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Diagnosis for Multi-Station
Assembly Processes
This paper presents a method of diagnosing variance components of process error s
in singular manufacturing systems. The singularity problem is studied and the c
examined in the context of fixture error diagnosis in multi-station assembly processe
singularity problem results in nondiagnosable fixture errors when standard least-squ
(LS) estimation methods are used. This paper suggests a reformulation of the or
error propagation model into a covariance relation. The LS criterion is then app
directly to the sample covariance matrix to estimate the variance components. Dia
ability conditions for this variance LS estimator are derived, and it is demonstrated
certain singular systems that are not diagnosable using traditional LS methods be
diagnosable with the variance LS estimator. Modified versions that improve the accu
of the variance LS estimator are also presented. The various procedures are thoro
contrasted, in terms of accuracy and diagnosability. The results are illustrated with
amples from panel assembly, although the application of the approach and the co
sions extend to more general discrete-part manufacturing processes where fixture
used to ensure dimensional accuracy of the final product.@DOI: 10.1115/1.1644549#
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1 Introduction
Dimensional variation is a major problem affecting produ

quality in discrete-part manufacturing. In automotive and ae
space industries, for example, dimensional problems contribu
roughly two-thirds of all quality-related problems during ne
product launch@1,2#. Dimensional quality of the finished produc
in panel assembly depends largely on the accuracy of the fixt
used to hold parts. Fixture locators are used extensively in m
station assembly processes, such as automotive body asse
and aircraft fuselage assembly, in order to provide part sup
and dimensional reference within a given coordinate syst
thereby determining the dimensional accuracy of the final ass
bly @2,3#. Fixture locators may fail to provide the desired positio
ing repeatability~relative to tolerances! during production due to
gradual deterioration of locators and/or catastrophic events s
as broken locators. Considerable efforts have been made in re
years to diagnose fixture errors~sometimes referred to as ‘‘fixture
faults’’! based on product dimensional measurements@4–10#. In
these works, the effects of fixture errors on dimensional meas
ments are represented via the linear diagnostic model

y~ t !5Du~ t !1v~ t !, t51, . . . ,M , (1)

wherey(t) is the vector ofn measured product features,u(t) is
the vector ofp error sources,v(t) is the additive noise vector~e.g.,
sensor noise!, D5@d1 ,d2 . . . ,dp# is an n3p diagnostic matrix
linking fixture errors to measurements,t is the observation numbe
index, andM is the sample size. Elements inu(t) are assumed
independent random variables because fixture locators are
sumed physically independent. It is normally assumed that
sensor system is such that the elements of the noise vecto
independent and have equal variancesv

2. Thus, the covariance
matrix of v(t) is sv

2I . The matrixD can be determined from th
relative positions of fixture locators and sensors using stand
kinematics analyses@4–9#. Fixture errors manifest themselves
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mean shifts and variance in the elements ofu(t). Diagnosing
fixture errors is equivalent to estimating the mean and varia
components ofu(t) based on the sample of measurement obs
vations$y(t)% t51

M . The focus of this paper is diagnosis of fixtur
error variance components, as opposed to mean shifts.

Most approaches are based on least-squares~LS! estimation,
with a typical procedure as follows. The following procedure h
been slightly modified to accommodate a nonzero mean iny ~for
the original presentation of this procedure, please refer to, e
Apley and Shi @5#!: ~DP1! Estimate û(t)5(DTD)21DT(y(t)
2 ȳ), where the sample meanȳ5(( t51

M y(t))/M ; ~DP2! Estimate
ŝv

25(1/(M21)(n2p))( t51
M v̂(t)Tv̂(t), where v̂(t)5y(t)2 ȳ

2Dû(t); ~DP3! Estimate the variance components ofu: ŝ i
2

5(1/(M21)( t51
M ûi(t)

22ŝv
2(DTD) i ,i

21, whereûi(t) represents the
ith element of û(t) and (DTD) i ,i

21 is the (i ,i )th element of
(DTD)21.

The interpretation is that we first estimate the random dev
tions $û(t)% t51

M , and then use the sample variance of their e
ments to estimate the variance components ofu. The quantity
ŝv

2(DTD) i ,i
21 is subtracted out in order to eliminate bias due

measurement noise. Because the deviations$û(t)% t51
M are directly

estimated via LS, this estimator will be referred to as a ‘‘deviati
LS estimator.’’

In order to implement procedure~DP1! to ~DP3! and produce
unique estimates, the following conditions are required: i! DTD
must be of full rank, or equivalently, the columns ofD must be
linearly independent; and ii! n.p. These conditions are often
satisfied for simple single-station assembly processes when a
ficient number of sensors are used to measure all degrees of
dom of each workpiece. System singularity (DTD singular! is of-
ten encountered in complex multi-station assembly proces
however, where sensors can only be placed at a downstream
tion but variation sources are contributed from upstream statio
Singularity is also common in compliant-part assembly proces
where there are modes of rigid-body motion and compliant-p
deformation@11#. Section 2 provides an example of singularity
multi-station assembly.

LS modifications using generalized inverses and singular va
decomposition@12,13# and partial least squares@14# have been

e
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developed to accommodate singularity and ill-conditioning in
rameter estimation@15,16#. The basic idea behind these a
proaches is to transform the columns ofD into a smaller set of
linearly independent basis vectors that span the column spac
D, and then use LS on the reduced-dimenaionality problem.
though these are appropriate for many parameter estimation p
lems, they may lead to erroneous conclusions in fixture diagno
The reason is that because the columns ofD and the associated
variance components represent actual physical phenomena
reduction in dimensionality and transformation of the columns
D will void its physical meaning. Rong et al.@11# proposed a
partial solution to this problem that they termed adjusted le
squares. They partitionedD5@D1uD2#, whereD1 consists of the
columns ofD that are linearly independent of all other column
In other words, for any linear combinationa1d11a2d21 . . .
1apdp that equals zero, the coefficients associated with the
umns ofD1 must be zero. Assuming the set of linearly indepe
dent columns is nonempty, their method will provide a uniq
estimate of the subset of variance components associated wit
columns ofD1 . As in standard least squares, the estimates of
other variance components~associated with the columns ofD2)
are nonunique.

