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1 Introduction mean shifts and variance in the elementsu¢f). Diagnosing

Dimensional variation is a major problem affecting producfthure errors is equivalent to estimating the mean and variance
quality in discrete-part manufacturing. In automotive and aergpmponents an(t) based on the _sample (_’f m'easurgment. obser-
space industries, for example, dimensional problems contributeM@ions{y(t)};=, . The focus of this paper is diagnosis of fixture
roughly two-thirds of all quality-related problems during newfITorvariance componentss opposed to mean shifts.
product launch1,2]. Dimensional quality of the finished product Most approaches are based on least-squdrss estimation,
in panel assembly depends largely on the accuracy of the fixtutéh a typical procedure as follows. The following procedure has
used to hold parts. Fixture locators are used extensively in mulgieen slightly modified to accommodate a nonzero mean(for
station assembly processes, such as automotive body asserffiyoriginal presentation of this procedure, please refer to, e.g.,
and aircraft fuselage assembly, in order to provide part suppéwley and Shi[5]): (DP1) Estimate (t)=(D'D) *DT(y(t)
and dimensional reference within a given coordinate systery), where the sample mean=(=}" ,y(t))/M; (DP2) Estimate
thereby determining the dimensional accuracy of the final assef?=(1/(M—1)(n—p)) =M (1) V(t), where V(t)=y(t)-y
_ny [2,3]. Fixture Iocat_ors may fail to prow_de the deS|_red position-_ Di(t); (DP3 Estimate the variance components of &iz
ing repeatability(relative to tolerancgsduring production due to _ UM —1SM & (12— 52(D™D)-L wherei(t s th
gradual deterioration of locators and/or catastrophic events su_clg ( ) ‘=%u'( )"0y T Z'f ! w ereu,(. ) represents the
as broken locators. Considerable efforts have been made in redéhtelement ofu(t) and ©'D);;" is the (.i)th element of
years to diagnose fixture errofsometimes referred to as “fixture (D'D)~.

faults”) based on product dimensional measuremghtsiQ). In The interpretation is that we first estimate the random devia-
these works, the effects of fixture errors on dimensional measutions {U(t)};,, and then use the sample variance of their ele-
ments are represented via the linear diagnostic model ments to estimate the variance componentsioffhe quantity

&3(DTD)[il is subtracted out in order to eliminate bias due to

measurement noise. Because the deviat{dige)}}" ; are directly
estimated via LS, this estimator will be referred to as a “deviation
LS estimator.”

In order to implement procedut@®Pl) to (DP3) and produce
unique estimates, the following conditions are require@ddiD
must be of full rank, or equivalently, the columns Bfmust be
linearly independent; and)iin>p. These conditions are often
index, andM is the sample size. Elements irft) are assumed s.a.tisfied for simple single-station assembly processes when a suf-
independent random variables because fixture locators are A&€Nt number of sensors are used to measure all degrees of free-
sumed physically independent. It is normally assumed that t4@m of each workpiece. System singularify’ singulaj is of-
sensor system is such that the elements of the noise vector & encountered in complex multi-station assembly processes,

independent and have equal variam:é Thus. the covariance Nowever, where sensors can only be placed at a downstream sta-
matrix of (1) is aﬁl. The matrixD can be determined from thetlon but variation sources are contributed from upstream stations.

relative positions of fixture locators and sensors using standasr" grlgiﬂgrlessgzorrfg&?%? Ir? ?g_ngggan;gggnazfl%mclz)l%plrg %?_SS:S'
kinematics analyselgt—9]. Fixture errors manifest themselves a . . 91a y ompiant-p
deformation[11]. Section 2 provides an example of singularity in
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y(t)=Du(t)+v(t), t=1,...M, (2)

wherey(t) is the vector ofn measured product featurasg(t) is
the vector ofp error sourcesy(t) is the additive noise vectde.g.,
sensor noisg D=[d;,d, ... ,dp] is annXp diagnostic matrix
linking fixture errors to measurementss the observation number
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developed to accommodate singularity and ill-conditioning in pdocks to determine the part/subassembly location and orientation.
rameter estimatior15,16]. The basic idea behind these apA typical 3-2-1(i.e., n=3) fixture is shown in Fig. 1. The two
proaches is to transform the columnsfinto a smaller set of locating pins,P 4,y and P,y,y, constrain the three degrees of
linearly independent basis vectors that span the column spacdreedom of a part in th&-Z plane, where the 4-way pin restricts
D, and then use LS on the reduced-dimenaionality problem. Apart motion in both theX- and Z-directions, and the 2-way pin
though these are appropriate for many parameter estimation prodstricts part motion in th&-direction. The three NC blocks,
lems, they may lead to erroneous conclusions in fixture diagnod&C; , i =1, 2, 3, constrain the remaining degrees of freedom of
The reason is that because the column®adind the associated the workpiece in thér-direction. When a workpiece is non-rigid,
variance components represent actual physical phenomena, amye than three NC blocks may be needed in order to reduce part
reduction in dimensionality and transformation of the columns afeformation. For simplicity, this section illustrates with a 2D ex-
D will void its physical meaning. Rong et aJ11] proposed a ample in theX-Z plane(in which the part is rigigl More general
partial solution to this problem that they termed adjusted leastodeling examples that result in the same linear model structure
squares. They partitioned=[D;|D,], whereD; consists of the of Eq. (1) can be found in the aforementioned literat{t&—22.
columns ofD that are linearly independent of all other columns. In a multi-station process, 3-2-1 fixtures are repeatedly used at
In other words, for any linear combination;d;+ a,d,+ ... every station to support parts/subassemblies. To illustrate, we re-
+ a,d, that equals zero, the coefficients associated with the cdér to the following example throughout the paper. Figure 2 shows
umns ofD; must be zero. Assuming the set of linearly indepera two-station process, which is a segment of the simplified auto-
dent columns is nonempty, their method will provide a uniquemotive body assembly process frdm0]. Three workpieces are
estimate of the subset of variance components associated withwedded together at Station I. The first workpiece consists of two
columns ofD; . As in standard least squares, the estimates of tkemponents and is a subassembly from the preceding assembly
other variance componentassociated with the columns &f,) operation. After the welding operation is finished, the whole as-
are nonunique. sembly is transferred to a dedicated measurement stéSiation

