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Matching Misaligned Two-Resolution
Metrology Data

Yaping Wang, Erick Moreno-Centeno, and Yu Ding, Senior Member, IEEE

Abstract— Multiresolution metrology devices coexist in
today’s manufacturing environment, producing coordinate
measurements complementing each other. Typically, the high-
resolution (HR) device produces a scarce but accurate data
set, whereas the low-resolution (LR) one produces a dense but
less accurate data set. Research has shown that combining the
two data sets of different resolutions makes better predictions
of the geometric features of a manufactured part. A challenge,
however, is how to effectively match each HR data point to an LR
counterpart that measures approximately the same physical loca-
tion. A solution to this matching problem appears a prerequisite
to a good final prediction. We solved this problem by formulating
it as a quadratic integer program, aiming at minimizing the
maximum interpoint distance difference among all potential cor-
respondences. Due to the combinatorial nature of the optimiza-
tion model, solving it to optimality is computationally prohibitive
even for a small problem size. We therefore propose a two-stage
matching framework capable of solving real-life-sized problems
within a reasonable amount of time. This two-stage framework
consists of downsampling the full-size problem, solving the
downsampled problem to optimality, extending the solution of
the downsampled problem to the full-size problem, and refining
the solution using iterative local search. Numerical experiments
show that the proposed approach outperforms two popular
point set registration alternatives, the iterative closest point
and coherent point drift methods, using different performance
metrics. The numerical results also show that our approach
scales much better as the instance size increases, and is robust
to the changes in initial misalignment between the two data sets.

Note to Practitioners—The central message of this paper is
that aligning multiresolution data sets is important, but solving
it turns out to be a nasty problem. If one throws it into
an existing off-the-shelf optimization solution package, one is
unlikely to be able to get any results at all for real-life-sized
problems on the current computational hardware in any practical
time horizon. If one uses a heuristic approach, the downside is
that the solution outcomes are not robust and could lead to
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considerable deterioration in the solution quality when using the
combined data sets. The proposed matching framework provides
a competitive robust solution to this problem and can serve as a
good offline tool to aid the geometric quality control process of
manufactured parts.

Index Terms— Coherent point drift (CPD), coordinate mea-
suring machine, correspondences, iterative closest point (ICP),
quadratic integer programming, rigid point set registra-
tion (RPSR), two-stage matching framework (TSMF).

I. INTRODUCTION

TO ENSURE the dimensional quality of manufac-
tured products, metrology equipment is needed to take

coordinate measurements. Two lines of metrology devices
coexist today: one is the contact coordinate measuring
machine (CCMM) [1] with a mechanical touch probe and
the other is the optical coordinate measuring machine
(OCMM) [2] equipped with a laser scanning sensory system.
Fig. 1 illustrates a manufactured part being measured by the
two metrology devices.

In this pair, the CCMM is the high-resolution (HR)
device, which can measure up to the resolution of 0.5 μm.
Comparatively, the OCMM is the low-resolution (LR) one,
whose resolution is usually one order of magnitude lower than
that of the CCMM [3]. On the other hand, the OCMM, due
to its use of the laser scanning mechanism, can take dense
measurements from a medium- to large-sized part reasonably
fast, say in hours, while using a CCMM on the same part
may take considerably longer time, say days. Even then the
CCMM measurements do not cover the part’s surface as nearly
dense as those of the OCMM. In the end, the two resulting
metrology data sets have measurements of different resolutions
and different surface-covering densities. They form a pair of
data sets complementing, rather than replacing, one another,
as the LR data, with its dense coverage, captures the local and
global shape features better, while the HR data, albeit scarce
in number, does describe by each of its data points the true
yet unknown surface in a more accurate and precise manner.

Researchers recognize the need and benefit of combining the
two-resolution metrology data sets. For instance, Xia et al. [4]
has shown that combining the two-resolution data sets pro-
duces better prediction quality of the underlying surface fea-
ture than using only one of them. A prerequisite in achieving
an effective combination is to match each HR data point to an
LR data point that measures approximately the same physical
location on the part surface. This matching is, however, a
challenge because the two data sets are often misaligned. By
misalignment, we mean that the coordinates of a data point
cannot serve as a unique reference to the physical location on
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Fig. 1. Two-resolution metrology data.

the part surface where the measurement was actually taken.
Given two data sets, it is not immediately clear which point
in one data set corresponds to a selected point in the other
data set. Misalignment happens, nearly inevitably, because:
1) the coordinate systems used to record the measurements
on CCMM and OCMM are usually different and 2) the part
is typically reoriented between the two measuring tasks, and
hence has different poses while being measured.

The technical objective of our research is to develop a
robust algorithm, i.e., misalignment insensitive, for matching
the two metrology data sets so as to lay a sound foundation that
enables the neighborhood linkage model in [4] to be applied
for producing better surface feature predictions.

A. Problem Definition

Our problem is within the class of problems referred to as
rigid point set registration (RPSR) problems (also known as
point matching problems). Given two finite point sets A and B,
each on a different coordinate system, the RPSR is to find
a rigid transformation and/or point-to-point correspondences
that minimize the misalignment between transformed point
set A and point set B. The term set of correspondences or
simply correspondences is used here to specify a complete set
of point-to-point assignment between two point sets, whereas
a pair of matching points specifies only one single point-to-
point assignment, i.e., if ai ∈ A is matched to b j ∈ B, then
(ai , b j ) is called a pair of matching points. Henceforth, the
terms data set and point set are used interchangeably.

The metrology data matching problem addressed in this
paper is defined as follows: given a sparse HR data set and
a dense LR data set that are obtained by measuring the same
part surface, we want to find point-to-point correspondences
from the HR data set to the LR data set under an one-to-one
(injection) function such that each HR point is matched to an
LR point measuring approximately the same physical location.

Unlike a generic RPSR problem, our metrology data match-
ing problem has the following unique characteristics.

1) Each data set is a collection of unstructured coordinate
points. Specifically, the data sets do not include any addi-
tional information concerning the nature of the points or
the relationships between points, e.g., no labels, polygon

mesh representation, or other features like intensity or
texture of the surface available.

2) The misalignment between the two data sets may be
arbitrarily large.

3) The cardinality of the HR data set is significantly smaller
than that of the LR data set, as the HR data set has
significantly lower density than the LR data set, yet both
data sets fully cover the part surface. In summary, the
distinctive characteristic of our problem is the drastic
density and cardinality differences between the data sets,
distinguishing our problem from the RPSR problems
previously addressed, including those whose data sets
have no or negligible density differences [5]–[7], or a
much smaller cardinality difference [8], or no apprecia-
ble density or cardinality difference [9].

B. Our Approach

There are three typical strategies to solve an RPSR
problem.

1) Establish the point-to-point correspondences first and
then recover the rigid body transformation based on
the obtained correspondences (see [10] and [11]).
Then, with the established correspondences at hand,
one can employ a closed-form least square solution
(see [12] and [13]) to recover the rigid transformation
that optimally aligns (i.e., minimizes the L2 distances
between) the two metrology data sets.

2) First, estimate the rigid body transformation that best
aligns the two data sets, and then find the correspon-
dences (see [14] and [15]). Once the two data sets are
aligned by applying the estimated transformation, one
can simply use a closest point criterion to obtain the
correspondences.

3) Find the transformation and the correspondences jointly
(see [5], [6], and [16]). This strategy is generally imple-
mented by either alternating between recovering the
transformation parameters and determining the corre-
spondences until convergence or optimizing transforma-
tion and correspondences simultaneously using a single
probabilistic or optimization model.