This paper presents an approach that can provide unique
mates of all variance components in situations that satisfy cer
diagnosability conditions, even ifDTD is singular. We demon-
strate that the deviation LS estimator ignores important inform
tion that can be utilized for this purpose and derive a diagnosa
ity condition for the new estimator that is more relaxed than
diagnosability condition for the deviation LS estimator. The re
tionships between the various estimators are thoroughly discus

The format of the remainder of the paper is as follows. Sect
2 reviews the modeling procedure for fixture error propagat
and explains the cause of singularity in multi-station models. S
tion 3 introduces a new variance estimator and two modificati
that improve performance. Section 3 also derives the diagnos
ity condition for the new estimator. Section 4 presents sev
examples of multi-station assembly processes correspon
to the situations discussed in Section 3. Section 5 concludes
paper.

2 A Variation Model and Singularity in Multi-Station
Processes

Previous work has developed a fixture-error propagation mo
for general multi-station discrete-part manufacturing systems s
as rigid-part assembly processes@17–19#, compliant-part assem
bly processes@20#, and machining processes@21,22#. In this sec-
tion, we use a simplified two-station panel assembly proces
illustrate the modeling procedure, and explain the cause of sys
singularity. Details on the modeling procedure can be found in
and Shi@17# and Ding et al.@18#.

Fixtures in multi-station panel assembly processes gene
use ann-2-1 layout, consisting of two locating pins andn NC
Journal of Manufacturing Science and Engineering
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blocks to determine the part/subassembly location and orienta
A typical 3-2-1 ~i.e., n53) fixture is shown in Fig. 1. The two
locating pins,P4way and P2way , constrain the three degrees o
freedom of a part in theX-Z plane, where the 4-way pin restrict
part motion in both theX- and Z-directions, and the 2-way pin
restricts part motion in theZ-direction. The three NC blocks
NCi , i 51, 2, 3, constrain the remaining degrees of freedom
the workpiece in theY-direction. When a workpiece is non-rigid
more than three NC blocks may be needed in order to reduce
deformation. For simplicity, this section illustrates with a 2D e
ample in theX-Z plane~in which the part is rigid!. More general
modeling examples that result in the same linear model struc
of Eq. ~1! can be found in the aforementioned literature@17–22#.

In a multi-station process, 3-2-1 fixtures are repeatedly use
every station to support parts/subassemblies. To illustrate, we
fer to the following example throughout the paper. Figure 2 sho
a two-station process, which is a segment of the simplified au
motive body assembly process from@10#. Three workpieces are
welded together at Station I. The first workpiece consists of t
components and is a subassembly from the preceding asse
operation. After the welding operation is finished, the whole
sembly is transferred to a dedicated measurement station~Station
II ! for inspection. This simple two-station segment involves
necessary assembly process operations, including position
joining, transferring, and inspection. A full-scale assembly proc
will simply repeat these operations when fabricating comp
products.

In this process, each part or subassembly~consisting of several
parts! is restrained by a 3-2-1 fixture. Locators being used
markedP1–P6 in Fig. 2 ~note thatP1 andP6 are used to position
the whole subassembly in Station II!. NC blocks are not shown
since we are considering a 2D assembly process. The devia
of a 4-way locator in two directions or the deviation of a 2-w
locator in theZ-direction could cause part deviation. They cons
tute 12 potential fixture errors, numbered 1–9 on Station I a
10–12 on Station II, with arrows indicating their deviation dire
tions.

In such a 2D multi-station process, each part has three deg
of freedom. We usexi ,k to denote the deviation state of parti at
stationk,

xi ,k5@dXi ,k dZi ,k da i ,k#
T, (2)

whered is the perturbation operator anda is the orientation angle.
Thus the state of the product, which consists ofnp (np54 in this
process! parts, is represented by

xk[@x1,k
T

¯ xnp ,k
T #T, (3)

wherexi ,k50 if part i has not yet appeared at stationk.
Fig. 1 Illustration of a 3-2-1 fixture
FEBRUARY 2004, Vol. 126 Õ 201
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Fig. 2 A two-station assembly process „units in mm …
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Random fixture errors on stationk are represented byuk . Thus,
we haveu15@dp1 ¯ dp9#T, and u25@dp10 dp11 dp12#

T, where
dpj is the deviation associated with fixture errorj.

Nine coordinate sensors, denoted bym1 through m9 in Fig.
2~b!, are installed in Station II. Each coordinate sensor meas
the position of a part feature~e.g. a corner or hole! in two or-
thogonal directions~X and Z!, so that the total number of mea
surements isn518. We usey to represent the positional devia
tions detected by sensors at product features. In the above pro
since sensors are only available at Station II, we havey150 and
y25@dm1(X) dm1(Z) ¯ dm9(X) dm9(Z)#T, wheredmj (X or Z)
is the deviation detected at product featurej in theX(or Z) direc-
tion.

For the two-station assembly process shown in Fig. 2, the s
space representation@10# of the fixture error propagation mode
becomes

x15A0x01B1u11w1

x25A1x11B2u21w2 (4)

y25C2x21v2

wherex0 represents the part deviations resulting from the stam
ing process prior to the assembly process,A1x1 represents the
transformation of the product dimensional deviation from Stat
I to Station II, Bkuk represents the product deviations resulti
from process variations at stationk (k51,2), C2 characterizes the
information regarding sensor locations at Station II, andwk (k
51,2) represents the higher order terms and other un-mod
process errors. Detailed expressions for theA, B, andC matrices
in the above equation can be found in@10# and will not be re-
peated here. The numerical expression forA1 , which is needed in
subsequent analyses, is provided in Appendix A1.

