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a b s t r a c t

This paper presents an academia-industry joint study concerning effective methods to estimate and
quantify the effect of vortex generator installation on wind power production. This problem has pre-
sented a challenge to the wind industry, because (a) vortex generator installation may lead to a moderate
1e5% extra power production, but this level of improvement is difficult to be accurately detected; and (b)
it is equally difficult to validate the estimated effect of vortex generator installation because a controlled
experiment is practically impossible to conduct to provide a credible baseline. An academic institute and
a wind technology company team up to tackle this challenge. The two teams develop their own version of
quantification methods, which are profoundly different. The academic method uses 10-min data and
makes use of both power and environmental data, whereas the company method uses high-frequency
data via primarily a direct power comparison approach that relies less on the environmental data.
When applying the respective methods to two inland wind farms, each of which presents four pairs of
turbines, the quantification results from the two methods are surprisingly consistent. We believe the
consistent outcome presents a strong case of cross validation, testifying to the respective method's
capability and credibility.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The wind industry has long been aware of the vortex generator
(VG) technology and the potential benefit that a VG may bring to
wind power production [1e3]. One challenging question remaining
elusive to the wind industry is how much benefit, if any at all, VG
installation brings to operators under the commercially operating
conditions. The focus of this paper is not to answer that question
directly, but to present a pair of methods which we believe are in
the best position to answer the question.

There are two major difficulties in tackling this challenging
problem. The first is how to model and estimate the effect of VG
installation using turbine operational data. The second is how to
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validate the estimated effect.
Although the precise magnitude of the benefit from VG instal-

lation is unknown, the general feeling in the industry is that it
would be moderate in scale resulting in 1e5% extra wind energy
production under the same wind and environmental conditions.
Detecting this moderate improvement in the turbine operational
data, with the presence of large amounts of noise, is not a trivial
task. The International Electrotechnical Commission (IEC)’s 61400-
12 standard procedure for power performance measurements [4,5]
is probably the most widely used approach in the wind industry for
estimating and quantifying a turbine's performance before and
after VG installation. The IEC standard method is, however, inef-
fective in this endeavor, which has been noticed by industrial
practitioners and documented in previous studies [6,7]. IEC admits
that “Depending on site conditions and climate, the uncertainty may
amount to several percent” [4]. Based on other empirical studies, for
example [8], one can expect a typical measurement uncertainty of
3e5% in flat terrain and 4e8% in complex terrain.

The IECmethod's ineffectiveness is rooted in its lack of control of
the influence of environmental factors other than wind speed.
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Considering the stochastic nature of the energy production system,
one cannot evaluate the performance of wind turbine generators
simply by comparing their power output, as the input conditions
change all the time. At the very minimum, the influence of wind
speed must be controlled while comparing power output, sug-
gesting the use of power curve in turbine performance evaluation.
That is in fact what the IEC method is based on. In addition to wind
speed, however, other environmental factors such as wind direc-
tion, air density, humidity, turbulence intensity, and wind shear all
potentially affect wind power production. The IEC method does
take air density into account through the use of air density adjusted
wind speed and controls the wind direction by filtering for clean
wind sectors. But the study in [9] shows that, while wind direction
and air density are indeed important factors, IEC's approach in
accounting for their influence is not optimal. The complexity
involved in controlling for the influence of multiple environmental
factors contributes primarily to the first difficultymentioned above.

Similar complexity also contributes to the second difficulty,
namely the validation difficulty. In order to validate the estimated
VG effect, one ought to know the ground truth of the actual effect.
For that purpose, one would ideally conduct a controlled experi-
ment, in which all environmental conditions are set the same
before and after a VG is installed, so that the difference in power
outputs before and after the installation signifies the VG effect. The
problem is that such a controlled experiment is impractical andwill
probably never be feasible, considering the sheer physical size of
commercial wind turbine generators. Researchers could conduct
small-scale experiments in a wind tunnel, but the amount of un-
certainty generated from extrapolation of the small-scale wind
tunnel test to commercial operations makes such results much less
credible to use. Even for field tests, the early results, such as the up
to 25% improvement in power output claimed in [1], are now
believed overly optimistic.