Our solution approach follows the first strategy and intends
to solve the RPSR problem by focusing on finding the
point-to-point correspondences between the two data sets
without the need of computing the underlying rigid body
transformation beforehand. To establish the point-to-point cor-
respondences, inspired by the matching heuristic proposed
in [4], our approach makes use of the invariance property
of interpoint distance (IPD) of rigid body transformations
(IPD first introduced in [17]). IPD is defined for any two
points/measurements in the same data set and is calculated as
the Euclidean distance between the two points. The invariance
property of IPD means the following: given any pair of
physical points in the manufactured part, the Euclidean dis-
tance between the two points remains the same after applying
any rigid body transformation. However, in our context, the
invariance property of IPD holds only approximately because
of the resolution scale difference between the CCMM and
the OCMM and the randomness in the measurement locations
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due to the different measuring plans in the CCMM and the
OCMM. Specifically, given a pair of physical points that
were (approximately) measured in both data sets, the distance
between the pair of measurements in the first data set should
be approximately equal to the distance between the pair of
measurements in the second data set. Moreover, recall that
both data sets cover the part surface evenly and the LR data
set is significantly denser than the HR one. Therefore, it is
reasonable to assume that each HR point has a corresponding
LR point physically residing so close to it that we can deem
both points represent approximately the same physical location
on the part surface, and thus, they are considered to be a pair
of matching points.

The invariance property of IPD allows us to compare the
intrinsic pairwise distances internal to one data set with those
internal to the other data set. To compare the internal pairwise
distances (i.e., IPDs) of two pairs of matching points, with
each pair in a respective data set, we compute the IPD
difference associated with these two pairs of points and use
this difference as a criterion (i.e., a dissimilarity measure) to
evaluate how good one pair is matched to the other pair. Let
us denote by H = {hi ∈ R

d : i = 1, . . . , nh} the HR data
set and L = {ls ∈ R

d : s = 1, . . . , nl} the LR data set,
where nl � nh and d is usually 2 or 3. Then, given two
pairs of matching points (hi , ls) and (h j , lt ), the associated
IPD difference is |‖hi − h j ‖ − ‖ls − lt‖|.

Our approach attempts to find the best correspondences
between the two data sets whose largest IPD difference is
minimized. This goal is achieved by formulating our matching
problem as a quadratic integer programming (QIP) model (see
the details in Section III-A). However, due to the combinatorial
nature of the QIP model, solving its linearized version using
a general mixed integer linear programming (MILP) solver
is computationally prohibitive even for a small problem size
(e.g., 16 HR points and 100 LR points). Even with the help
of an effective search space pruning method (discussed in
Section III-B), it is still difficult to solve to optimality a
medium-sized problem (e.g., 16 HR points and 400 LR points).
Therefore, our goal is to obtain a near optimal solution for
large-size problems within a reasonable amount of time.

To achieve this goal, we propose a two-stage matching
framework (TSMF) combining the branch-and-bound (B&B)
search method and approximation algorithms. More specifi-
cally, our approach follows a coarse-to-fine search strategy,
entailing the following major actions.

1) Downsample both data sets to smaller sizes.
2) Find the optimal correspondences for the downsampled

problem.
3) Extend the optimal correspondences of the downsampled

problem to the full data sets and find a complete set of
correspondences.

4) Finally, employ an iterative local search procedure to
refine this complete set of correspondences until there
is no appreciable improvement.

The rest of this paper is organized as follows. Section II
reviews the related literature. Section III presents the
mathematical formulation of our problem. Section IV
describes the details of our TSMF approach including the

aforementioned major actions. Section V demonstrates the
merit of our method through a comparison study with
two popular RPSR algorithms using a pair of two-resolution
metrology data sets. Finally, Section VI concludes this paper.

II. RELATED WORK

The RPSR problem arises in many different fields, such
as computer vision, image processing, pattern recognition,
and computational biology, and has thus been extensively
studied. Since a few outstanding surveys were published
recently (see [18]–[23]), we do not intend to give another
comprehensive review here. Instead, this literature review
focuses on the RPSR methods that may be applied to our
specific problem or that share strong similarities with our
approach; most of them also take unstructured data point sets
as input data sets. In this paper, we categorize the RPSR
solution methods into four different groups: local deterministic
optimization methods, probabilistic methods, heuristic and
metaheuristic methods, and global optimization methods.

A. Local Deterministic Optimization Methods
Local deterministic methods intend to minimize the mis-

alignment between the data sets using local neighborhood
search. The most famous method is the iterative closest
point (ICP) method introduced by Besl and McKay [5].
ICP iteratively registers the two point sets by alternating
between the transformation estimation and the correspondence
determination. ICP is widely used in many different RPSR
applications due to its simplicity and good performance. The
main shortcoming is that ICP can easily be trapped in a local
minimum [7] without a good initial alignment. To alleviate
the local minima issue, different variants of ICP have been
proposed [24]–[26]. Another drawback is that ICP does not
guarantee to return a set of one-to-one correspondences [27].
More recently, Linh and Hiroshi [28] combined ICP and
nested annealing aiming to find the globally optimal alignment
between the two point sets, yet, they pointed out that this
algorithm is still likely to converge to local minima.

In addition to ICP and its variants, two other local opti-
mization methods are available. Pottmann et al. [29] proposed
a registration approach using instantaneous kinematics and a
local quadratic approximation of a squared distance function of
a surface, which they demonstrated to have better convergence
than ICP. Mitra et al. [30] used a gradient descent based
optimization technique to update the rigid transformation
parameters iteratively by setting the partial derivatives of the
residual error to zero and solving the resulting linear systems.
Even though the gradient descent method is more stable and
converges faster than ICP and its variants, a good solution
from the method still heavily depends on the starting position
of the point sets [21]. In fact, all the aforementioned local
optimization methods (except for [28]) require more or less a
good initial transformation estimation to work properly, which
limits considerably their success in handling the arbitrarily
large misalignment in our problem.

B. Probabilistic Models

Probabilistic point matching methods can be further divided
into two subgroups. The methods in the first subgroup model
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one or both of the data sets using a Gaussian mixture
model (GMM) and cast the registration process as a maximum
likelihood estimation problem (see [6] and [31]—[34]). In
other words, these methods aim to maximize the likelihood
that one data set fits another via an expectation–maximization
(E-M) algorithm. One well-known approach in this subgroup
is called coherent point drift (CPD) [6]. CPD poses the
registration of two data sets as a probability density estimation
problem and models one data set as GMM centroids. CPD
is able to preserve the topological structure of the point
sets and can efficiently handle large-size data sets for both
rigid and nonrigid cases. Lu et al. [35] proposed an acceler-
ated CPD algorithm that can register large 3D point clouds
more quickly than CPD by further accelerating the Gaussian
summation process during the calculation of correspondence
probability matrix of CPD. Eckart et al. [36] proposed a
GMM-based point cloud registration algorithm that applies a
so-called dual-model E-M framework to achieve faster and
better convergence for a wider range of initial misalignments.
However, this algorithm outperforms alternative methods only
when the maximum misalignment angle is less than 90° and
the translation is less than the length of the data set. The
methods in the second subgroup are generally known as the
robust point matching algorithms, which combine the so-called
soft assign technique and deterministic annealing to determine
the correspondences [37]–[39]. It has been shown [39] that
the process of alternating between soft assignment of cor-
respondences and transformation estimation is equivalent to
the E-M algorithm used in the first subgroup. Note that [39]
also models one of its data sets using GMM (as in [6]).
In comparison with ICP and its variants, probabilistic methods
are more robust to initial misalignment between the two data
sets. However, they can still be trapped in local minima if the
misalignment degree is relatively large, for instance, CPD can
handle a misalignment up to 70° [6].