This paper presents an approach that can provide unique eBbi-for inspection. This simple two-station segment involves all
mates of all variance components in situations that satisfy certaiacessary assembly process operations, including positioning,
diagnosability conditions, even I'D is singular. We demon- joining, transferring, and inspection. A full-scale assembly process
strate that the deviation LS estimator ignores important informaéll simply repeat these operations when fabricating complex
tion that can be utilized for this purpose and derive a diagnosakiiFoducts.
ity condition for the new estimator that is more relaxed than the In this process, each part or subassentbonsisting of several
diagnosability condition for the deviation LS estimator. The relgparts is restrained by a 3-2-1 fixture. Locators being used are
tionships between the various estimators are thoroughly discuss@érkedP;—Pg in Fig. 2 (note thatP; andPg are used to position

The format of the remainder of the paper is as follows. Sectidhe whole subassembly in Station.INC blocks are not shown
2 reviews the modeling procedure for fixture error propagaticsince we are considering a 2D assembly process. The deviations
and explains the cause of singularity in multi-station models. Seef a 4-way locator in two directions or the deviation of a 2-way
tion 3 introduces a new variance estimator and two modificatioficator in theZ-direction could cause part deviation. They consti-
that improve performance. Section 3 also derives the diagnosaliite 12 potential fixture errors, numbered 1-9 on Station | and
ity condition for the new estimator. Section 4 presents sever#)—12 on Station Il, with arrows indicating their deviation direc-
examples of multi-station assembly processes correspondiigns.
to the situations discussed in Section 3. Section 5 concludes thén such a 2D multi-station process, each part has three degrees
paper. of freedom. We use; , to denote the deviation state of parat

stationk,

2 A Variation Model and Singularity in Multi-Station

Processes Xik=[Xix 6Zix Saj\]", 2
Previous work has developed a fixture-error propagation model

for general multi-station discrete-part manufacturing systems sugfere 5is the perturbation operator ands the orientation angle.

as rigid-part assembly procesddy—19, compliant-part assem- 1,5 the state of the product, which consists1pin,=4 in this

bly processeﬁzo]z and machining processézl,zz. In this sec- process parts, is represented by
tion, we use a simplified two-station panel assembly process to

illustrate the modeling procedure, and explain the cause of system
singularity. Details on the modeling procedure can be found in Jin x=[X1x - Xn Wl (3)
and Shi[17] and Ding et al[18]. ' P
Fixtures in multi-station panel assembly processes generally
use ann-2-1 layout, consisting of two locating pins amdNC  wherex; ,=0 if parti has not yet appeared at statikin

P2 way
%0;2( (4] 8P2—way(z) R~
Piuny T.

8P 4'way(z)

SPsway(X) <$., ft—way lqcatoAr, positioning variability
in two directions

2-way locator, positioning variability
8P2-vay(Z) ¢) in one direction

(b

Fig. 1 [llustration of a 3-2-1 fixture
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Fig. 2 A two-station assembly process  (units in mm )

Random fixture errors on statidmare represented hy, . Thus, where the notation corresponds to that in E4). Note that the
we haveu;=[8p; -+ 8pg]", and u,=[p1op11 OP1o]', Where subscript represents the station index and the observation tndex
op; is the deviation associated with fixture erjor is not explicitly included. Matriced\,, By, and C, are deter-
Nine coordinate sensors, denoted imy throughmg in Fig. mined by process design and sensor deploymentGyse0 if no
2(b), are installed in Station Il. Each coordinate sensor measuiggnsor is installed at statidn(e.g.,C;=0 in the above example
the position of a part featurée.g. a corner or holein two or- The first equation if5) is called thestate transition equatioand
thogonal directiongX and Z), so that the total number of mea-Ay_; is accordingly called thestate transition matrixoecause
surements is1=18. We usey to represent the positional devia-Ay_; links x, to x,_, the states of an assembly over two stations.
tions detected by sensors at product features. In the above procesk) order to express the state space variation model in the same
since sensors are only available at Station Il, we hawe0 and format as Eq.(1), we reformulate Eq(5) into an input-output
yo=[6my(X) my(Z) -+ Smg(X) 6mg(Z)]7, wheresm;(X or Z)  linear model by eliminating all intermediate state variablgs
is the deviation detected at product featjihe the X(or Z) direc- Assume thak,=0 and sensors are placed at StathbnWe have
tion.