In this study, an academic institute, Texas A&M University
(TAMU), and a wind technology company, SMART BLADE® GmbH,
team up to tackle this challenge. The two teams develop their own
version of estimation and quantification methods. The two
methods adopt different mechanisms to control for the influence of
the environmental factors. TAMU's approach, labeled as Kernel
PLUS, is a machine learning model-basedmethod, which relies on a
multi-dimensional power curve model [9] to account for all envi-
ronmental variables measured in a commercial operation setting.
SMART BLADE's approach, known as power-vs-power, is a pure
data-driven method. It considers both a control turbine with no VG
installation and the test turbine on which VGs are installed and
then uses the control turbine as a baseline to neutralize the influ-
ence of the environmental factors. The Kernel PLUS and the power-
vs-power approaches are profoundly different. The Kernel PLUS
uses 10-min data and relies on both power and environmental data,
whereas the power-vs-power method uses high-frequency data
and does not involve the environmental data in the power differ-
ence calculation (although wind direction and speed data are
needed in pre- and post-processing). When the respective methods
are applied to two wind farms, each of which presents four pairs of
turbines, the quantification results of the two methods are sur-
prisingly consistent. We believe the consistent outcome presents a
strong case of cross validation, testifying to the respective method's
capability and credibility.

In the remaining parts of the paper, we first elaborate the details
of the power-vs-powermethod in Section 2. Part of the Kernel PLUS
method has already been published in [6]. Therefore, we present in
Section 3 the method's general ideawithout repeating the detail. In
the same section, we also explain a new step added to the Kernel
PLUS method that may be needed in some circumstances. In Sec-
tion 4, we present the case study showing the outcomes of the
respective methods. Finally, we conclude the paper in Section 5 and
discuss the pros and cons of the two methods.
2. SMART BLADE's approach: the power-vs-power method

SMART BLADE develops its own VG technology and has installed
it on more than 2000 wind turbines worldwide. Their power-vs-
power method has been developed and used since 2013. Their
calculation was already verified by DNV-GL in two projects and the
method itself is in the process of certification.

As we argued in Section 1, one key element in an effective
estimation of the VG effect is how it controls for the influence of the
time-varying environmental factors. The basic idea behind the
power-vs-power approach is to use a pair of wind turbines that are
located very closely in space. It can be reasonably assumed and
subsequently proven that the pair of turbines are subject to com-
parable, or even identical (to some extent), wind and environ-
mental conditions. The power-vs-power approach uses one of the
turbines as the control turbine, which does not undergo any
modification, while treating the other as the test turbine, or VG
turbine, which has VGs installed at a certain time. By using the
power output from the control turbine as a baseline, which natu-
rally incorporates the change in wind and environmental condi-
tions, the difference of power outputs between the control and test
turbines should exhibit a change point if there is a genuine effect
caused by the VG installation. Computing the change before and
after the VG installation in the power difference presumably
quantifies the VG effect.

Let us define some notations and terminology first. For the
quantification purpose, there are two time periods corresponding
to before and after the VG installation, referred to as PRE and POST,
respectively. Denote y as the power output of a turbine. Denote x :

¼ ðx1;…; xpÞ by the set of p environmental variables measured on a
wind farm, by V the wind speed, D the wind direction, and r the air
density. If we let V, D, and r be the first three elements in x, then
x1 ¼ V , x2 ¼ D, and x3 ¼ r. We use a subscript to indicate which
turbine and a superscript to indicate which period a variable is
associated with. For instance, yPRECrtl means the power output from
the control turbine in the time period before VG installation and
VPOST
VG means the wind speed associated with the VG turbine in the

time period after VG installation. When the power or wind data are
binned, we use N to denote the number of bins.

The power-vs-power approach entails the following five main
steps:

1. Determine the valid wind sectors and eliminate the wind and
power measurements taken under wake conditions. Also apply
all other data filters (Status.Flag, Yaw.Error, etc.).