C. Heuristic and Metaheuristic Methods

The third group of methods uses either heuristic or meta-
heuristic algorithms to find the correspondences or to estimate
the transformation parameters. Xia et al. [4] proposed a fast
heuristic matching algorithm, referred to as XiaHeur hereafter,
which is based on the IPD invariance property of rigid body
transformations. Specifically, XiaHeur first randomly selects
one HR point as anchor point and then provisionally matches
it to an LR point to form an anchor pair. With this anchor
pair, XiaHeur matches the remaining HR points, one at a
time; specifically, XiaHeur matches each HR point with an un-
matched LR point that results in the smallest IPD difference
between these newly formed matching pair and the anchor
pair. Once all the remaining HR points have been matched to
an LR point, we obtain one provisional set of correspondences.
After this, XiaHeur matches the HR anchor point to the next
LR point to form a new anchor pair and repeats the process
of matching the remaining HR points. This is done until all
LR points have been tried to form an anchor pair with the
HR anchor point. The final set of correspondences, chosen
among all the obtained provisional sets of correspondences,
is the set of correspondences with the smallest maximum

IPD difference. Being a heuristic algorithm, XiaHeur is
fast and easy to execute but does not control the resulting
maximum IPD difference in each provisional set of corre-
spondences. Indeed, as shown in the computational results
(Table V), it produces a poor set of correspondences with quite
a sizeable maximum IPD difference.

As for metaheuristic algorithms, both genetic algo-
rithms (GAs) and simulated annealing (SA) are popular
choices. A GA was used in [40] to find the transforma-
tion parameters that minimize a modified Hausdorff distance
between two sets of extracted image features and in [8] to find
good correspondences for free-form surfaces, while SA was
used in [41], in conjunction with ICP, to deal with two partially
overlapping data sets; specifically, SA was used to alleviate the
local-optimal-entrapping shortcoming of ICP, while ICP was
used to speed up SA. Since this hybrid approach relies on
the dead reckoning technique [42] to obtain a coarse position
estimation, its applicability is limited.

D. Global Optimization Methods

Global optimization methods cast the RPSR problem as a
global mathematical optimization model and aim to align data
point sets with any initial misalignment. This group of methods
intend to find either an optimal global solution through a
B&B based approach or a practical near-to-optimal solution
by combining the B&B approach and some approximation
algorithms. Li and Hartley [43] presented a method based on
the B&B search to globally register two given 3D images.
This method is not applicable to our problem because it
assumes equal sizes of the two sets and no translation between
them. Gelfand et al. [11] proposed a method for registering
3D shapes based also on the pair-wise distance consistency
(i.e., the IPD invariant property), but this approach relies
on strong distinctive features of the input shapes to perform
well. The work presented in [7] and [44] employed B&B
for image matching applications. However, both methods are
specialized for 2D data sets, and it is not a trivial task to
generalize them to 3D cases. Raviv et al. [10] proposed a non-
rigid registration method for 3D shapes that shares a similar
coarse-to-fine matching strategy to our approach (elaborated in
Section IV). The method in [10] has two limitations, however,
making it not suitable for our problem: 1) it requires the data
sets to have mesh structure (smooth geometric measure) and
2) its exact coarse matching model can only handle point sets
with the same cardinality (see [10, constraint (3.5)]). Recently,
Brown et al. [45] proposed a B&B-based globally optimal
2D–3D registration algorithm. However, this algorithm relies
on features not found on unstructured 3D cloud points.

To evaluate the performance of TSMF in the later section,
we choose one representative algorithm from each of the first
three groups and compare them with our proposed TSMF, as
the methods in the last group are not applicable to our problem.
In the first group, ICP is selected due to its popularity and good
performance. In the second group, CPD is chosen because
of its robustness compared with ICP and ICP’s variants.
XiaHeur is selected from the third group because it is fast and
simple, and thus, is most likely adopted in industrial practice.
It is worth pointing out that CPD and ICP algorithms are
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not randomized algorithms; they are deterministic algorithms.
Specifically, even though CPD considers the alignment of the
two data sets as a probability density probability problem, the
E-M algorithm to solve the problem is deterministic. Thus,
given an instance, running CPD multiple times will always
produce the exact same solution (the same is true for ICP).

III. PROBLEM FORMULATION

This section presents the mathematical formulation of our
problem. We first introduce the QIP formulation and then
briefly describe its linearized version followed by an effective
search space pruning technique.

A. Quadratic Integer Program and Its Linearization

Given that the invariance property of IPD holds approxi-
mately for our problem, we formulate the misaligned metrol-
ogy data matching problem as a min–max quadratic integer
program (minMaxQIP). We first introduce a few notations.
Denote by d H

i j the IPD between point hi and point h j in the
HR data set, i.e., d H

i j = ‖hi −h j‖. The IPD for the LR data set,
d L

st , is likewise defined. Denote by xis the binary assignment
variable, such that xis = 1 if hi is matched to ls , and xis = 0
otherwise. As such, the minMaxQIP formulation is as follows:

min
x

max
i, j = 1, . . . , nh
s, t = 1, . . . , nl

∣
∣d H

i j − d L
st

∣
∣xis x j t (1)

s.t.
nl∑

s=1

xis = 1, i = 1, . . . , nh (2)

nh∑

i=1

xis ≤ 1, s = 1, . . . , nl (3)

xis ∈ {0, 1}, i = 1, . . . , nh; s = 1, . . . , nl . (4)

The objective here is to minimize the maximum IPD differ-
ence (referred to as maxIPDdiff hereafter) across all potential
correspondences between the two data sets. Constraint (2)
ensures that each HR point is matched to exactly one LR
point. Constraint (3) forces an LR point to be assigned to one
HR point at most. Constraints (2) and (3) together make sure
that the whole HR set is matched to a subset of the LR set
under a one-to-one (injective) function.

minMaxQIP is mathematically equivalent to a min–max
version of the quadratic assignment problem (QAP) [46],
which is proved to be nondeterministic polynomial-time (NP)
hard [47] and considered indeed one of the hard-
est combinatorial optimization problems. The state-of-the-
art exact algorithms for QAP can only solve problems
with up to 35 facilities [48], which is equivalent to
35 HR points and 35 LR points in our context. For manufac-
turing applications, we need an approach that can solve much
larger instances (e.g., an HR data set size of about 100 and an
LR data set over 1000) within a reasonable amount of time.
To address the challenge brought forth by the larger problem
size, we devised a coarse-to-fine matching strategy such that
we only need to solve a much smaller size of the minMaxQIP
problem to optimality, where the much smaller minMaxQIP
problem is referred to as the downsampled problem.

To prepare for our solution procedure, we linearize the
minMaxQIP model. First, we define new binary variables zis j t

to replace the quadratic term xis x j t in the objective func-
tion and add (6) to ensure that zis j t is 1 when both
xis and x j t are 1. Then, we change the original min–max
objective function to a minimization one by defining a new
continuous variable u to replace the inner maximization,
i.e., max|d H

i j − d L
st |zis j t . To reflect that u is the maximum

over all combinations of i, j, s, and t , constraint (7) is added,
which says that the maximum over all possible terms is greater
than or equal to every one of individual terms. The linearized
model is given by

min
x

u (5)

s.t. (2 − 4)
xis + x j t ≤ zis j t + 1, i, j = 1, . . . , nh

s, t = 1, . . . , nl; i < j, s �= t (6)
u ≥ ∣

∣d H
i j − d L

st

∣
∣zis j t , i, j = 1, . . . , nh

s, t = 1, . . . , nl; i < j, s �= t (7)
zis j t ∈ {0, 1}, i, j = 1, . . . , nh; s, t = 1, . . . , nl

i < j, s �= t . (8)

B. Search Space Pruning Technique

Before we present the details of our proposed two-stage
solution approach, we present that a simple search space
pruning that remarkably decreases the computation time for
solving the linearized optimization problem.