N N
For the two-station assembly process shown in Fig. 2, the state- _
space representatiqri0] of the fixture error propagation model yN*k; Cnr Bt kZl CNPr Wi iy )
becomes ]
where®y (=Ay_; A for N>k and®, ,=1. Further defind’
X1=AgXo+ By +wy andW¥ as
Xo= AgXg+ Balp+ Wy 4 I'=[C\y®y:B; C\®\,B, -~ C\By] and
Y2=CoXp Vv, W=[C\®y; CyPn. - Cyl (7)

wherex, represents the part deviations resulting from the stam
ing process prior to the assembly proceAsx, represents the
transformation of the product dimensional deviation from Station y=Du+v, (8)

| to Station Il, B.u, represents the product deviations resulting . - T T )

from process variations at statitr(k= 1,2), C, characterizes the Whereu'=[uy --- uyw; --- wy], D=[I" ¥], and the subscrip
information regarding sensor locations at Station Il, andk (& station indexis dropped fromy andv without causing any
=1,2) represents the higher order terms and other un-modeRfbiguity. When the higher order terms and process background
process errors. Detailed expressions for Ay, andC matrices noise represented by, are negligible, i.e.u™=[uj --- uy], Eq.

in the above equation can be found[it0] and will not be re- (8) further simplifies to

peated here. The numerical expression&gr which is needed in

subsequent analyses, is provided in Appendix Al. y=Tu+v. ©)

error propagation model, the state space representation is cefByeloped for Eq(9) can be easily extended to the model in Eq.
monly adopted to model full-scale assembly and machining prgs) pecause they share the same model structure.

cesses. Given a generfslistation system as shown in Fig. 3, the |n our example of the two-station assembly process, the mea-
state space variation model takes the form surement statioriStation 1) is in a well-controlled environment,

Phis input-output relationship is of the same form as &g,

x.=A, X, 1+Bu+w, and and we only consider variation sources associated with locators in
R Station 1 (i.e., fixture errors 1-9 Thus,u,=0, and Eq.(4) be-
Vim CiXet Vv, k=1,... N (5) comes
v & yvlh
B<_Vk B<_VN

Xo

X p| Station1 [X_p .. %z gl Station k-1 [2ip| Stationk |[Z—p ... Xy | Station N

w1l wl walul W] ol wl

Fig. 3 Diagram of a multi-station discrete-part manufacturing process
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Fig. 4 Multiple possibilities of fixture errors due to re-orientation

wherep is the number of fixture errors included in the model.
+V2=CoA1Biui vy, (10)  Definea?=[o?- o2 0?]" as the vector of variance components

. . . ) to be estimated.
where the diagnostic matri=1'=C,A;B;. The numerical ex-  Equation(11) can be written as

pression fod” for this two-station assembly process is provided in
Appendix Al. It can be verified that the columnslofre linearly P o
dependent{T is singulay so that the deviation LS estimator is Ey:Z (vvi)oitoyl (12)
not applicable. t

The singularity problem is quite common in multi-station syswherey; is theith column vector of". In practice, the population
tems, especially when we include a comprehensive set of fixturevarianceX, is estimated by the sample covariance matrix
errors in the model, and may be unavoidable regardless of how
many sensors are used. The simple example in Fig. 4 illustrates
the reasons why. Suppose the assembly deviation shown in Fig.
4(a) is observed at measurement Statioh1. Any of the Station
k fixture error scenarios illustrated in Figs(b% 4(c), and 4d) where E denotes the estimation error matrix. If we defivle

u
Y2=[C,A;1B; Csz][u;

M
1 — _
%:_M—lzl (YO =YY —y) =3, +E, (13)

could have resulted in the assembly deviation in Fig).4Recall =¥ fori=1,...p, V,.1=I, ando}, =07, Egs.(12) and
that the assembly deviation observed at measurement Statid® become
k+1 is related to the fixture errors incurred at the previous station p+1

via the modely, , ;= Cy. 1A Bu=T'\uy if the measurement sta-
tion is free of fixture errors. The preceding observation that any of
the three fixture error scenarios could have resulted in the same ) o )
observed assemb|y deviation means that’ gm’ there is no In I|ght of thlS, One}\ approach for estlmat|ng the variance compo-
unique solution for, . Mathematically, this means that the col-nents is to choos&” (the “[T" symbol denotes an estimatéo
umns of ', are linearly dependent, so thﬁil"k is singular. Be- Minimize the sum. of the squares of the elements of the error
cause these conclusions clearly hold regardiess of how many se@ttrix S,—=P*!V;a7. For square matrice& andB of compat-
sors we add at the measurement Statanl, the only way to ible dimension, define the matrix inner prodyét,B)=tr(ATB)
avoid a nonsingular system in this case is to add sensors to el the associated matrix norA||?=(A,A), which is exactly
assembly Statiofk. If this is not possible, then the deviation LSsum of the squares of the elementsfaf Using standard results
estimator cannot be applied. for least squares estimation in inner-product sp§28§ the esti-
This singularity problem in multi-station assembly processemates in this case must satisfy the so-called normal equations
was also illustrated in the examples presented by Carlson et al. ~
[8]. With the fixture errors that are included in the error propaga- Ho*=b, (15)
tion models developed ifil7,18,20—22 the diagnostic matrices where the notation is as follow#I is the Gram matrix, defined
(I'y's) are all less than full rank. so that theith-row, jth-column element igV;,V;) for 1<i,
j<p+1. The (p+1)-length column vectdb is defined so that its
ith element is(V;,S,). For the particular inner product defined

sy=zl V02 +E. (14)

3 Variation Diagnosis above, it can be verified that
3.1 Varianc_e LS_ Estimator. _Sectiqn 2 presTented an ex- (7171)2 (?’IYp)Z 7’171
ample for multi-station assembly in whick, andI''T" are both . .
singular. Thus, the deviation LS estimator outlined (DP1)— = : : and
(DP3 cannot be applied. This section develops an alternative ap- M%? - (B %%
proach that circumvents this problem. Taking the covariance ma- T T
trix for both sides of Eq(9) gives nno o h%h n
3,=T3,I+02, (11) SN
where %, is the covariance matrix of a random vector. Since b= T: (16)
fixture errors associated with different fixture locators are as- Yoy Y
sumed physically independeX, = diago5 05+~ o} is diagonal, tr(Sy)
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Fig. 5 A three-panel two-station assembly process

When II is nonsingular, or equivalently when the matrices An explanation for diagnosability of variance vecief using
71717 cen ,ypyg, andl are linearly independen&=I1"'b is a the variance LS estimator is apparent from the covariance matrix
unique solution to Eq(15). We refer to this approach as the “vari-

ance LS estimator.”