2. Apply a power density normalization, namely, normalize the
wind power output through y� r

r0
, where r0 is the sea-level dry

air density. Air density is calcualted by r ¼ P
R$T for a given

air temperature, T, expressed in Kelvin, and air pressure, P,
expressed in Newtons/m2, where R ¼ 287 (Joule)(kg)�1

(Kelvin)�1 is the gas constant [10]. Use the density-normalized
power in the subsequent analysis.

3. If necessary, verify whether there is any other source of variation
significantly affecting the power difference between the PRE
and POST periods. If such a source of variation is identified,
further reduce the dataset so that its effect is controlled for.

4. Compute the bin-wise power difference, namely, calculate the
PRE and POST power production difference of the VG turbine,
relative to that of the control turbine, for each of the power
output bins.
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5. Compute the power difference produced by the VG installation
over the whole power output spectrum.

Step 1 is needed because of the assumption that, when two
turbines are close enough in space, it is likely that the wind and
environmental conditions they are subject to are comparable. This
assumption is generally reasonable and verifiable, except for the
situationwhen one turbine is in the wake of the other one. Step 1 is
to identify the wake free conditions, also known as the valid wind
sectors, in the turbine operational data set and then only use the
wake free data in the subsequent analysis. The specific steps are:

� For each time stamp, compute the wind speed ratio VVG
VCtrl

or the

power output ratio yVG
yCtrl

.

� Bin the ratios based on a wind direction signal measured by a
nearby met mast or the control turbine wind direction derived
by yaw position and wind vane signal.

� Plot a graphical representation of the bin-wise boxplots. Identify
the coherent regions (for a minimum 30-degree width) showing
wind direction independence of all considered signal ratios.

Fig. 1 shows an example using the power output ratio of two
turbines. The two regions inwhich the ratio obviously departs from
a ratio of 1 suggest the presence of a strong wake effect; these re-
gions shall be filtered out in the subsequent analysis.

Step 2 of the power-vs-power approach performs an air density
normalization. The thought behind this is similar to that of using
the density-normalized wind speed, as recommended by IEC [4],
and the motivation for doing so is to account for the air density
effect. In the case of the power-vs-power approach, no wind speed
signals are involved in the power comparison step. Therefore,
density normalization must be accomplished by direct normaliza-
tion of the power values for the below rated region.

Step 3 is another step designed to verify and uphold the
assumption that both turbines must see the same conditions and
must operate similarly. In general, the assumption is reasonably
valid for relatively flat terrain. However, if there is an obvious
source of variation, e.g., due to severely uneven terrain, the varia-
tion should be controlled for. Consider the following example. At
different altitudes caused by the uneven terrain, the pair of turbines
will face inflow wind of different speeds. The difference in wind
speed is due to the speed up/hill effect. As such, the power
Fig. 1. Identify the wake free data
difference of both turbines varies by time, although both turbines
do operate in wake free conditions. This requires an additional
categorization next to the wind direction filter to split the data into
sets of equal conditions. In cases where different controller modes
can be identified (such as pitch mode/variable speed mode) the
data set can be separately analysed for each controller mode. Data
points in which both turbines show different controller modes at
the same time are rejected. Afterwards, the individual results can
be merged by means of a probability weighted average.

After completion of the pre-processing steps that filter, clean,
and normalize the data, Step 4 of the power-vs-power approach is
to compute the bin-wise power difference between the two tur-
bines. Specifically,

� Take the high frequency power output data of the control tur-
bine and partition the data into N bins by using a bin width of,
say, 100 kilowatts (kW). The bin width can be adjusted for other
applications, but, for megawatts capacity turbines, 100 kW ap-
pears to be a reasonable default number.

� For each bin, calculate the median of the power difference be-
tween the VG turbine and the control turbine. We understand
that IEC instructs to use the mean, however, the power differ-
ence is skewed. As a result, the median is a much better statis-
tical measure to represent the average bin-wise power
performance than the mean.