Let u∗ be the optimal solution (maxIPDdiff) of the lin-
earized model. The key of the search space pruning is to find
a tight upper bound for u∗, which we call the search space
threshold, denoted by T̄ . That is, T̄ is a value that we know
for sure is larger than u∗, but we hope is not much larger
than u∗. Consequently, one can reject all possible pairwise
correspondences whose IPD difference is greater than T̄ .
Specifically, given two HR points (hi , h j ) and two LR points
(ls, lt ), if the IPD difference between them is greater than T̄ ,
then only one HR point can be matched to one of the two LR
points. This is to say, if hi is matched to ls , then h j cannot
be matched to lt , or vice versa.

Finding a proper T̄ is essential for the search space prun-
ing technique to work effectively. T̄ should be as small as
possible to eliminate a large amount of the potential pairwise
correspondences. However, it cannot be too small; otherwise,
it may block off the optimal solution; that is, it may render
the pruned model infeasible—in which case one would need
to increase T̄ and resolve the model.

To find an effective and safe T̄ , we consider an ideal
situation where measurements in both data sets are perfectly
evenly spaced over a flat part surface. A small section of a
hypothetical part surface under this ideal situation is shown
in Fig. 2, where each cross represents an LR point and each
circle stands for an HR point and τ denotes the maximum
distance between an LR point and its closest neighbor in
the LR data set. As shown in Fig. 2, to estimate the largest
possible IPD difference, we examine the worst case scenario
where every HR point sits almost at the center of its closest
four surrounding LR points and the HR point h′ (h′′) sits a
little bit closer to LR point lb (lc) than to LR point la (ld ).
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Fig. 2. Ideal case for choosing a proper T̄ .

As such, the HR points h′ and h′′ should be matched to
the LR points lb and lc, respectively, and the IPD difference
between these two pairs of matching points is 1.414τ . Under
the ideal case, this 1.414τ is approximately the largest value u∗
can take, as one can imagine that no matter where we move the
HR points, the IPD difference is likely to get no greater. This
understanding suggests that T̄ can be set to 1.414τ . In practice,
of course, the data sets are not perfectly evenly spaced and
the part surfaces are usually curved. Consequently, 1.414τ
may not be an upper bound of u∗. We believe that this value
still represents an effective threshold. To be safer, we relax
T̄ to 1.5τ . Our later numerical analysis in Section V shows
that this search space pruning technique on average eliminates
almost 80% of binary variables and never yielded an infeasible
pruned model.

It should be noted that in this paper, we assume that the mea-
surements in both HR and LR data sets are evenly spaced over
the part surface. This assumption is realistic because the evenly
spaced measurements can be readily obtained using today’s
metrology technology [4]. Said this, we acknowledge that
there might be circumstances where taking evenly measure-
ments throughout the surface may not be desirable. For exam-
ple, if the surface is very wiggly, it may be preferred to take
denser measurements near the locations with high curvature
than other relative flatter areas so that the critical surface fea-
tures are captured without an undue increase of measurements
(especially in the HR data set). Under these circumstances, it is
desirable and practical to maintain the measurements’ even-
ness only locally (with higher density measurements evenly
distributed over the high curvature areas and lower density
measurements evenly distributed over the not very curvy
locations). The Appendix explains in detail why our choice
of T̄ = 1.5τ is also appropriate under this circumstance.

To implement the search space pruning technique, for two
pairs of potential matching points (hi , ls) and (h j , lt ), we do
not define variable zis j t if their IPD difference is greater
than T̄ . To mathematically reflect this in the linearized model
[see (2)–(8)], we include constraint (9) to the linearized model
and change (6) to (10) as follows:

xis + x j t ≤ 1, i, j = 1, . . . , nh; s, t = 1, . . . , nl

i < j ; s �= t; if
∣
∣d H

i j − d L
st

∣
∣ > T̄ (9)

xis + x j t ≤ zis j t + 1, i, j = 1, . . . , nh; s, t = 1, . . . , nl

i < j ; s �= t; if
∣
∣d H

i j − d L
st

∣
∣ ≤ T̄ . (10)

A nice property of the pruning technique is that the optimal
objective value of the pruned model is independent of the
value of T̄ in the following sense. If T̄ < u∗, then the pruned
model is infeasible (and thus one would need to increase T̄
and resolve the model); while if T̄ ≥ u∗, then the optimal
objective value of the pruned model will be equal to u∗.
To see this, note that the pruning technique eliminates only
the pairwise correspondences (corresponding to the binary
variables zi j st of the linearized model) whose IPD differences
are greater than T̄ . In other words, only suboptimal solutions
are discarded. Therefore, as long as T̄ ≥ u∗, the pruned model
has the same optimal objective value as the unpruned model.

IV. TWO-STAGE MATCHING FRAMEWORK

Even though the search space pruning technique signifi-
cantly decreases the solution time of small instances, it does
not do so sufficiently to medium-to-large instances. Thus, in
order to tackle problems with real-life sizes, we relax our
optimization goal from solving to optimality to finding a robust
near-optimal solution and devise a TSMF to accomplish this
relaxed goal.

We start with an overview of our solution framework. Our
solution approach is conducted in two stages and each stage
comprises two steps. The first stage of TSMF aims to obtain
the optimal correspondences for a subset of the HR and LR
data points and its steps are as follows.

1) Downsample both data sets.
2) Find the optimal correspondences for the downsampled

problem by solving it to optimality using B&B.
The second stage of TSMF extends the partial set of

correspondences (i.e., the optimal correspondences for the
downsampled problem) found at the first stage to the original
problem; its two steps are as follows.

1) Extend the partial set of correspondences of the down-
sampled problem to a complete set of correspondences
on the full data sets (i.e., find LR correspondences
for the HR points that were not in the downsampled
HR data set).

2) Refine the complete set of correspondences through
an iterative local search until there is no appreciable
improvement.

Fig. 3 summarizes the proposed framework.

A. First Stage—Obtaining a Partial Set of Correspondences

1) Downsampling Both Data Sets: When downsampling
both data sets, we have two objectives: (a) that the optimal
correspondences of the downsampled problem are close to
the optimal correspondences for the full data sets and (b)
that the sizes of downsampled sets should be small enough
so that the downsampled problem can be efficiently solved
to optimality using a general MILP solver. To achieve these
objectives, a downsampling algorithm needs to meet two
requirements: (a) the downsampled points should be nearly
evenly spread over the part surface and (b) the resulting
downsampled set should contain a desired number of points.

To fulfill the two requirements, we propose a greedy
downsampling approach, called greedyDownsampling, which
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Fig. 3. Flowchart of TSMF.

combines the dominating set method and principal component
analysis (PCA). Specifically, the final downsampled set com-
prises a set of dominating points returned by the dominating
set method and the corner points detected by PCA. Note that
the greedyDownsampling approach is applied to each of the
two data sets in the same manner. Next, we present the details
of the two components of the greedyDownsampling approach.

The idea behind the dominating set method is as follows:
if each data point is either part of the sampled set, or very
close to a data point in the sampled set, then the set of
sampled points is guaranteed to spread evenly over the part
surface. This is because the full data set is evenly spaced
over the part surface. This idea can be implemented by
solving the minimum dominating set problem on an undirected
graph G = (V , E) appropriately constructed on the full data
set. A dominating set is a subset D of V such that every
vertex not in D is adjacent to at least one vertex in D. The
minimum dominating set problem is to find a dominating set
with minimum cardinality. For our purposes, G = (V , E)
is constructed as follows: vertex set V comprises all data
points in the full data set, and there is an edge between each
data point and other points residing within a certain distance
of it. We denote this distance by Rn . Building G in this
way guarantees evenness of the downsampled set (i.e., the
dominating set).