In the aforementioned literature@17–22# on the multi-station
error propagation model, the state space representation is
monly adopted to model full-scale assembly and machining p
cesses. Given a generalN-station system as shown in Fig. 3, th
state space variation model takes the form

xk5Ak21xk211Bkuk1wk and

yk5Ckxk1vk , k51, . . . ,N (5)
l. 126, FEBRUARY 2004
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where the notation corresponds to that in Eq.~4!. Note that the
subscript represents the station index and the observation indt
is not explicitly included. MatricesAk , Bk , and Ck are deter-
mined by process design and sensor deployment andCk50 if no
sensor is installed at stationk ~e.g.,C150 in the above example!.
The first equation in~5! is called thestate transition equationand
Ak21 is accordingly called thestate transition matrixbecause
Ak21 links xk to xk21 , the states of an assembly over two statio

In order to express the state space variation model in the s
format as Eq.~1!, we reformulate Eq.~5! into an input-output
linear model by eliminating all intermediate state variablesxk .
Assume thatx050 and sensors are placed at StationN. We have

yN5(
k51

N

CNFN,kBkuk1(
k51

N

CNFN,kwk1vN , (6)

whereFN,k[AN21¯Ak for N.k andFk,k[I . Further defineG
andC as

G[@CNFN,1B1 CNFN,2B2 ¯ CNBN# and

C[@CNFN,1 CNFN,2 ¯ CN#. (7)

This input-output relationship is of the same form as Eq.~1!,

y5Du1v, (8)

whereuT[@u1
T
¯ uN

T w1
T
¯ wN

T #, D[@G C#, and the subscriptN
~a station index! is dropped fromy and v without causing any
ambiguity. When the higher order terms and process backgro
noise represented bywk are negligible, i.e.,uT5@u1

T
¯ uN

T #, Eq.
~8! further simplifies to

y5Gu1v. (9)

In this paper, we focus on the model in Eq.~9!. The approaches
developed for Eq.~9! can be easily extended to the model in E
~8!, because they share the same model structure.

In our example of the two-station assembly process, the m
surement station~Station II! is in a well-controlled environment
and we only consider variation sources associated with locato
Station I ~i.e., fixture errors 1–9!. Thus,u250, and Eq.~4! be-
comes
Fig. 3 Diagram of a multi-station discrete-part manufacturing process
Transactions of the ASME
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Fig. 4 Multiple possibilities of fixture errors due to re-orientation
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y25@C2A1B1 C2B2#•Fu1

u2
G1v25C2A1B1u11v2 , (10)

where the diagnostic matrixD5G5C2A1B1 . The numerical ex-
pression forG for this two-station assembly process is provided
Appendix A1. It can be verified that the columns ofG are linearly
dependent (GTG is singular! so that the deviation LS estimator
not applicable.

The singularity problem is quite common in multi-station sy
tems, especially when we include a comprehensive set of fix
errors in the model, and may be unavoidable regardless of
many sensors are used. The simple example in Fig. 4 illustr
the reasons why. Suppose the assembly deviation shown in
4~a! is observed at measurement Stationk11. Any of the Station
k fixture error scenarios illustrated in Figs. 4~b!, 4~c!, and 4~d!
could have resulted in the assembly deviation in Fig. 4~a!. Recall
that the assembly deviation observed at measurement St
k11 is related to the fixture errors incurred at the previous sta
via the modelyk115Ck11AkBkuk5Gkuk if the measurement sta
tion is free of fixture errors. The preceding observation that an
the three fixture error scenarios could have resulted in the s
observed assembly deviation means that, givenyk11 , there is no
unique solution foruk . Mathematically, this means that the co
umns ofGk are linearly dependent, so thatGk

TGk is singular. Be-
cause these conclusions clearly hold regardless of how many
sors we add at the measurement Stationk11, the only way to
avoid a nonsingular system in this case is to add sensors to
assembly Stationk. If this is not possible, then the deviation L
estimator cannot be applied.

This singularity problem in multi-station assembly proces
was also illustrated in the examples presented by Carlson e
@8#. With the fixture errors that are included in the error propa
tion models developed in@17,18,20–22#, the diagnostic matrices
(Gk’s! are all less than full rank.

3 Variation Diagnosis

3.1 Variance LS Estimator. Section 2 presented an ex
ample for multi-station assembly in whichAk and GTG are both
singular. Thus, the deviation LS estimator outlined in~DP1!–
~DP3! cannot be applied. This section develops an alternative
proach that circumvents this problem. Taking the covariance
trix for both sides of Eq.~9! gives

Sy5GSuGT1sv
2I , (11)

where S(•) is the covariance matrix of a random vector. Sin
fixture errors associated with different fixture locators are
sumed physically independent,Su5diag$s1

2 s2
2
¯ sp

2% is diagonal,
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where p is the number of fixture errors included in the mode
Defines2[@s1

2
¯ sp

2 sv
2#T as the vector of variance componen

to be estimated.
Equation~11! can be written as

Sy5(
i 51

p

~gigi
T!s i

21sv
2I (12)

wheregi is theith column vector ofG. In practice, the population
covarianceSy is estimated by the sample covariance matrix

Sy5
1

M21 (
t51

M

~y~ t !2 ȳ!~y~ t !2 ȳ!T5Sy1E, (13)

where E denotes the estimation error matrix. If we defineV i

[gjgj
T for i 51, . . . ,p, Vp11[I , andsp11

2 [sv
2, Eqs.~12! and

~13! become

Sy5(
i 51

p11

V is i
21E. (14)

In light of this, one approach for estimating the variance com
nents is to chooseŝ2 ~the ‘‘∧’’ symbol denotes an estimate! to
minimize the sum of the squares of the elements of the e
matrix Sy2( i 51

p11V i ŝ i
2. For square matricesA and B of compat-

ible dimension, define the matrix inner product^A,B&5tr(ATB)
and the associated matrix normiAi25^A,A&, which is exactly
sum of the squares of the elements ofA. Using standard results
for least squares estimation in inner-product spaces@23#, the esti-
mates in this case must satisfy the so-called normal equation

Pŝ25b, (15)

where the notation is as follows.P is the Gram matrix, defined
so that theith-row, jth-column element iŝ V i ,V j& for 1< i ,
j <p11. The (p11)-length column vectorb is defined so that its
ith element iŝ V i ,Sy&. For the particular inner product define
above, it can be verified that

P5F ~g1
Tg1!2

¯ ~g1
Tgp!2 g1

Tg1

] ]

~g1
Tgp!2

¯ ~gp
Tgp!2 gp

Tgp

g1
Tg1 ¯ gp

Tgp n

G and

b5F g1
TSyg1

]

gp
TSygp

tr~Sy!