� Conduct the above two steps for the PRE and POST periods

individually. Denote the resulting power differences by DyPREi

and DyPOSTi , respectively, for i ¼ 1;…;N.
� Conduct a PRE bin comparison between the control and test
turbine to verify the performance similarities between the pair
of turbines, thereby proving the initial assumptions.

� Calculate the bin-wise power difference as Dyi ¼ DyPOSTi �DyPREi ,
for i ¼ 1;…;N.

Finally, Step 5 of the power-vs-power approach combines all the
bin-wise power differences by using the weights derived from the
power distribution over a given year; the resulting metric serves as
the estimate of the VG effect. The detailed procedure is:

� Following the standard IEC procedure [4,5], compute a power
curve and the site representative probability distribution of
wind speed using the measurements taken from the control
using the power output ratio.
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turbine. Alternatively, one can use the OEM certified reference
power curve.

� Using the power curve, find the specific wind speeds Vi;left and
Vi;right that corresponds to the lower and upper bound of the i-th
power bin, respectively. Convert the wind speed distribution
into a power distribution through

ProbðyiÞ ¼ F
�
Vi;right

�
� F

�
Vi;left

�
; (1)

where yi is the midpoint of the i-th power bin, Fð,Þ is the cumu-
lative distribution function of wind speed, and ProbðyiÞ is the
probability of the i-th power bin or, intuitively, the relative occur-
rence frequency of that particular power bin in the period of
evaluation (i.e., a given year).

� Estimate the overall VG effect as

DVG½%� ¼
PN

i¼1Dyi$ProbðyiÞPN
i¼1yi$ProbðyiÞ

� 100%: (2)

We want to note that ideas similar to the power-vs-power
approach have been mentioned previously, for instance, in
Refs. [11,12]. Sometimes, the ideas were called the side-by-side
comparison, referring to a pair of turbines standing side by side
in physical vicinity. As commented in Ref. [6], “the difference in
power between two side-by-side turbines is measured in a timeline
including data before and after the upgrade. The correlation of the
wind power generated by the side-by-side turbines may remove the
uncertainty of environmental measurements, leaving only the effect
resulting from the turbine upgrade.” Despite the similarity in ideas,
the difference is in the details. None of the previous works used
high frequency power data (i.e., the original historian data), the use
of which we believe is crucial to the success of a power-vs-power,
or side-by-side, approach. For the power-vs-power (or generally,
side-by-side) approach, the VG effect is varied at different power
regimes of the turbine. Although a strong VG effect is expected in
themid-power-regime, regimes with no VG effect at all do exist, for
instance, in the pitch region. Hence, in order to identify the true
characteristics of the VG effect, a proper resolution of the power
regime of the turbine is required. Because of the unsteady nature of
the inflow, the turbine operates at different operational regimes
during a certain period of time. This means that a proper resolution
of the operational regime of the turbine can be achieved onlywith a
proper temporal resolution. The procedure outlined in Ref. [11] is
not purely data driven because certain regression models were fit,
making their approach different from the power-vs-power
approach delineated here. The procedure outlined in Ref. [12]
lacks sufficient details with which to be compared (as [12] was a
poster publication).
3. TAMU's approach: the Kernel PLUS method

TAMU's Kernel PLUS method takes a different approach to
control for the influence of environmental factors. The basic idea is
to establish a multi-dimensional power curve model that in-
corporates the effect of all environmental variables measured on a
wind farm. The current version of the Kernel PLUS method uses the
10-min data instead of the high frequency data.

Typical environmental variables measured include wind speeds
at the hub height as well as those above or below hub height, wind
directions at hub height and sometimes at other heights, temper-
ature, air pressure, and humidity. As shown previously, the air
density is computed by using the temperature and air pressure
measurements. The turbulence intensity is computed by using the
hub height wind speedmeasurements. Thewind shear is computed
by using wind speed measurements at two different heights
(typically, one of them is the hub height speed).