0'§+ a'g-i- 0'5 0 0'%
3.2 Diagnosability of Deviation LS Estimator and Vari- s = 0 o’ 0 (20)
! ; - i, ! y v
ance LS Estimator. The diagnosability condition required for a 2 0 2 o o
variance LS estimator is different from that required for a devia- a2 o3t oyt

tion LS estimator. For the variance LS estimator, the malkfix
must be of full rank in order for Eq.15) to yield a unique solu-
tion. For the deviation LS estimator, the matliXI" must be of for this single degree of freedom assembly. The diagonal elements
full rank and alson>p in order to yield a unique solution. To in %, only provide information regarding the summation of the
more clearly illustrate the difference, consider the simplified efixture error variance componenig + o3 ando3+ o3, as well as
ample shown in Fig. 5, in which each part has only one degreetbg noise variance?. The non-zero off-diagonal element, which
freedom and can only translateo rotation in the Z-direction. is the covariance betweefim,(z) and dms(z), provides extra
Three locators are used to position the three panels at Statiofhformation. In Station I1,6m,(z) = 8p, — 8p, and my(z) = 6p;
and their instantaneous position errors are denoteduas —5p,, so that cov6m1(z),5m3(z))=var(5p2)=ag (recall that
=[5p; 5p, 6ps]". After the joining operation are finished, thesp, and dp, are assumed independgrihis extra piece of infor-
three parts become one subassembly and it is transferred to $#tion is utilized by the variance LS estimator so that variance
tion Il for measurement. The state vectors amg components are diagnosable. The discussion so far did not include
=[62Z1y 6Zyx 8Z3x]" (k=1,2) and the measurement vectors arghe fixture errom, in Station II. A straightforward extension that
y1=0 andy,=[m,(Z) dm,(Z) smy(Z)]". At Station Il, the lo- includesu, would result in the same conclusion.
cating hole on part 2 is used to position the whole assembly. TheAnother way of viewing the difference between these two esti-
locator on Station Il is assumed to be free of positioning errormators is the following: a variance LS estimator first calculates
(i.e.,u,=0). covariance matrices af andy, and then applies the LS criterion
When this three-panel assembly is transferred to Station Il,dh the sample covariance matrices, whereas a deviation LS esti-
undergoes a translation by the amoun®Z,,, which can be mator first calculates the LS estimates for the individual error
represented as vectors{U(t)}11;, and then calculated the varianceswfrom
{a(t)}M, . Because estimatingi(t)}", requires more informa-
0 -1 0 1 -1 0 tion than simply estimating its covariance matrix, it is not surpris-
_ _ _ _ ing that the deviation LS estimator requires a stronger diagnos-
Xp=X,+| O 1 0py=10 0 0Opx=Ax,. (17) ability condition than the variance LS estimator. This is stated in
0 -1 0 0 -1 1 the following theorem, the proof of which is included in Appendix
A2.
Becausey,=X,+V at Station Il, the state space model becomes Theorem 1 If I''T is of full rank andn>p, thenII is of full
X1=Uq, Xo=A;X; andy,=X,+ V. The linear diagnostic model for rank.

this two-station process becomes The significance of Theorem 1 is that a unique variance LS
estimator exists whenever a unique deviation LS exists. The con-
Yo=AjU;+V. (18) Vverse, however, is not necessarily true. As illustrated in the pre-

ceding example, there are situations where the variance LS esti-

Relating this to the model in Eq1), we haveD=T=A,, where mator is unique but the deviation LS estimator is not.

A, shown above is clearly singular. However,

3.3 Effect of System Structure Modeled byl" on Variance

Estimation. The performance of the deviation LS estimator will
(19) deteriorate for “ill-conditioned” systems, even IF'T is not ex-

actly singular. The most common criterfd4] used to quantify

how ill-conditioned a system is include tI{{I") 1), cond@'T),

and det(TT) ), where cond) and det-) are the condition
is of full rank. Consequently, the variance vectet can be diag- number and the determinant of a matrix, respectively. These three
nosed using the variance LS estimator in Etp), but not using measures are related to each other through the eigenvalues of
the deviation LS estimator. I''T’, which we denotg\;}P_; . The relationship is

1
4
1
2

R O kP P
N =)
W Rk, N R

204 / Vol. 126, FEBRUARY 2004 Transactions of the ASME



45 tr(I''T) 1) is small (e.g., less than 20We may conclude that

the deviation LS estimator can outperform a variance LS estima-
tor for a well-conditioned system. For an ill-conditioned system,

however, the variance LS estimator will perform substantially bet-
ter. In the following subsection, we present a modified version of
the variance LS estimator that performs uniformly better than the
deviation LS estimator.

Although the performances of these two estimators will gener-
ally differ, the estimators are actually equivalent in the special
case that all columns oF are orthogonal, i.e., whemTyj:O,
Vi#j. This obviously requires thd'T" is of full rank. This is
stated as Theorem 2, the proof of which is included in Appendix
A3.