G . (16)
FEBRUARY 2004, Vol. 126 Õ 203
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Fig. 5 A three-panel two-station assembly process
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When P is nonsingular, or equivalently when the matric
g1g1

T , . . . ,gpgp
T , andI are linearly independent,ŝ25P21b is a

unique solution to Eq.~15!. We refer to this approach as the ‘‘var
ance LS estimator.’’

3.2 Diagnosability of Deviation LS Estimator and Vari-
ance LS Estimator. The diagnosability condition required for
variance LS estimator is different from that required for a dev
tion LS estimator. For the variance LS estimator, the matrixP
must be of full rank in order for Eq.~15! to yield a unique solu-
tion. For the deviation LS estimator, the matrixGTG must be of
full rank and alson.p in order to yield a unique solution. To
more clearly illustrate the difference, consider the simplified
ample shown in Fig. 5, in which each part has only one degre
freedom and can only translate~no rotation! in the Z-direction.

Three locators are used to position the three panels at Stati
and their instantaneous position errors are denoted asu1

5@dp1 dp2 dp3#T. After the joining operation are finished, th
three parts become one subassembly and it is transferred to
tion II for measurement. The state vectors arexk

5@dZ1,k dZ2,k dZ3,k#
T (k51,2) and the measurement vectors a

y150 andy25@dm1(Z) dm2(Z) dm3(Z)#T. At Station II, the lo-
cating hole on part 2 is used to position the whole assembly.
locator on Station II is assumed to be free of positioning err
~i.e., u250).

When this three-panel assembly is transferred to Station I
undergoes a translation by the amount2dZ2,1, which can be
represented as

x25x11F 0 21 0

0 21 0

0 21 0
G x15F 1 21 0

0 0 0

0 21 1
G x15Ax1 . (17)

Becausey25x21v at Station II, the state space model becom
x15u1 , x25A1x1 andy25x21v. The linear diagnostic model fo
this two-station process becomes

y25A1u11v. (18)

Relating this to the model in Eq.~1!, we haveD5G5A1 , where
A1 shown above is clearly singular. However,

P5F 1 1 0 1

1 4 1 2

0 1 1 1

1 2 1 3

G (19)

is of full rank. Consequently, the variance vectors2 can be diag-
nosed using the variance LS estimator in Eq.~15!, but not using
the deviation LS estimator.
26, FEBRUARY 2004
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An explanation for diagnosability of variance vectors2 using
the variance LS estimator is apparent from the covariance ma

Sy5F s1
21s2

21sv
2 0 s2

2

0 sv
2 0

s2
2 0 s3

21s2
21sv

2
G (20)

for this single degree of freedom assembly. The diagonal elem
in Sy only provide information regarding the summation of th
fixture error variance componentss1

21s2
2 ands3

21s2
2, as well as

the noise variancesv
2. The non-zero off-diagonal element, whic

is the covariance betweendm1(z) and dm3(z), provides extra
information. In Station II,dm1(z)5dp12dp2 anddm3(z)5dp3

2dp2 , so that cov(dm1(z),dm3(z))5var(dp2)5s2
2 ~recall that

dp1 anddp3 are assumed independent!. This extra piece of infor-
mation is utilized by the variance LS estimator so that varian
components are diagnosable. The discussion so far did not inc
the fixture erroru2 in Station II. A straightforward extension tha
includesu2 would result in the same conclusion.

Another way of viewing the difference between these two e
mators is the following: a variance LS estimator first calcula
covariance matrices ofu andy, and then applies the LS criterio
on the sample covariance matrices, whereas a deviation LS
mator first calculates the LS estimates for the individual er
vectors$û(t)% t51

M , and then calculated the variances ofu from
$û(t)% t51

M . Because estimating$û(t)% t51
M requires more informa-

tion than simply estimating its covariance matrix, it is not surpr
ing that the deviation LS estimator requires a stronger diagn
ability condition than the variance LS estimator. This is stated
the following theorem, the proof of which is included in Append
A2.

Theorem 1. If GTG is of full rank andn.p, thenP is of full
rank.

The significance of Theorem 1 is that a unique variance
estimator exists whenever a unique deviation LS exists. The c
verse, however, is not necessarily true. As illustrated in the p
ceding example, there are situations where the variance LS
mator is unique but the deviation LS estimator is not.

3.3 Effect of System Structure Modeled byG on Variance
Estimation. The performance of the deviation LS estimator w
deteriorate for ‘‘ill-conditioned’’ systems, even ifGTG is not ex-
actly singular. The most common criteria@24# used to quantify
how ill-conditioned a system is include tr((GTG)21), cond(GTG),
and det((GTG)21), where cond~•! and det~•! are the condition
number and the determinant of a matrix, respectively. These t
measures are related to each other through the eigenvalue
GTG, which we denote$l i% i 51

p . The relationship is
Transactions of the ASME
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tr~~GTG!21!5(
i 51

p
1

l i
,

det~~GTG!21!5)
i 51

p
1

l i
, and

cond~GTG!5
lmax

lmin
. (21)

The larger these measures are, the more ill-conditioned the sy
is. SinceGTG is non-negative definite, all eigenvalues must
non-negative. The system is singular when these measures
infinite, or equivalently, when one or more eigenvalues are exa
zero. Throughout the remainder of the paper, we use tr((GTG)21)
as the measure of how ill-conditioned a system is.