The minimum dominating set problem is NP hard [49]. Yet,
for our purposes, using a greedy algorithm to find an approx-
imate solution is good enough. The greedy algorithm starts
with an empty dominating set D and iteratively appends to D
the vertex v ∈ V with the maximum degree and updates G by
removing that newly added point and all vertices adjacent to
it until G becomes empty. Since both data sets are arbitrarily
indexed for identification, for both data sets, the algorithm

always selects the median point as the first dominating point
so that the two separate downsampling process (one for each
data set) start approximately from the same physical location
of the part surface, and we choose the vertex with the smallest
index to break ties when there is more than one vertex having
the maximum degree.

Recall that the second requirement of our downsampling
approach is to obtain a desired number of points from the full
data set. To achieve this, one needs to set Rn such that the
greedy algorithm returns a dominating set of the desired size
or very close to the desired size. Since the dominating set’s
cardinality increases monotonically as Rn decreases, to find the
proper Rn , one can simply do a binary search over a plausible
range of Rn . A safe initial range for Rn is between zero and
a half of the longest between-point Euclidean distance in the
respective data set. The binary search procedure starts with
Rn taking the middle value of the initial range and uses it to
construct graph G. With G constructed, our procedure checks
if the cardinality of the returned dominating set is close enough
to the desired number of downsampled points (say within 5%).
If it is, the binary search stops; otherwise: (a) if the dominating
set’s cardinality is smaller than the desired number, the binary
search continues on the lower half of the current Rn range
and decreases the current Rn to the midpoint of this lower
half range or (b) if the dominating set’s cardinality is larger
than the desired size, the binary search continues on the upper
half of the current Rn range and increases Rn to the midpoint
of this upper half range.

The other component in the greedyDownsampling approach
is PCA, which is used to compensate the dominating set
method for its tendency not to include the edge/corner points.
Specifically, we use the first two principal components of the
data set to obtain four corner points, two for each principal
component. To get the first two corner points, we project the
full data set to the first principal component and choose the two
points whose projection is farthest apart. The other two points
are obtained similarly using the second principal component.

2) Solve the Downsampled Problem to Optimality: After
downsampling both data sets, we find the optimal solution
(i.e., a partial set of correspondences for the full data sets) for
the downsampled sets by solving the linearized (minMaxQIP)
model to optimality. This is done using a general MILP solver,
but we take advantage of the search space pruning technique
described in Section III-B.

This step ensures that each point in the downsampled HR set
is matched to its best LR correspondence in the downsampled
LR data set. The resulting correspondences is of course only
a partial set of the full correspondences, but having it creates
a good basis for improvement in the second stage.

B. Second Stage—Extend the Partial Set of Correspondences
and Refine the Complete Solution

Once the first stage is completed, each of the two data sets
can be thought of having two subsets, the matched subsets and
the unmatched subsets comprising the remaining data points,
namely, H = H (matched) ∪ H (unmatched) and L = L(matched) ∪
L(unmatched), so that for each point in H (matched), there is a
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Fig. 4. Advantage of using multiple anchor pairs.

point in L(matched) that is matched to it. Our objective in the
second stage is to find a point correspondence in L(unmatched)

for every point in H (unmatched), conditioned on the partial set of
point correspondences that have already been formed between
H (matched) and L(matched).

The existence of a set of matched pairs between the HR and
LR data sets in fact provides a set of anchor pairs, to borrow
the term from XiaHeur. It motivates us to follow the idea of
that heuristic to match the remaining HR data points to their
LR counterparts. Acknowledging that XiaHeur is not robust in
its matching outcome, the two steps in this stage are devised
to safeguard the solution quality.

1) Generalizing XiaHeur by Using Multiple Anchor Pairs:
Through our investigation, we found that using the plain
version of XiaHeur is not robust because it heavily relies
on a single anchor pair. To see this, consider the example
in Fig. 4 (left). In the top figure there are two HR data
points, illustrated by a solid circle and a solid triangle,
respectively, while in the bottom figure, there is a group of
LR datapoints, one illustrated by a solid circle and the rest
illustrated by crosses. The single anchor pair comprises the two
solid circles, denoted by ha1 and la1 , respectively. The solid
triangle point, named hu , is the unmatched HR point. With one
anchor pair (ha1, la1), there are multiple plausible LR points
that could be matched to hu . As illustrated in Fig. 4 (left),
when considering a degree of measurement uncertainty up
to �, all LR points residing within the two dashed circles could
have the same merit to be matched to hu . Some solutions could
even appear on the opposite direction relative to la1 , compared
to that between hu and ha1 .

In this step, we propose a generalized version of XiaHeur,
called generalizedXiaHeur, to overcome this drawback of
XiaHeur. The major change made in generalizedXiaHeur is to
use the multiple anchor pairs—those formed in the first stage
of our solution framework. Specifically, for an unmatched HR
point hu , generalizedXiaHeur finds its matching point in the
LR data set such that the largest IPD difference between this
new matching pair and each of the anchor pairs is minimized
[see the illustration in Fig. 4 (right)]. Through extensive
numerical studies, we believe that the generalizedXiaHeur

Fig. 5. Local search illustration for one iteration.

provides a remarkably robust match outcome, even in the
presence of measurement noises in the data sets.

2) Iterative Local Search: The generalizedXiaHeur, albeit
its robust performance, is still a heuristic, thus leaving room
for further improvement. Thus, we propose to use an iterative
local search procedure to refine the complete set of correspon-
dences obtained by generalizedXiaHeur.

As its name suggests, the iterative local search procedure
comprises a sequence of local search iterations. Each local
search iteration aims to find a better set of correspondences
than the best set of correspondences found so far. Moreover,
such searches are limited to the sets of correspondences that
are close/local to the current best set of correspondences. The
sequence of local search iterations terminates when there is no
appreciable improvement. Note that the input for each local
search is the current best set of correspondences; specifically,
the input for the first local search is the set of correspon-
dences found by generalizedXiaHeur and the input for each
subsequent local search is the set of correspondences found
by the preceding local search iteration. The remainder of this
section explains one local search iteration.

The basic idea of the local search is illustrated in Fig. 5,
where each dot in the top sinewave represents an HR point
and each cross in the bottom sinewave stands for an LR point.
In the input of the local search, each HR point is matched
to an LR point (denoted by a bold cross). During the local
search, each HR point is allowed to be rematched to any
LR point in the neighborhood of that HR point’s current LR
correspondence (the crosses within the circle centered at the
respective current LR correspondence).

Given a neighborhood size, the local search can be done by
solving a modified linearized minMaxQIP model, called local
search model. Specifically, the local search model is very simi-
lar to the linearized minMaxQIP model [(5)–(8)] except that in
the local search model, each HR point can only be matched
with one of the LR points in the neighborhood of that HR
point’s current LR correspondence. We do not give the local
search model explicitly because we do not solve it directly but
solve it as described in the remainder of this section.

Solving the local search model to optimality is very
computationally expensive for real-life-sized problems, even
when using small neighborhood sizes and even after applying
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the search space pruning technique. In contrast, an MILP
solver is very fast in determining the feasibility of the local
search model after applying to it a search space pruning
threshold, called T̄LS. This large complexity difference is
because one can greatly simplify the local search model if
one is only interested in checking its feasibility. Specifically, to
check the feasibility of the model, one can drop the objective
function, previously u (equivalently, set it to a constant in
the MILP solver, say zero), and consequently eliminate all the
constraints related to u as they are not needed for the feasibility
check. With these changes, we give below the feasibility-check
model that one needs to solve to determine the feasibility of
the local search model given a specific T̄LS. In this model,
N Hi denotes the set of LR points in the neighborhood of
the i th HR point’s current LR correspondence; constraint (11)
forces each HR point, say point hi , to be matched to exactly
one of the LR points in N Hi ; constraint (12) ensures that an
HR point, say point hi , is not matched to an LR point out-
side N Hi ; constraint (13) guarantees that each LR point is only
matched to at most one HR point; and constraint (14) excludes
all correspondences whose maxIPDdiff is greater than T̄LS.
To further expedite the feasibility check, one can properly set
a parameter in the MILP solver to emphasize feasibility over
optimality; in CPLEX, this is to set MIPEmphasis to 1.

min 0
s.t.