“"a""*‘hmmm“r Theorem 2 If n>p, and % y,=0, Vi#], the variance LS
estimator in Eq.(15) is the same as the deviation LS estimator
described inDP1)—(DP3).

deviation LS estimator

MSE

3 0 15 20 25 iilil a 35 40 45 S0 55
') 3.4 Modified Procedures to Enhance the Performance of
the Variance LS Estimator. One observation in the previous
Fig. 6 MSEvstr (I''T)™") section was that the variance LS estimator may perform worse
than the deviation LS estimator for a well-conditioned system.
This motivates the following algorithm for improving the perfor-
mance of the variance LS estimator. A more general version of the
algorithm was originally proposed by Anders¢®5| as an ap-
proximate maximum likelihood method. For the present case, the
0 expressions required in Step 2 of the algorithm simplify consider-
- 1 ably to those shown below. The algorithm iterates over the fol-
de((I''T")~ H N and lowing two steps until convergence.
Am

p
tr((I'T) 1) E

>’|H

Modified Procedure 1 (MP1)
1) Based on the estimai#’ at the previous iteration, calculate
(21)  the following estimate of the covariance matfsee Eq(12)]

condI''T") = =
)\min

The larger these measures are, the more ill-conditioned the system p

is. SincefTF is non-negati\(e d.efinite, all eigenvalues must be Z Yy )U +U I

non-negative. The system is singular when these measures are i=1

infinite, or equivalently, when one or more eigenvalues are exactly

zero. Throughout the remainder of the paper, we us&ti(} 1) 2) Solve the equatiodl* 6?>=b* for the new estimat&? at the

as the measure of how ill-conditioned a system is. current iteration, where
The following simulations were used to investigate the extent to

which both estimators are affected as the system changes from 2 2 2 T$-2
being well-conditioned to being ill-conditioned. The following pa- (rix,n)* (7 'yp) Ny N
rameters were usech=6, p=3, M=50, 05=0.25, {7}, = : and
=[1,4.9, and (72, 7p)2 IR C 70 FRr S LR et 7A

1 1 00 0 O P2D N VIR VIO ol VR 110 S

"= -1 -1 a a -1 -1}, (22)

0o 0 00 1 1 72, 'SE Ty

wherea was varied from 1 to 0.1 so that the value of {{’) %) b* T3 -1g 31
; . . ) o2y S22y %

changes accordingly. For eaegha Monte Carlo simulation with tr(i_z )
K=5,000 replicates was conducted for each estimator. The per- v Sy

formance measure is the mean square efMBE) of the esti- At the initial iteration, we can use the estimak from the vari-
mates ance LS algorithm of Eq15). Convergence usually occurs after
only one or two iterations. In all of the subsequent simulations,
p+1 only a single iteration was used.
MSE= —— (R 2 ((}jz’k* ajz)z] , (23) The MP1 algorithm bears a strong resemblance to the variance
k=1

p+1j LS algorithm of Eq.(15). Suppose we transform E(L4) by pre-

12

and post-multiplying both sides bX(y , Which gives

whereg?, is the estimate o’ for the kth replicate.
Figure 6 shows the MSEs of two estimators vs. the values of
tr((I'T) ") asa s varied. From this, the following observations -« - R - - A
can be madeta) The performance of the deviation LS estimator 3, 25,3, 2= >} 3 VA3 12524 3 V7S, 12,
deteriorates rapidlthe MSE increasess tr((I"'TI") ~1) increases. =1
In contrast, the MSE of the variance LS estimator is largely inde- .
pendent of tr([''T") 1). Clearly, the variance LS estimator is les tis straightforward to verify thalll” is the Grall;n matr1|/>2< of
sensitive to linear dependencies in system structyeAlthough INner products for the transformed matricgx, 23
the variance LS estimator performs better for ill-conditioned sys=1.2, . . . p+ 1} and that the elements of are the inner prod-
tems, the deviation LS estimator has a smaller MSE value wheots (3, MSyE 12 3 Y25 12 for the transformed matrices.

p+1
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Fig. 7 The performance comparison of variance estimators

At each iteration, the MP1 algorithm is therefore the least squaregM3) Solve the following set of linear equations for 0 and 1.
solution that minimizes the norm of the transformed error matrix . . .

3 Vg3 Mo sprIy VA3 Y2G5E. The  transformation by 0 =0t (- vy TRy w2y ) S),

%, "% can be viewed as weighted least squdi28], since the i1
elements of%, "EX " are uncorrelated with equal variance.

Note that the elements of the untransformed error mairiare &5‘j+1:a—§'j'(tr(zijl))il'tr(z)zjl'2;];'55/)- (24)
neither uncorrelated nor have equal variance.

The MP1 algorithm can substantially improve the performance The {52 }P_, and &5,- in MP2 will remain positive as long as

. . : i Biti=1
over the variance LS estimator, especially for a well-conditionggle injtial values ofe2 are chosen positive. The usual choice is to

.p, and

system. In fact, Andersof25] has shown that the MP1 estimatoret 52 —52 —1 for =1 The solution
is asymptotically efficient. The improvement is illustrated vi%A2 0‘402 (fuz,o T ) ; e
simulation using the samé as in Section 3.8except that we now Lo%2" " 9520, 2] IS the final estimate. The results for the MP2

use a larger sample size M =100). The simulation results are €stimator in the situation described in the preceding simulation

shown in Fig. 7a), which shows that the MP1 estimator has uni¥ere also included in Fi.g. 7. For the relatively small sample size
formly smaller MSE values than the other estimators. of M=25, the MP2 estimator outperforms the other estimators.