The following simulations were used to investigate the exten
which both estimators are affected as the system changes
being well-conditioned to being ill-conditioned. The following pa
rameters were used:n56, p53, M550, sv

250.25, $s j
2% j 51

3

5@1,4,9#, and

GT5F 1 1 0 0 0 0

21 21 a a 21 21

0 0 0 0 1 1
G , (22)

wherea was varied from 1 to 0.1 so that the value of tr((GTG)21)
changes accordingly. For eacha, a Monte Carlo simulation with
K55,000 replicates was conducted for each estimator. The
formance measure is the mean square error~MSE! of the esti-
mates

MSE[
1

p11 (
j 51

p11 H 1

K (
k51

K

~ ŝ j ,k
2 2s j

2!2J , (23)

whereŝ j ,k
2 is the estimate ofs j

2 for the kth replicate.
Figure 6 shows the MSEs of two estimators vs. the values

tr((GTG)21) asa is varied. From this, the following observation
can be made:~a! The performance of the deviation LS estimat
deteriorates rapidly~the MSE increases! as tr((GTG)21) increases.
In contrast, the MSE of the variance LS estimator is largely ind
pendent of tr((GTG)21). Clearly, the variance LS estimator is les
sensitive to linear dependencies in system structure.~b! Although
the variance LS estimator performs better for ill-conditioned s
tems, the deviation LS estimator has a smaller MSE value w

Fig. 6 MSE vs tr „„GTG…
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tr((GTG)21) is small ~e.g., less than 10!. We may conclude that
the deviation LS estimator can outperform a variance LS esti
tor for a well-conditioned system. For an ill-conditioned syste
however, the variance LS estimator will perform substantially b
ter. In the following subsection, we present a modified version
the variance LS estimator that performs uniformly better than
deviation LS estimator.

Although the performances of these two estimators will gen
ally differ, the estimators are actually equivalent in the spec
case that all columns ofG are orthogonal, i.e., whengi

Tgj50,
; iÞ j . This obviously requires thatGTG is of full rank. This is
stated as Theorem 2, the proof of which is included in Appen
A3.

Theorem 2. If n.p, and gi
Tgj50, ; iÞ j , the variance LS

estimator in Eq.~15! is the same as the deviation LS estimat
described in~DP1!–~DP3!.

3.4 Modified Procedures to Enhance the Performance of
the Variance LS Estimator. One observation in the previou
section was that the variance LS estimator may perform wo
than the deviation LS estimator for a well-conditioned syste
This motivates the following algorithm for improving the perfo
mance of the variance LS estimator. A more general version of
algorithm was originally proposed by Anderson@25# as an ap-
proximate maximum likelihood method. For the present case,
expressions required in Step 2 of the algorithm simplify consid
ably to those shown below. The algorithm iterates over the
lowing two steps until convergence.

Modified Procedure 1 „MP1…
1! Based on the estimateŝ2 at the previous iteration, calculat

the following estimate of the covariance matrix@see Eq.~12!#

Ŝy5(
i 51

p

~gigi
T!ŝ i

21ŝv
2I

2! Solve the equationP* ŝ25b* for the new estimateŝ2 at the
current iteration, where

P* 5F ~g1
TŜy

21g1!2
¯ ~g1

TŜy
21gp!2 g1

TŜy
22g1

] ]

~g1
TŜy

21gp!2
¯ ~gp

TŜy
21gp!2 gp

TŜy
22gp

g1
TŜy

22g1 ¯ gp
TŜy

22gp tr~Ŝy
22!

G and

b* 5F g1
TŜy

21SyŜy
21g1

]

gp
TŜy

21SyŜy
21gp

tr~Ŝy
22Sy!

G .

At the initial iteration, we can use the estimateŝ2 from the vari-
ance LS algorithm of Eq.~15!. Convergence usually occurs afte
only one or two iterations. In all of the subsequent simulatio
only a single iteration was used.

The MP1 algorithm bears a strong resemblance to the varia
LS algorithm of Eq.~15!. Suppose we transform Eq.~14! by pre-
and post-multiplying both sides byŜy

21/2, which gives

Ŝy
21/2SyŜy

21/25(
i 51

p11

Ŝy
21/2V iŜy

21/2s i
21Ŝy

21/2EŜy
21/2.

It is straightforward to verify thatP* is the Gram matrix of
inner products for the transformed matrices$Ŝy

21/2V iŜy
21/2: i

51,2, . . . ,p11% and that the elements ofb* are the inner prod-
ucts ^Ŝy

21/2SyŜy
21/2,Ŝy

21/2V iŜy
21/2& for the transformed matrices
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At each iteration, the MP1 algorithm is therefore the least squa
solution that minimizes the norm of the transformed error ma
Ŝy

21/2SyŜy
21/22(i 51

p11Ŝy
21/2V iŜy

21/2ŝ i
2. The transformation by

Ŝy
21/2 can be viewed as weighted least squares@26#, since the

elements ofŜy
21/2EŜy

21/2 are uncorrelated with equal varianc
Note that the elements of the untransformed error matrixE are
neither uncorrelated nor have equal variance.

The MP1 algorithm can substantially improve the performan
over the variance LS estimator, especially for a well-condition
system. In fact, Anderson@25# has shown that the MP1 estimato
is asymptotically efficient. The improvement is illustrated v
simulation using the sameG as in Section 3.3~except that we now
use a larger sample size ofM5100). The simulation results ar
shown in Fig. 7~a!, which shows that the MP1 estimator has un
formly smaller MSE values than the other estimators.