∑

s∈N Hi

xis = 1, i = 1, . . . , nh (11)

xis = 0, i = 1, . . . , nh; s ∈ {1, . . . , nl } \ N Hi

(12)
nh∑

i=1

xis ≤ 1, s = 1, . . . , nl (13)

xis + x j t ≤ 1, i, j = 1, . . . , nh; s ∈ N Hi

t ∈ N H j ; if
∣
∣d H

i j − d L
st

∣
∣ > T̄LS (14)

xis ∈ {0, 1}, i = 1, . . . , nh; s = 1, . . . , nl . (15)

Next, we explain how to find the local search model’s
optimal solution by taking advantage of the MILP solver’s
efficiency to solve the feasibility-check model. Note that
the feasibility-check model is feasible if and only if the
applied T̄LS is greater than or equal to the maxIPDdiff of the
local search model’s optimal solution. Therefore, as explained
below, one can perform a binary search over T̄LS in order to
find the optimal solution to the local search model.

In the binary search, the initial range of T̄LS is between
zero and the maxIPDdiff of the best set of correspondences
found so far. The binary search starts with T̄LS taking the
midpoint of its initial range and solves the feasibility-check
model built using that T̄LS. If the model is feasible, then the
binary search continues on the lower half of T̄LS’s current
range and decreases T̄LS to the midpoint of that lower half
range; otherwise, the binary search continues on the upper
half of T̄LS’s current range and increases T̄LS to the midpoint
of that upper half range. The binary search proceeds until the
range length is within a predefined tolerance, say 0.01.

TABLE I

DESIRED NUMBER OF POINTS TO DOWNSAMPLE

V. COMPUTATIONAL EXPERIMENTS AND RESULTS

This section describes the experimental setup and compares
the performance of TSMF with those of two widely-used point
set registration methods: ICP and CPD. For this purpose,
we used two 3D metrology data sets of a milled sinewave
surface. All experiments were done on a Linux (Ubuntu 14.04)
machine with Intel E5-1620 3.4-GHz processor and
32-GB RAM.

A. Experimental Setup
1) Data Sets (Available as an Online Supplement in the

Journal Website): The HR and LR 3D metrology data sets
(see Fig. 1) were obtained from a manufactured part of size
101 × 101 × 51 mm3, measured by a CCMM (Sheffield
Discovery II D-8 with a TB 20 touch probe) and an OCMM
(LDI Surveyor DS-2020 with an RPS 150 laser unit), respec-
tively. The resolutions of the CCMM and the OCMM are
roughly 5 and 50 μm, respectively. The two data sets were
originally obtained by the study in [4], and each data set
consists of 1560 data points that are evenly spaced over the
surface. The typical number of data points collected by a
CCMM over this size of product is usually an order, or orders,
of magnitude fewer than that collected by an OCMM. The
reason is that the study of [4] collected the same number of
data points in the HR set as in the LR set because the study
needed the additional HR data points for validation purposes.
In fact, the largest number of data points used as the HR set
in [50] is 80, and the remaining 1480 HR points were used to
assess the quality of the combined prediction made by their
proposed model. In this paper, we believe it is practical to
increase the HR data points slightly but not substantially more.
Therefore, we chose 100 as the maximum number of points
in the HR set while using all the 1560 LR points.

To test the effectiveness and scalability of TSMF, we
generated six instances as test cases of various sizes. Smaller
sized data sets were created through thinning the two original
data sets. Sizes of all six instances are listed in the top
row of Table I. Each instance size is indicated by its name,
which comprises two parts: the number before “×” denotes
the cardinality of the HR data set, whereas the number after
“×” denotes the cardinality of the LR data set.

2) TSMF Settings and Implementation: There are four key
parameters used in TSMF: 1) the search space pruning thresh-
old (T̄ ); 2) the neighborhood size of the iterative local search
step in the second stage; and 3) and 4) the downsampled sizes
of the HR and LR data sets.

As mentioned in Section III-B, T̄ is chosen to be 1.5 times
the maximum distance between an LR point and its closest
neighbor in the LR data set. The neighborhood size of the
local search is set to 10; this provides a good balance between
the search size and the time required to solve each local search
iteration.
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To set the last two algorithmic parameters—the downsam-
pled sizes of the HR and LR data sets—we conducted exten-
sive experiments and determined that the largest downsampled
problem size that an MILP solver can solve to optimality
within a couple of minutes is roughly ten HR points by 180 LR
points. Meanwhile, we also observed that for each HR data set,
eight data points are enough to form a good anchor set leading
to an effective generalizedXiaHeur step.

For the above reasons, we chose to downsample every HR
data set into eight HR points: four using PCA and four using
the dominating set algorithm. In contrast, the sizes of the
downsampled LR data sets were proportional to the sizes of the
respective original LR data set. Specifically, we downsampled
the largest LR data set into 180 points—four using PCA and
176 using the dominating set algorithm. Together with the
eight downsampled HR points, this formed a combined set of
8 × 180 points, which is in the ballpark of the problem size
that an MILP solver can solve to optimality in a desirable
duration. Note that for the largest LR data set, the dominating
set algorithm chose 176 points out of the 1560 points, which is
roughly 11.3%. Thus, for the remaining LR data sets, we used
the dominating set algorithm to select roughly the same 11.3%
of points out of the respective LR data set, i.e., obtaining
91 and 46 points from the original LR data sets of size 800 and
size 400, respectively. Table I summarizes the downsample set
sizes for each test instance.

TSMF was implemented in C++ using Concert Technology
interface for the MILP solver CPLEX (version 12.4). The
PCA function we used at the downsampling step is from the
Armadillo C++ linear algebra library [51].

3) CPD and ICP Implementations and Settings: Multiple
ICP implementations are available online. We selected
the ICP code developed by Per Bergström due to
its popularity. The MATLAB code can be downloaded
from http://www.mathworks.com/matlabcentral/fileexchange/
12627-iterative-closest-point-method. Since no initial starting
transformation is available in our experiments for ICP, we
changed the parameter init_flag from default value 1 to 0
to reflect this fact. All other input parameters were left as
default. As we want to match the entire HR data set to a
subset of the LR data set, when applying ICP to our data
instances, we treat the LR and HR data sets as model and
data, respectively.

For CPD, we chose its most recent implementation
code in MATLAB, available at https://sites.google.com/site/
myronenko/research/cpd. Given the nature of our problem,
we selected the rigid registration option of CPD, i.e.,
opt.method = rigid. Out of nine remaining input parame-
ters of CPD, we changed three parameters to a non-default
value:

1) opt.scale = 0 to disallow scaling in the context of
a rigid body transformation;

2) opt.corresp = 1 to compute the correspondences at
end of the registration;

3) opt.normalize = 0 to disallow data set
normalization.

We do not normalize the data because doing so results in the
best CPD performance for solving our problem.

TABLE II

PERFORMANCE COMPARISON OF DOWNSAMPLING METHODS

B. Results and Performance Analysis

In this section, we conduct the following analyses.
• Evaluate the performance of greedyDownsampling.
• Show the effectiveness of search space pruning

technique.
• Compare our TSMF with XiaHeur (with and without

local search) and show the effectiveness of the local
search.