. . . . . . For the more typical sample size bf=100, however, the MP1
fulllfégﬂl(si?gsr:gvgn?if:?'ﬁe izt ;aualllc ?aﬁlfp'l?k]:ljze ;Lgaémi\tlivg:lts)ie- estimator performs better than the MP2 estimator. The reason is
quired for the MP1 algorithm to produce a unique estimate amadt EE? '\SPZ Zstlmatotr;(_)rces a bias in ordler to m_aReposmve,l
identical to the conditions required by the variance LS algorith nd this bias does not disappéar as sampié SIz€ INCreases. In con-
. ~ . . . . ] . _trast, the MP1 estimator is unbiased and consistent, meaning that
provided tha, remains positive definite at each iteration. This i%s variance approaches zero as sample size increases. Conse-

not guaranteed, however, because elements“omay take on .quently, the MP2 estimator is only recommended if sample size is
negative values. This is more likely to occur when the sample siggyy small.

is relatively small and the true variance components are close to

zero. The negativity of estimates is a problem in almost all of the

variance estimation algorithnithe deviation LS estimator cannot

avoid negative estimates, eitheThe most popular approach to4 Examples

enforce non-negativity is to replace the negative elemen&’in |, this section, the estimators are applied to fixture error diag-
with zeros. As long as2>0, X, is then guaranteed to be positivenosis in various automotive body assembly problems. Monte
definite. If o2 becomes negative and is replaced by 0, the pseudarlo simulations with 5,000 replicates were conducted in a MAT-
inverse ofﬁy can be used in step 2. LAB environment, and fixture errors were assumed to follow a
Rao and Kleffe developed a different variance estimation apormal distribution in all cases. For detailed descriptions of the
proach[[27], Eq. 9.1.§ that avoids negative estimates. Their itProcesses, the reader is referred to the various references cited
erative algorithm will give positive variance component estimate§€l0w. For convenience, the diagnostic matfbis provided be-
provided that the initial estimates are positive. This procedure I for each situation.
less intuitive and its development is rather mathematically in-
volved. Consequently, we simply present the final form of the
algorithm for practical use. Note that the form of the algorithm in
Rao and Kleffe’s Eqg. 9.1.8 is much more complex than the alg
rithm below. The reason is that for the particular model in @g.
the expressions simplify considerably to those shown below.
Modified Procedure 2 (MP2)

4.1 Assembly System With an Orthogonal Diagnostic
latrix. The automotive assembly process was described in
considerable detail in Apley and SHb]. In Section 5 of their
paper, they apply the deviation LS estimator to diagnosing errors
in fixtures that locate the side frames of a car body. They assumed
A - ~p A . . the linear structured model of EY) to represent the effects of
(M1) Select an initialog =[5+ 07 077 o] " with all positive i1 re errors on dimensional measurements. There were 14 mea-
values. . . . . surements rf=14) and two potential fixture errorp&2). The

(M2) Calculate X, ,=T-%,oTT+07,1, where 2, matrix I' (which is theC matrix in their paperwas through ki-
=diag(o% o - 0po- nematics analysis determined to be
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. 354 354 354 354 354 354 354 354 O 0O 0 O 0 JO

|.057 —.026 0 —.004 .046 —.087 —.024 .043 .187 .361 0O .535 .495 36 (25)

ThisI" matrix is of full column rank aneh>p, suggesting that the variance LS estimator and the deviation LS estimator can both be
applied. We also have t{(T") ~1)=1.99, indicating that the system is well-conditioned.

For this side-frame assembly system, both deviation LS estimator and variance LS estimator are used to estimate the variance
components associated with fixture errors. Five different sample sizes wereMisesl 10,25,50,100) in the simulation. From the MSE
values shown in Fig. 8, it can be seen that the two estimators have almost identical performance in this example. The reason is that the
two columns ofl” are almost orthogonah{ y,=0.018, ¥} y,=1.0025, andy} y,=0.9999). This agrees with Theorem 2, which states
that the two estimators are equivalent with the column¥ afre orthogonal.

4.2 Assembly System With a Non-Orthogonal Diagnostic Matrix. Many engineering systems do not result in an orthogéhal
matrix, in which case the performance of the deviation LS and variance LS estimators will differ. For examplen#igx used in
Section 4 of Apley and SHb] is

093 0 —-.093 .093 0 .647 —.370 0 .647
r''=| 577 0 0 577 0 0 577 0 0 (26)

—.120 0 .843 —-.120 0 —.120 482 0 -.120

the columns of which are not orthogonal. In this case;9, p  carried out using a sample size lgf=100. The variance LS es-

=3, and tr(C'T) 1)=3.5, implying the system is relatively timator of Eq.(15) and the MP1 and MP2 estimators were com-

well-conditioned. pared in this example, and the results are shown in Table 2. In this
Monte Carlo simulations were again conducted, but this timgample, the variance LS estimator and MP1 estimator perform

with a samﬁle size oM =15. A comparison hOf the deviation LS omparably, although the latter has slightly smaller MSE and dis-
estimator, the variance LS estimator, and the MP2 estirdter persion. This is consistent with the results shown in Fig) as

to th I le sizes sh in Table 1. Th ti )

N p+1e SmAaz sampe §|Ze|s shown n-1able e quantity tr((I''T") ~1) increases. The MP2 procedure has the smallest MSE
(EPZjvar(a))/(p+1) in the third row represents the average d di . the th But it also h it ticeabl
sample variance of the estimators for comparison with the MS nad dispersion among the three. but it also has quite noticeable

We found that the estimator from MP2 demonstrates slightly mof&s- ) )

bias than the other two, but has smaller dispersion. Based on thé\Ithough the MP2 estimator outperformed the MP1 estimator
MSE criterion, the MP2 estimator performed the best, followed b this example, our experience indicates this is more an exception
the deviation LS estimator. than the norm. For example, in Fig(&y, the MP1 has a smaller
MSE value. As another example, suppose we modify the two-
station assembly example considered in the preceding paragraph

4.3 Assembly System With a Singular Diagnostic Matrix 2 that we are now only interested in diagnosing Zhgirection

We next apply the variance estimators to the two-station examQ : Thel" trix in thi i th R
introduced in Section 2.2. THe matrix for this model is given in Ixture errors. 1hel - matrix in this case IS the same as the
Appendix Al. Because the system is singular with Ei{(I) ~2) matrix given in Appg_ndlx A1, except that we remove column 1, 4,
=, the deviation LS estimator cannot be used here. It can gad 7. It can be verified that that the n&wnatrix is also less than
verified thatll is full rank, so that the variance LS estimator andull rank. Repeating the above simulations but with the riéw
its modified versions are applicable. matrix, the MSEs for the MP1 and MP2 estimators are 1.197 and
As discussed in Section 2, we only consider fixture errors a-215. Thus, the MP1 estimator is slightly more effective than the
sociated with Station |I. Henge=9 andn=18. Simulations were MP2 estimator in this case.