If Ŝy is positive definite at each step of the iteration,P* will be
full rank if and only if P is full rank. Thus, the conditions re
quired for the MP1 algorithm to produce a unique estimate
identical to the conditions required by the variance LS algorith
provided thatŜy remains positive definite at each iteration. This
not guaranteed, however, because elements ofŝ2 may take on
negative values. This is more likely to occur when the sample
is relatively small and the true variance components are clos
zero. The negativity of estimates is a problem in almost all of
variance estimation algorithms~the deviation LS estimator canno
avoid negative estimates, either!. The most popular approach t
enforce non-negativity is to replace the negative elements inŝ2

with zeros. As long assv
2.0, Ŝy is then guaranteed to be positiv

definite. If sv
2 becomes negative and is replaced by 0, the pseu

inverse ofŜy can be used in step 2.
Rao and Kleffe developed a different variance estimation

proach@@27#, Eq. 9.1.8# that avoids negative estimates. Their
erative algorithm will give positive variance component estimat
provided that the initial estimates are positive. This procedur
less intuitive and its development is rather mathematically
volved. Consequently, we simply present the final form of
algorithm for practical use. Note that the form of the algorithm
Rao and Kleffe’s Eq. 9.1.8 is much more complex than the al
rithm below. The reason is that for the particular model in Eq.~1!,
the expressions simplify considerably to those shown below.

Modified Procedure 2 „MP2…
~M1! Select an initialŝ0

25@ŝ1,0
2

¯ ŝp,0
2 ŝv,0

2 #T with all positive
values.

~M2! Calculate Ŝy,05G•Ŝu,0•GT1ŝv,0
2
•I , where Ŝu,0

5diag$ŝ1,0
2

¯ ŝp,0
2 %.
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~M3! Solve the following set of linear equations forj 50 and 1.

ŝ i , j 11
2 5ŝ i , j

2
•~ tr~Ŝy, j

21
•gigi

T!!21
•tr~Ŝy, j

21
•gigi

T"Ŝy, j
21

•Sy!,

i 51, . . . ,p, and

ŝv, j 11
2 5ŝv, j

2
•~ tr~Ŝy, j

21!!21
•tr~Ŝy, j

21
•Ŝy, j

21
•Sy!. (24)

The $ŝ i , j
2 % i 51

p and ŝv, j
2 in MP2 will remain positive as long as

the initial values ofŝ0
2 are chosen positive. The usual choice is

let ŝ i ,0
2 5ŝv,0

2 51, for i 51, . . . ,p. The solution
@ŝ1,2

2
¯ ŝp,2

2 ŝv,2
2 #T is the final estimate. The results for the MP

estimator in the situation described in the preceding simula
were also included in Fig. 7. For the relatively small sample s
of M525, the MP2 estimator outperforms the other estimato
For the more typical sample size ofM5100, however, the MP1
estimator performs better than the MP2 estimator. The reaso
that the MP2 estimator forces a bias in order to makeŝ2 positive,
and this bias does not disappear as sample size increases. In
trast, the MP1 estimator is unbiased and consistent, meaning
its variance approaches zero as sample size increases. C
quently, the MP2 estimator is only recommended if sample siz
very small.

4 Examples
In this section, the estimators are applied to fixture error di

nosis in various automotive body assembly problems. Mo
Carlo simulations with 5,000 replicates were conducted in a MA
LAB environment, and fixture errors were assumed to follow
normal distribution in all cases. For detailed descriptions of
processes, the reader is referred to the various references
below. For convenience, the diagnostic matrixG is provided be-
low for each situation.

4.1 Assembly System With an Orthogonal Diagnostic
Matrix. The automotive assembly process was described
considerable detail in Apley and Shi@5#. In Section 5 of their
paper, they apply the deviation LS estimator to diagnosing er
in fixtures that locate the side frames of a car body. They assu
the linear structured model of Eq.~9! to represent the effects o
fixture errors on dimensional measurements. There were 14 m
surements (n514) and two potential fixture errors (p52). The
matrix G ~which is theC matrix in their paper! was through ki-
nematics analysis determined to be
Transactions of the ASME
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GT5F .354 .354 .354 .354 .354 .354 .354 .354 0 0 0 0 0 0

.057 2.026 0 2.004 .046 2.087 2.024 .043 .187 .361 0 .535 .495 .536G . (25)

This G matrix is of full column rank andn.p, suggesting that the variance LS estimator and the deviation LS estimator can b
applied. We also have tr((GTG)21)51.99, indicating that the system is well-conditioned.

For this side-frame assembly system, both deviation LS estimator and variance LS estimator are used to estimate the
components associated with fixture errors. Five different sample sizes were used (M55,10,25,50,100) in the simulation. From the MS
values shown in Fig. 8, it can be seen that the two estimators have almost identical performance in this example. The reason
two columns ofG are almost orthogonal (g1

Tg250.018,g1
Tg151.0025, andg2

Tg250.9999). This agrees with Theorem 2, which sta
that the two estimators are equivalent with the columns ofG are orthogonal.

4.2 Assembly System With a Non-Orthogonal Diagnostic Matrix. Many engineering systems do not result in an orthogonaG
matrix, in which case the performance of the deviation LS and variance LS estimators will differ. For example, theG matrix used in
Section 4 of Apley and Shi@5# is

GT5F .093 0 2.093 .093 0 .647 2.370 0 .647

.577 0 0 .577 0 0 .577 0 0

2.120 0 .843 2.120 0 2.120 .482 0 2.120
G , (26)
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the columns of which are not orthogonal. In this case,n59, p
53, and tr((GTG)21)53.5, implying the system is relatively
well-conditioned.

Monte Carlo simulations were again conducted, but this ti
with a sample size ofM515. A comparison of the deviation LS
estimator, the variance LS estimator, and the MP2 estimator~due
to the small sample size! is shown in Table 1. The quantity
(( i 51

p11var(ŝ i
2))/(p11) in the third row represents the avera

sample variance of the estimators for comparison with the M
We found that the estimator from MP2 demonstrates slightly m
bias than the other two, but has smaller dispersion. Based on
MSE criterion, the MP2 estimator performed the best, followed
the deviation LS estimator.

4.3 Assembly System With a Singular Diagnostic Matrix
We next apply the variance estimators to the two-station exam
introduced in Section 2.2. TheG matrix for this model is given in
Appendix A1. Because the system is singular with tr((GTG)21)
5`, the deviation LS estimator cannot be used here. It can
verified thatP is full rank, so that the variance LS estimator a
its modified versions are applicable.