Overall, there are six elements, but likely more, in the input
vector x, which are the hub height wind speed V, hub height wind
direction D, air density r, humidity H, turbulence intensity S, and
wind shearW. As such, x ¼ ðV ;D; r;H; S;WÞ. Themulti-dimensional
power curvemodel will find a functional relationship f ð,Þ that links
the inputs to the power output y, i.e.,

y ¼ f ðxÞ ¼ f ðV ;D; r;H; S;WÞ þ ε; (3)

where ε is the residual noise in the data that cannot be fully
explained by the model. Once a model in the form of equation (3) is
established by using the data of the PRE period, the model is
essentially the mathematical surrogate of the turbine's physical
reality under the wind and environmental conditions in the PRE
period. When this model fitted with PRE data is applied to the wind
and environmental conditions under the POST period, namely, with
V, D, r, H, S, and W measured in the POST period, it is equivalent to
running the old, pre-upgrade turbine under the new wind and
environmental conditions. Then, the difference between the model
output (pre-upgrade turbine under new conditions) and the actual
power measurement (VG upgraded turbine under the same new
conditions) exhibits the VG effect.

TAMU's Kernel PLUS method has been published in [6]. The
specific mechanism used to model and learn f ð,Þ from a set of data
is based on the Kernel regression method [13,14], one of the
methods broadly used in the machine learning field [15]. The
method in [6] tailored a special model structure for wind applica-
tions and also included a self-calibration step to alleviate any po-
tential bias introduced by the use of the Kernel regression. The
resulting method is different from a standard version of the Kernel
regression, and was therefore given the name “Kernel PLUS.”

Considering that the full details of Kernel PLUS are available in
[6], we will not repeat them here again. We do want to note a blind
study reported in [7], in which Kernel PLUS was applied to three
sets of turbine operational data without any prior knowledge of
how many, and if any, which, turbines had undergone VG instal-
lation. The Kernel PLUS method was able to identify the right VG
turbine in that blind study.

While working on this joint study, we realized that one more
issue needs to be discussed, which has not yet been addressed in
the Kernel PLUS as published in [6]. The issue concerns the use of
wind speed. For the set of wind and environmental measurements
discussed above, the wind measurements may be from either a
nearby mast or the nacelle, whereas the other measurements are
from the mast. The wind measurement, if from nacelle, is in the
wake of the rotor. Installation of VGs adjusts wind flow separation
behind the rotor, so much so that for the same free inflow wind in
front of the rotor, the wind speed measurements taken by the na-
celle anemometer before and after the VG installation are most
likely different. This difference could introduce a degree of inac-
curacy if left unaddressed. For this reason, we propose to add a
wind speed correction step prior to the use of the Kernel PLUS
method for the circumstances where the wind speed measure-
ments are taken from a nacelle anemometer. The wind speed
correction step is explained below.

We understand that IEC 61400-12-2 [5] deals with nacelle
measurements through a nacelle transfer function (NTF), which is
the relation between the free inflowwind speed and that measured
at the nacelle anemometer. Typically a NTF can be obtained by
comparing the nacelle measurements with that on a nearbymast or
with a nacelle mounted LIDAR. Some operators establish a NTF for a
VG turbine, so that the wind speed correction is not needed. That is
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what happened in our previous studies, as our industrial partner
provided us the adjustedwind speed through the use of a NTF, even
for their VG turbines. However, if the NTF was not established, then
a wind speed correction, as described below, is needed.

The idea for wind speed correction is to make use of the wind
speed measurements from the control turbine. Because the control
turbine does not undergo the VG installation, the difference be-
tween its nacelle anemometer measurements and their free stream
counterparts should stay the same in the PRE and POST periods, all
other conditions being equal. In light of this thought, we would like
to be able to assume the following relationship:

VPOST
VG � VPRE

VG ¼ VPOST
Ctrl � VPRE

Ctrl þ C; (4)

where the offset (i.e., the correction value), C, represents the impact
of VG installation on the nacelle wind speed measurements. The
equivalent nacelle wind speed on the VG turbine after the VG
installation is supposed to be:

~V
POST
VG ¼ VPOST

VG � C: (5)

In order to assume the relationship in (4), the underlying
assumption is that the difference between VPOST