• Evaluate TSMF’s performance against ICP and CPD.
We want to note that as the density of each HR data set is

different and the cardinality ratio of the HR data set and LR
data set in each instance is also different (thus the underlying
maxIPDdiff is different for each instance), throughout this
section, we report all performance metrics as a multiple of the
average smallest IPD in the LR set, denoted by w. Specifically,
w is calculated for each instance by averaging the distances
between each LR point and its closest neighbor in the LR data
set. This allows us to compare the results across the different
instances.

The first analysis is about the performance of the greedy-
Downsampling method. We compare it with a downsampling
alternative, the farthest point sampling (FPS) method proposed
in [52]. Since it is difficult to compare these two downsam-
pling methods directly, what we did was the following. For
each downsampling method, we first downsampled both data
sets using one of the methods and then solved the downsam-
pled problem to optimality using the search space pruning
technique. The downsampling method that resulted in a better
solve-to-optimality solution, i.e., a smaller maxIPDdiff, was
deemed as a better option.

Table II presents the performance comparison results of the
greedyDownsampling and FPS methods. For each instance,
the numbers in columns 2 and 3 represent the maxIPDdiff
(expressed in multiples of w) of the optimal solution of the
downsampled problem obtained using FPS and greedyDown-
sampling, respectively. The greedyDownsampling method out-
performs FPS for all instances. In addition, the execution time
of greedyDownsampling and FPS are comparable across all
instances and both took less than 1 s. Thus, the greedyDown-
sampling method suits our purposes better.

Next, we evaluate the effectiveness of the search space
pruning technique when it is employed during the solve-to-
optimality step in the first stage of TSMF. We first show the
effectiveness of the suggested pruning threshold T̄ = 1.5 τ in
terms of percentage of solution time reduced and percentage of
binary variables pruned after applying the suggested T̄ = 1.5 τ
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TABLE III

EFFECTIVENESS OF THE SUGGESTED T̄ = 1.5 τ

TABLE IV

SENSITIVITY STUDY RESULTS WITH DIFFERENT T̄ VALUES

to the solve-to-optimality model. Then, we further demonstrate
the effectiveness of the suggested T̄ = 1.5 τ by studying
how the solution time and number of pruned binary variables
change as a function of T̄ .

Table III summarizes the performance results of applying
the suggested T̄ = 1.5τ to the solve-to-optimality model for
each instance size. The percentage of solution time reduced
and the percentage of binary variables pruned are calculated
by comparing the with-pruning results to the without-pruning
results. On average, the search space pruning technique elimi-
nated 78% of the binary variables and reduced the solution
time by 84%. Overall, the search space pruning technique
is very effective in reducing the solution time of the solve-
to-optimality model by eliminating a significant amount of
binary variables from the model; moreover, its effectiveness
increases as the problem sizes become larger. Note that we
compute the value of τ (in the suggested T̄ = 1.5 τ ) based
on the downsampled LR data set instead of the full LR data
set since the search pruning technique is applied when solving
the downsampled problem to optimality.

To further demonstrate the effectiveness of the suggested
T̄ = 1.5 τ , a sensitivity study is performed by applying to
the solve-to-optimality model each of the following candidate

TABLE V

PERFORMANCE OF LOCAL SEARCH AND XiaHeur

T̄ values: 0.5 τ , 0.75 τ , 1 τ , 1.5 τ , 2 τ , 2.5 τ , 3 τ , 3.5 τ ,
and 4 τ . Table IV tabulates the main sensitivity study results.
For each T̄ value, three performance metrics are reported:
solution time, percentage of solution time reduced, and per-
centage of binary variables pruned. Note that the results for
T̄ values of 0.5 τ , 0.75 τ , 2.5 τ , and 3.5 τ are not recorded
in Table IV. This is because 0.5 τ and 0.75 τ yield infeasible
pruned solve-to-optimality models, and 2.5 τ (3.5 τ ) leads
to the same pruned solve-to-optimality model as 2 τ (3 τ ).
Table IV shows that for all instance sizes, 1 τ also gives
the same results (and the same pruned model) as the sug-
gested 1.5 τ . The equivalence of the models obtained using
1 τ , 2 τ, and 3 τ and 1.5 τ , 2.5 τ, and 3.5 τ , respectively,
is due to our conservative definition of τ as the maximum
distance between an LR point and its closest neighbor in the
LR data set. Therefore, we decide to use 1.5 τ as in our tests
it always yielded the same pruned model as 1 τ , yet we prefer
to err on the safer side. In general, the solution time decreases
significantly as T̄ decreases from 4 τ to 1.5 τ . Specifically,
on average, decreasing T̄ from 4 τ to 1.5 τ saves 51% of
the original solution time. An interesting observation is that
the solution time does not always increase as the value of T̄
increases for the two smallest instances. For example, for the
instance 25 × 400, the solution time decreases by 8.7 s when
T̄ increases from 2 τ to 4 τ . These counterintuitive results are
rare (and only occur in the smallest instances); moreover, they
can be explained by the well-known variability of the solvers’
solution times (most observable when the solution times are
small). Despite this, 1.5 τ always requires significantly less
solution time compared with 2 τ , 3 τ , and 4 τ . In sum, the
effectiveness of the suggested T̄ value of 1.5 τ in reducing the
solution time is significant for all instance sizes, especially for
large instances.

The third analysis shows the local search effectiveness.
Table V compares four alternative approaches: XiaHeur,
XiaHeur with local search, TSMF without local search, and
full TSMF (i.e., TSMF with local search).

In Table V, the results of each alternative approach are
tabulated in a pair of columns, where the maxIPDdiff and
solution time of applying that particular alternative approach
for all six instances are tabulated in the left column and
the right column, respectively. By doing a pair-wise com-
parison for all approaches in Table V, one can observe the
following.
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1) Full TSMF significantly outperforms both XiaHeur and
XiaHeur with local search in five out of six instances
except for the second smallest instance, where the max-
IPDdiff obtained by applying XiaHeur is only slightly
smaller than that obtained by full TSMF.

2) Comparing the first two pairs of columns shows that
local search improved the solution quality of XiaHeur
by 34%, and comparing the last two pairs of columns
shows that the solution quality was improved by 97%
by including local search in TSMF.

3) Even though XiaHeur and XiaHeur with local search
outperform TSMF with respect to solution time, all
solution times of TSMF are within a reasonable limit
so that TSMF can very well serve as an offline
application.

In summary, full TSMF produces significantly better solutions
than both XiaHeur and XiaHeur with local search within
a reasonable amount of time. In addition, the local search
is very effective in improving the solution quality. More
importantly, local search appears to give greater improvements
when starting from a better solution.

The remainder of this section evaluates the overall perfor-
mance of TSMF by comparing it with those of both ICP and
CPD algorithms. Since the misalignment between the two data
sets is not known and can be arbitrarily large, it is important
to check the robustness of each approach to the change of
the underlying rigid transformation between the two data sets.
For this purposes, we created 100 variants for each of the
six original instances listed in Table I. These 100 variants of
each original instance are created by applying 100 uniformly
distributed random rotation matrices and random translations
(i.e., 100 random rigid body transformations) to the HR data
set of that original instance. In this paper, we generate these
100 uniformly distributed random rotation matrices using the
random rotation matrix generation approach proposed in [53].
Note that our TSMF approach is insensitive to the change
of initial misalignment degree between the two data sets, but
practically, it is reasonable to only allow the manufactured part
rotate within the range of −90° and 90° along axes x and y
and rotate any degree along the vertical axis z (see Fig. 1).
This restriction allows us to make fair comparison between
TSMF and other alternative methods.