As discussed in Section 2, we only consider fixture errors
sociated with Station I. Hencep59 andn518. Simulations were

Fig. 8 MSE for the linear system with G as in Eq. „25…
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carried out using a sample size ofM5100. The variance LS es
timator of Eq.~15! and the MP1 and MP2 estimators were com
pared in this example, and the results are shown in Table 2. In
example, the variance LS estimator and MP1 estimator perf
comparably, although the latter has slightly smaller MSE and d
persion. This is consistent with the results shown in Fig. 7~a! as
tr((GTG)21) increases. The MP2 procedure has the smallest M
and dispersion among the three. But it also has quite notice
bias.

Although the MP2 estimator outperformed the MP1 estima
in this example, our experience indicates this is more an excep
than the norm. For example, in Fig. 7~a!, the MP1 has a smalle
MSE value. As another example, suppose we modify the tw
station assembly example considered in the preceding parag
so that we are now only interested in diagnosing theZ-direction
fixture errors. TheG matrix in this case is the same as theG
matrix given in Appendix A1, except that we remove column 1,
and 7. It can be verified that that the newG matrix is also less than
full rank. Repeating the above simulations but with the newG
matrix, the MSEs for the MP1 and MP2 estimators are 1.197
1.215. Thus, the MP1 estimator is slightly more effective than
MP2 estimator in this case.

Table 1 Comparison of three estimators for the linear system
with G as in Eq. „26…

Deviation LS
estimator

Variance LS
estimator

MP2

s̄̂2 @1.0347 4.0276
3.9965 0.9861#

@1.0015 4.0419
3.9925 0.9854#

@1.0050 3.4421
3.3303 1.0358#

(i51
p11var~ ŝ i

2!

p11

1.96 2.10 1.36

MSE 1.96 2.10 1.55
The ‘‘true’’ value of s2 used in the simulation is@1,4,4,1#.
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Table 2 Comparison of three estimators for the linear system with G a singular

Variance LS estimator MP1 MP2

s̄̂2 @0.99814 4.6732 1.6707
3.2344 7.0257 8.988 0.99209

3.9858 5.2822 1.002#

@0.98779 3.9031 1.7135
3.2671 7.0207 9.03

0.99719 4.0153 5.149
1.0001#

@1.1576 3.7646 1.9437
2.6107 6.1577 8.0317
1.0109 3.444 5.3732

1.036#
(i51

p11var~ ŝ i
2!

p11
2.731 2.540 0.590

MSE 2.777 2.543 0.844
The ‘‘true’’ values ofs2 used in the simulation is@1.00 4.00 1.69 3.24 7.02 9.00 1.00 4.00 5.29 1.00#
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5 Concluding Remarks
Singularity is a common problem in engineering systems,

which case the traditional least-squares estimation method ca
be applied effectively. This paper presents a new diagnosab
condition and a variance LS estimator that takes into account
covariance between error terms and results in diagnosability
systems that are not diagnosable using traditional LS meth
Two modified versions of the algorithm were also presented
improve the performance of the variance LS estimator.

We note that the presented methods typically require a ran
sample of 25–50 units. For a dynamic process with tool wear,
process data are inherently autocorrelated. However, since 25
units typically translates to production periods of one hour
less, the sampling period will generally be too small to obse
any noticeable tool wear effects. Consequently, the meth
should still be applicable to diagnosing other types of fixtu
errors in processes that also experience relatively slow
wear dynamics~although other methods would be required
diagnose the tool wear itself!. For processes with faster tool wea
dynamics, recursive estimation methods would need to
developed.

We also point out that the methods are for variance compon
estimation, as opposed to mean component estimation. Our e
rience has been that the autobody industry views fixture e
variance as more problematic than mean shifts. A sustained,
, FEBRUARY 2004
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sistent deviation from nominal~i.e., a mean shift! can often be
compensated quite easily by process engineers via shimming
other adjustments. In contrast, variation is much more difficult
compensate and requires either some form of on-line feedb
control or the removal of the variation root cause. The meth
presented in this paper are intended to be a tool to aid in detec
identifying, and, ultimately, eliminating root causes of rando
variation.

The examples in this study have been exclusively for fixtu
error diagnosis in multi-station assembly processes. Howe
all of the results and conclusions should also hold for other ty
of error sources and multi-station manufacturing process
provided that the linear structured model adequately repres
the effects of the error sources on the process and pro
measurements.
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Appendices

A1 Expression of Matrices for Example in Section 2.

A15

l

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0.0005 1 1 0 0 0 0 0 0 20.0005 20.2392

21 0 0 0 1 0 0 0 0 0 0 0

0 20.5550 0 0 0 1 0 0 0 0 20.4450 2222.49

0 0.0005 0 0 0 0 1 0 0 0 20.0005 20.2392

21 20.2153 0 0 0 0 0 1 0 0 0.2153 107.655

0 20.2392 0 0 0 0 0 0 1 0 20.7608 2380.38

0 0.0005 0 0 0 0 0 0 0 0 20.0005 20.2392

21 0 0 0 0 0 0 0 0 1 20.0005 0

0 20.2392 0 0 0 0 0 0 0 0 0.2392 2380.38

0 0.0005 0 0 0 0 0 0 0 0 20.0005 0.7608

m

12312
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l

0 0.1215 20.3846 0 0 0 0 0 0.2632

0 0.0221 20.0699 0 0 0 0 0 0.0478

0 0.1215 20.3846 0 0 0 0 0 0.2632

0 20.1877 0.5944 0 0 0 0 0 20.4067

0 20.0773 0.2448 0 0 0 0 0 20.1675

0 20.3379 1.0699 0 0 0 0 0 20.7321

0 0.1656 20.5245 0 0 0 0 0 0.3589

0 20.3379 1.0699 0 0 0 0 0 20.7321

0 0 0 0 0 0 0 0 0

0 20.2054 0.6503 0 0 0 0 0 20.445

21 20.311 0 1 0.4 20.4 0 0 0.311

0 0.0574 0 0 20.24 1.24 0 0 21.0574

21 20.2153 0 1 0 0 0 0 0.2153

0 20.2392 0 0 1 0 0 0 20.7608

21 20.0957 0 0 0 0 1 0.4 20.3043

0 0.0574 0 0 0 0 0 20.24 0.1826

21 0 0 0 0 0 1 0 0

m
.