4 1
35 *\ —— deviation L5 estimator |
3 \\\ —dp— variation LS estimator |
25 \“\ | Table 1 Comparison of three estimators for the linear system
i . with T as in Eq. (26)
2 =z & |
\\ Deviation LS Variance LS MP2
1.5 \\ [ estimator estimator
1 \‘ | 32 [1.0347 4.0276 [1.0015 4.0419 [1.0050 3.4421
3.9965 0.9861  3.9925 0.985#  3.3303 1.0358
0.5 ~—— |
" : : : —® | svaed 1.96 2.10 1.36
5 10 25 50 100 p+1
Sample Size M MSE 1.96 2.10 1.55

The “true” value of ¢ used in the simulation igL,4,4,1.

Fig. 8 MSE for the linear system with  I" as in Eq. (25)
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Table 2 Comparison of three estimators for the linear system with I' a singular

Variance LS estimator MP1 MP2
? [0.99814 4.6732 1.6707 [0.98779 3.9031 1.7135 [1.1576 3.7646 1.9437
3.2344 7.0257 8.988 0.99209 3.2671 7.0207 9.03 2.6107 6.1577 8.0317
3.9858 5.2822 1.002 0.99719 4.0153 5.149 1.0109 3.444 5.3732
1.0001 1.036
p+ &2
v a?) 2.731 2.540 0.590
p+1
MSE 2.777 2.543 0.844

The “true” values of o2 used in the simulation igL.00 4.00 1.69 3.24 7.02 9.00 1.00 4.00 5.29 1.00

5 Concluding Remarks sistent deviation from nomindi.e., a mean shiftcan often be
Singularity is a common problem in engineering systems, ﬁ,pmpensated quite easily by process engineers via shimming and

which case the traditional least-squares estimation method canfitie" adjustments. In contrast, variation is much more difficult to
be applied effectively. This paper presents a new diagnosabilimpensate and requires either some form of on-line feedback
condition and a variance LS estimator that takes into account té@ntrol or the removal of the variation root cause. The methods
covariance between error terms and results in diagnosability feiesented in this paper are intended to be a tool to aid in detecting,
systems that are not diagnosable using traditional LS methodfentifying, and, ultimately, eliminating root causes of random
Two modified versions of the algorithm were also presented tariation.
improve the performance of the variance LS estimator. The examples in this study have been exclusively for fixture
We note that the presented methods typically require a rand@tor diagnosis in multi-station assembly processes. However,
sample of 25-50 units. For a dynamic process with tool wear, thg of the results and conclusions should also hold for other types
process data are inherently autocorrelated. However, since 25-0q0r sources and multi-station manufacturing processes,
units typically translates to production periods of one hour %rovided that the linear structured model adequately represents

less, the sampling period will generally be too small to obser
any noticeable tool wear effects. Consequently, the methooFI?se effects of the error sources on the process and product

should still be applicable to diagnosing other types of fixturdieasurements.
errors in processes that also experience relatively slow tool

wear dynamics(although other methods would be required to

diagnose the tool wear itse¢lfFor processes with faster tool wear

dynamics, recursive estimation methods would need to chnowledgment

developed. ) ]
We also point out that the methods are for variance componentThis research was partially supported by the NSF grants DMI-

estimation, as opposed to mean component estimation. Our expél7481 and DMI-0093580. The authors also gratefully acknowl-
rience has been that the autobody industry views fixture erredge the valuable comments and suggestions from the associate
variance as more problematic than mean shifts. A sustained, cexitor and referees.

Appendices

Al Expression of Matrices for Example in Section 2.

"o 0 000 0O0O 0O O 0 0
0 0 0 000O0O0T OO 0 0
0O 00005 1 1 0 0 0 0 O O —0.0005 —0.2392
-1 0 00100000 0 0
0 -05550 0 0 0 1 0 0 O O —0.4450 —222.49
0O 00005 0 0 0 0 1 0 0 O —0.0005 —0.2392
A=l L1 021530 0 0 0 0 1 0 0 02153 107.655
0 -023920 0 0 0 0 0 1 0 —0.7608 —380.38
0O 00005 0 0 00 0 0 0 0 —00005 —0.2392
~1 0 0 0000 O0 O 1 -00005 0
0 -02392 0 0 0 0 0 0 0 O 02392 -—380.38
L0 00005 0 00 00 0 O 0 —00005 07608, ,
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0 0.1215 -—0.3846 O 0 0 0 0
0 0.0221 —-0.0699 O 0 0 0 0 0.0478
0 0.1215 -—-0.3846 O 0 0 0 0 0.2632
0 -—0.1877 05944 0 0 0 0 0 —0.4067
0 -—0.0773 0.2448 0 0 0 0 0 -0.1675
0 -03379 10699 O 0 0 0 0 -0.7321
0 0.1656 —0.5245 O 0 0 0 0 0.3589
0 -03379 10699 O 0 0 0 0 -0.7321
0 0 0 0 0 0 0 0 0
= 0 -—0.2054 0.6503 O 0 0 0 0 —0.445
-1 -0311 0 1 04 -04 O 0 0.311
0 0.0574 0 0 —024 124 O 0 —1.0574
-1 -—0.2153 0 1 0 0 0 0 0.2153
0 —0.2392 0 0 1 0 0 0 —0.7608
-1 —0.0957 0 0 0 0 1 04 -0.3043
0 0.0574 0 0 0 0 0 —0.24 0.1826
-1 0 0 0 0 0 1 0 0
y 0 —0.2392 0 0 0 0 0 1 -0.7608 18x9
I
A2 Proof of Theorem 1. Supposd T is of full rank and p
n>p, but thatll is singular. Becausél is the Gram matrix of (n—p)&f:tr(sy E T r(yiyiTSy)
(M7 vYar - s Yo¥y\}, its  singularity implies that 1Y
i e e ot et (z Lol
Nnya+v,ysa+ l Jrzypy;app: —p|+alpjr1- In order for this to S tr[ =1 vy i ~S),]. @)