To reach an unbiased conclusion on the performance eval-
uation, we use three registration error metrics: maxIPDdiff,
the summation of IPD differences (sumIPDdiff), and the root-
mean-squared error (RMSE). The metric maxIPDdiff is used
because it is the metric optimized by TSMF. The metric
sumIPDdiff is reported because it is used as the objective
function of many IPD-based point set registration algorithms
(see [7], [10]). RMSE is also reported because it is a very
popular measure of alignment error between the two data sets
in point set registration problems (see [5], [24], and [25]).
Moreover, RMSE is also the objective function that ICP aims
to optimize. For each test instance, RMSE is calculated as
follows: 1) estimating the rigid body transformation between
the two data sets based on the obtained correspondences; 2)
applying the estimated transformation to one data set in order
to align the two data sets; and 3) calculating RMSE as the

TABLE VI

PERFORMANCE COMPARISON IN TERMS OF maxIPDdiff

Fig. 6. Performance in terms of maxIPDdiff.

square root of the average squared Euclidean distance of all
point correspondences.

Table VI summarizes the performance of TSMF, ICP, and
CPD on all 600 test cases (100 variants per instance size)
in terms of maxIPDdiff. Specifically, last four columns of
Table VI give the minimum maxIPDdiff, average maxIPDdiff,
standard derivation of maxIPDdiff, and maximum maxIPDdiff
for the 100 variants of each instance size, respectively. The
third column of Table VI gives the number of variants, out
of the 100, on which TSMF outperforms ICP and CPD.
Fig. 6 visualizes the comparison among the three methods via
an error bar plot with respect to maxIPDdif. Each error bar
is plotted using the minimum value and the maximum value
from Table VI.

Similar comparisons were done using RMSE and sum-
IPDdiff. Table VII and Fig. 7 give the results using RMSE.
Fig. 8 gives the results using sumIPDdiff (we do not include
a sumIPDdiff table because it does not provide additional
insights). It should be noted that the 100 variants of each
instance size in Tables VI and VII (also in Figs. 6–8) are
100 different instances of the same instance size each with
a different misalignment degree between the two data sets.
Therefore, for each instance size, the results for ICP and
CPD are not 100 different runs of ICP and CPD in the
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TABLE VII

PERFORMANCE COMPARISON IN TERMS OF RMSE

Fig. 7. Performance in terms of RMSE.

same instance. Therefore, the variance showed in the results
of ICP and CPD is due to their sensitivity to the misalignment
degree change between the two data sets.

As expected, since the optimization model formulation of
TSMF is a fully IPD-based formulation, it is insensitive to the
change of the initial misalignment between the two data sets.
In contrast, both ICP and CPD are very sensitive, thus not
robust to the change of the misalignment between the two
data sets (overall, ICP is more sensitive than CPD). From
Figs. 6 and 8, it is clear that TSMF always outperforms ICP
and CPD; specifically, for every instance size, TSMF’s solution
has lower maxIPDdiff and sumIPDdiff than the best solution
of ICP and CPD. The results with respect to RMSE are as
follows.

1) TSMF outperforms ICP in all 100 test variants of four
out of six instance sizes except for the largest and the
second smallest instances, where our TSMF performs
better than ICP for 80 out of 100 test variants and for
98 out of 100 test variants, respectively.

2) TSMF also outperforms CPD in all 100 test variants of
the five largest instances except for the smallest instance
where TSMF outperforms CPD in only 12 test variants.

Fig. 8. Performance in terms of sumIPDdiff.

The average computation time of ICP and CPD is short and in
seconds. Even though TSMF is slower than ICP and CPD, its
solution time is well acceptable for it to be practically useful in
an offline precision inspection setting—especially considering
that obtaining the HR data set can take hours. Finally, it is clear
from Figs. 6–8 that TSMF’s performance scales very well with
respect to every performance metric, while ICP’s and CPD’s
performances deteriorate as the instance size increases.

VI. CONCLUSION

This paper proposed a TSMF approach to establish the
correspondences between misaligned two-resolution metrol-
ogy data that differ by a nearly rigid body transformation.
The proposed framework has two stages: in the first stage, a
coarse alignment is obtained by using downsampled data sets,
while the second stage extends the partial set of correspon-
dences on the downsampled data sets to a complete set of
correspondences on the full data sets and refines the complete
set of correspondences to improve that coarse alignment. This
approach is a hybrid algorithm combining heuristics and exact
optimization techniques. Numerical experiments showed that
our approach can solve real-life-sized metrology alignment
problems within a reasonable amount of time. Specifically, the
execution time of TSMF is less than the time spent obtaining
the LR and HR measurements from the part surface.

Our method is able to deal with two fully-overlapping
metrology data with different resolutions and cardinalities in
arbitrary initial positions and outperforms ICP and CPD in all
600 testing cases in terms of both maximum IPD difference
and summation IPD difference metrics and almost always
produces better solution than ICP and CPD with respect to
RMSE metric for the five largest instance sizes. Unlike ICP
and CPD, our approach is insensitive to the change of the
initial misalignment between the two metrology data sets and
its performance, in terms of all performance metrics, scales
remarkably well as the instance size increases.

A promising but not trivial research direction is to paral-
lelize the TSMF approach as it will allow us to solve instances
with even larger sizes. As another promising future research
direction, we plan to derive a Bayesian-based probabilistic
model for our misaligned matching problem to account for
different sources of noises and infer the optimal set of corre-
spondences implicitly. In addition, we also plan to generalize
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Fig. 9. Illustration of uneven case on a wiggly surface.

our framework to other practical applications in the areas
of computer vision and object recognition where point set
registration techniques play a key role.

APPENDIX

This Appendix illustrates that the suggested pruning thresh-
old T̄ = 1.5τ (and especially our definition of τ—the maxi-
mum distance between an LR point and its closest neighbor
in the LR set) is also appropriate for wiggly surfaces where
the measurements may not be evenly spaced throughout the
part surface. Specifically, for wiggly surfaces, the preferred
measurement plans for both HR and LR data sets may still
maintain the measurements’ evenness locally (with higher
density measurements evenly distributed over high curvature
areas and lower density measurements evenly distributed over
not very curvy locations). Throughout this Appendix, the terms
measurements and points are used interchangeably.

Consider a hypothetical wiggly part surface shown in Fig. 9.
This surface comprises a relatively flat section with a sparse set
of evenly spaced measurements and a relatively high curvature
section with a dense set of evenly spaced measurements.
In Fig. 9, each cross represents an LR point and each circle
denotes an HR point; each HR point sits almost at the
center of its closest four surrounding LR points; h′ sits a
little bit closer to lb than to la , and h′′ is slightly closer
to lc than to ld ; and thus HR points h′ and h′′ should be
matched to the LR points lb and lc, respectively. Note that
this setup, just like the setup in Section III-B, was created
in order to have the largest possible IPD difference between
correct pairs of matchings. Hereafter, for brevity, we denote
the line segment and its length between two points, say
points A and B , by AB and |AB|, respectively. The triangle
inequality implies that |h′h′′| < |h′lb| + |lblc| + |lch′′|, which
in turn implies that |h′h′′| − |lblc| < |h′lb| + |lch′′| (that
is, the IPD difference between the two pairs of matching

points is less than |h′lb| + |lch′′|). Therefore, a safe upper
bound for the largest possible IPD difference is |h′lb|+ |lch′′|.
Now, due to the surface curvature, |h′lb| ≈ 0.707τ (where
0.707τ is half of the diagonal length of a square with side
length of τ ), and similarly, |h′′lc| ≈ 0.353τ . Finally, since
0.707τ + 0.353τ = 1.06τ , we conclude that our suggested
threshold value of T̄ = 1.5τ is a safe upper bound on the
maximum possible IPD difference.

Remark: The above discussion considers only the case
where one HR point is selected from the relatively flat
surface section and the other HR point is selected from the
relatively high curvature surface section. Two other possible
cases are: 1) both HR points are selected from the relatively
flat section or 2) both HR points are selected from the
high curvature section. For these two cases, one can follow
the derivation discussed in Section III-B to justify 1.5τ ’s
appropriateness.
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