0 20.2392 0 0 0 0 0 1 20.7608
1839
t

r

e

A2 Proof of Theorem 1. SupposeGTG is of full rank and
n.p, but thatP is singular. BecauseP is the Gram matrix of
$g1g1

T ,g2g2
T , . . . ,gpgp

T ,I %, its singularity implies that
$g1g1

T ,g2g2
T , . . . ,gpgp

T ,I % are linearly dependent. Thus, there e
ists a set of scalars$a1 ,a2 , . . . ,ap ,ap11%, not all zero, such tha
g1g1

Ta11g2g2
Ta21 . . . 1gpgp

Tap52Iap11 . In order for this to
hold, we must haveap1150. Otherwise,rank(dI )5n, whereas
the summation of matrices on the left hand side can have at m
rank p,n. It follows that g1g1

Ta11g2g2
Ta21 . . . 1gpgp

Tap
50, and at least one of thea’s ~say a i) is nonzero. Post-
multiplying the preceding equation bygi gives g1(g1

Tgia1)
1g2(g2

Tgia2)1 . . . 1gp(gp
Tgiap)50. Because at least one o

the coefficients (gi
Tgia i) is nonzero, this implies that the vecto

$g1 ,g2 , . . . ,gp% are linearly dependent. Their Gram matrixGTG
must therefore be singular, which contradicts the condition t
GTG is full rank. L

A3 Proof of Theorem 2. Utilizing the fact that the columns
in G are orthogonal to each other, i.e.,gi

Tgj50, ; iÞ j , we can
re-write Eq.~15! as

F ~g1
Tg1!2

¯ 0 g1
Tg1

] ] ] ]

0 ¯ ~gp
Tgp!2 gp

Tgp

g1
Tg1 ¯ gp

Tgp n

G •F ŝ1
2

]

ŝp
2

ŝv
2
G5F tr~g1g1

TSy!

]

tr~gpgp
TSy!

tr~Sy!

G .

(a1)

The above equation is equivalent to

H ~gi
Tgi !

2
•ŝ i

21gi
Tgi•ŝv

25tr~gigi
TSy!, i 51,2, . . . ,p

(
i 51

p

gi
Tgi•ŝ i

21n•ŝv
25tr~Sy!.

.

(a2)

We can solve$ŝ i
2% i 51

p in terms ofŝv
2 from the first equation and

substitute it into the second equation. Then, we have
Journal of Manufacturing Science and Engineering
x-

ost

f
s

hat

~n2p!ŝv
25tr~Sy!2(

i 51

p
1

gi
Tgi

tr~gigi
TSy!

5tr~Sy!2trH S (
i 51

p
1

gi
Tgi

gigi
TD •SyJ . (a3)

Notice that GTG is a diagonal matrix withgi
Tgi as its (i ,i )th

element and( i 51
p v igigi

T5GVGT, whereV5diag$v1¯ vp% and
v i , i 51, . . . ,p, is an arbitrary real number. Then, we have

(
i 51

p
1

gi
Tgi

gigi
T5G~GTG!21GT5GG1. (a4)

Given all these results, we can write Eq.~a3! as

ŝv
25

1

~n2p!
tr~~ I2GG1!Sy!. (a5)

It can be further shown that thisŝv
2 is the same as the one in th

deviation LS estimator. Substitutev̂(t)5y(t)2 ȳ2Gû(t) and
û(t)5G1(y(t)2 ȳ) into ŝv

25(( t51
M v̂(t)Tv̂(t))/((M21)(n2p)).

It turns out that

ŝv
25

1

~M21!~n2p! (t51

M

~y~ t !2 ȳ!T~ I2GG1!T~ I2GG1!~y~ t !2 ȳ!

5
1

~M21!~n2p!
trH(

t51

M

~y~ t !2 ȳ!T~ I2GG1!~y~ t !2 ȳ!J
5

1

~n2p!
trH ~ I2GG1!•

1

M21 (
t51

M

~y~ t !2 ȳ!~y~ t !2 ȳ!TJ
5

1

~n2p!
•tr~~ I2GG1!•Sy!. (a6)

After obtaining the solution ofŝv
2, we can substitute it into~a2! to

solve for ŝ i
2 as
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ŝ i
25

1

~gi
Tgi !

2
tr~gigi

TSy!2ŝv
2
•

1

gi
Tgi

, i 51,2, . . . ,p. (a7)

Recall that tr(gigi
TSy)5gi

TSygi and 1/gi
Tgi is the (i ,i ) element of

(GTG)21. Then,gi
T/gi

Tgi is the ith row of (GTG)21GT. We can
further write ~a7! as

ŝ i
25

gi
T

gi
Tgi

Sy

gi

gi
Tgi

2ŝv
2
•

1

gi
Tgi

5Gi
1Sy~Gi

1!T2ŝv
2~GTG! i ,i

21,

i 51,2, . . . ,p, (a8)

where Gi
1 is the ith row of (GTG)21GT. The second term

ŝv
2(GTG) i ,i

21 in the right hand side of the above equation is t
same as the one in~DP3! in Section 1. We shall show tha
( t51

M ûi(t)
2/(M21) is the same asGi

1Sy(Gi
1)T. In fact, ûi(t)

5((GTG)21GT) i•(y(t)2 ȳ)5Gi
1(y(t)2 ȳ). Then,

1

M21 (
t51

M

ûi~ t !25
1

M21 (
t51

M

~Gi
1~y~ t !2 ȳ!!~Gi

1~y~ t !2 ȳ!!T

5Gi
1
•S 1

M21 (
t51

M

~y~ t !2 ȳ!~y~ t !2 ȳ!TD •~Gi
1!T

5Gi
1
•Sy•~Gi

1!T. (a9)

This completes the proof. L
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