hold, we must haver,, ;=0. Otherwise rank(sl)=n, whereas

.
the summation of matrices on the left hand side can have at mbtice thatI'T' is a dlagonal matrix withy ¥ as its (,i)th

element an&f_ 1w|y,y, =I'Or", whereQ=diagw, - -- w,} and

rank p<n. It follows that ylyla1+ 7272a2 . +ypy a, i ;

=0, and at least one of the’s (say ;) is nonzero. Post- @i» I=1,....p, is an arbitrary real number. Then, we have
multlplylng the precedlng equation by, gives vi(y] 1) Py

+72(y2y,a2)+ +yp(ypy, p)=0. Because at least one of E _%7’. =T IT=I1". (a4)
the coefficients ﬁfl y«;) IS nonzero, this implies that the vectors = 7’. Yi

{7.7, ... %} are linearly dependent. Their Gram matfXT
must therefore be singular, which contradicts the condition that

I''T is full rank. o R 1
o ol=——tr((1-TT")S)). (@5)
A3 Proof of Theorem 2. Utilizing the fact that the columns (n—p)
in I' are orthogonal to each other, i.Q/.iT,‘yj=0, Vi#], we can
re-write Eq.(15) as

Given all these results, we can write Eg3) as

It can be further shown that this? is the same as the one in the
deviation LS estimator. Substituté(t) y(t)—y—T0(t) and

a()=T"(y(t)—y) into &= (=L, V(1) (1))/((M—1)(n—p)).
(717’1)2 0 71.71 &f tr(y,11S,) It turns out that -
: : : Cl : M
0w Ww| | | | VRS 52 WEMU V(=TT T(1=TT*)(y(H) - y)
In o Y n a, tr(S)) P)
@ -t t % t)—y)T(1=TT*)(y(t)—y)
The above equation is equivalent to T M-D(n-p) | & YO=v o=y
(gf?%)z-frﬁ7?74-&5=tr(wfsy)y i=12,...p (nlp)tr{(l—rr+ E (YO =Y (y() — y)]
> Mwattn-al=u(s). !
ot @ tr((1-TT*)-S,). (@6)

We can solve{6Z}P_, in terms of 5 from the first equation and After obtalnlng the solution of?, we can substitute it int(a2) to
substitute it into the second equatlon Then, we have solve fora? as
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1 1
ap .
ol=——tr(py S)— cr , 1=12,...p. (a7)
GRS R
Recall that tré; 9] S,) = 9 S, % and 14 ¥ is the (i) element of
(I'T) 1. Then, y//v v is theith row of (''T) *I'". We can
further write (a7) as

.
R Y Y . 1 - _
oi=——S 02 — =[] S(I")T-aXID); %,
NY NV YV
i=1,2,...p, (a8)

Compliant Beam Structure Assemblies,” ASME J. Manuf. Sci. E&g2, pp.
773-780.

[8] Carlson, J. S., Lindkvist, L., and Soderberg, R., 2000, “Multi-Fixture Assem-

bly System Diagnosis Based on Part and Subassembly Measurement Data,”
Proceedings of the 2000 ASME Design Engineering Technical Conference
September 10-13, Baltimore, MD.

[9] Ding, Y., Ceglarek, D., and Shi, J., 2002, “Fault Diagnosis of Multi-Station

Manufacturing Processes by Using State Space Approach,” ASME J. Manuf.
Sci. Eng.,124, pp. 313-322.

[10] Ding, Y., Shi, J., and Ceglarek, D., 2002, “Diagnosability Analysis of Multi-

Station Manufacturing Processes,” ASME J. Dyn. Syst., Meas., Corit?d|,
pp. 1-13.

[11] Rong, Q., Shi, J., and Ceglarek, D., 2001, “Adjusted Least Squares Approach

for Diagnosis of lll-Conditioned Compliant Assemblies,” ASME J. Manuf.
Sci. Eng.,123 pp. 453-461.

Where F+ is the ith row of (FTF) 7. The second term [12] Schott J. R., 1997Matrix Analysis for StatisticsJohn Wiley & Sons, New

York.

T
(F F).. in the right hand side of the above equation is the 13 golub, G. H., and Van Loan, C. F., 1998iatrix Computations3rd ed., The

same as the one i(DPJ) in Section 1. We shall show that

SL0i()#(M—1) is the same ad’'S(IT)". In fact, Gi(t)
:((FTF)fer)i'(Y(t)—Y):F*(Y(t)—Y)- Then,
M

1
T W=y 2 (I () =y AT (v =)
t=1
+ 1 W v) +
= | g 2 OO =yT |- @)
=I7-s,-(I7)7. (29)
This completes the proof. &
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