrix M,
making sure that still only one outcome is chosen eventually.
Application front, a possible extension of the current work is
to explore the method’s applicability to bio-image processing
like cell detection or object detection from satellite images
especially when the quality of the images is low.
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