VG � VPRE
VG and

VPOST
Ctrl � VPRE

Ctrl , or equivalently, the difference between VPOST
VG � VPOST

Ctrl

and VPRE
VG � VPRE

Ctrl , is the consequence of the VG installation. This
assumption is, however, not always true. If the VG turbine is in the
wake of the control turbine during the PRE period but not in the
wake during the POST period, then, even without VG installation,
there is a difference between VPOST

VG � VPOST
Ctrl and VPRE

VG � VPRE
Ctrl . To

alleviate this problem, we first match the wind directions observed
during the PRE and POST periods. By doing so, one turbine is
exposed to the other turbine's wake at a similar frequency in both
periods, rendering the wind speed differences comparable on
average. In the following, we explain i) how to align the probability
densities of wind direction and ii) how to adjust the wind speed for
the VG turbine after VG installation.

3.1. Aligning probability densities of wind direction

Matching the wind direction is done in a probabilistic sense.
That is to say, we match the probability density function of the
wind directions in the PRE period with that in the POST period.

Let DPRE
i for i ¼ 1;…;nPRE and DPOST

j for j ¼ 1;…;nPOST denote

the wind direction measurements during the PRE and POST pe-
riods, respectively, where n denotes the number of data points with
the respective superscript indicating the period it corresponds to.
To align the probability densities for the two periods, a subset will
be taken from each period's dataset, so that the subsets have a
comparable probability density in terms of wind directions. This
can be achieved by matching individual observations in the POST
period with an observation in the PRE period based on their
observed wind directions.

Provided a DPOST
j , a dissimilarity score is calculated by

measuring how different it is from DPRE
i , for each and every

i ¼ 1;…;nPRE. We propose to use the dissimilarity score, Si, defined
below:

Si ¼
min

n���DPOST
j � DPRE

i

���;360�
���DPOST

j � DPRE
i

���
o

DPOST
j

: (6)

The dissimilarity scoremeasures the relative difference between
the two wind direction values. Because wind direction values are
circular in nature, the above formula makes sure that the largest
degree difference between two wind directions are 180� (namely,
opposite directions). Then, the wind direction in the PRE period
with the smallest Si is chosen as a candidate match for the jth wind
direction observation in the POST period. To avoid matching ob-
servations with an unsatisfactorily large dissimilarity score, the
candidate match is compared with a prescribed threshold, a; only
when the dissimilarity score is smaller than a, a match is declared.
Specifically, equation (7) below decides whichwind direction in the
PRE period matches the jth wind direction observation in the POST
period:

i�ðjÞ ¼ argmin
i2f1;…;nPREg

fSi : Si � ag: (7)

The threshold a can be determined as a fraction of the coeffi-

cient of variation, i.e., a ¼ c$ðsPOSTD =D
POSTÞ where D

POST
and sPOSTD

are the mean and the standard deviation of fDPOST
j ; j ¼ 1;…;nPOSTg,

respectively. Based on our experience, a c ¼ 0:25 provides a
reasonable match.

Once i�ðjÞ2f1;…;nPREg is chosen, the corresponding data point
in the PRE dataset is removed and will not be considered as a
candidate match to another observation in the POST period. Let J
define the set of the observations in the POST period that have a
match and I define the set of the matched observations in the PRE
period, i.e., the set of all i�ðjÞ's. Then, I and J are the respective
subset of the PRE and POST period; only the observations in the two
subsets are used to calculate the offset value C in the following
section.

3.2. Calculating the wind speed offset C

In addition to the influence of wind direction, the offset C also
depends on the wind speed value, meaning that the offset for wind
speed, say of 7 m=s, could be different from that for wind speed of
10 m=s. Because of this, we first bin the wind speed and then
calculate the bin-wise offset values to account for this in-
homogeneity across the wind speed spectrum. As the control tur-
bine is free of the VG effect rendering its wind speedmeasurements
more comparable between the PRE and POST periods, the reference
wind speed in our action of binning is that of the control turbine.

Denote m as the number of bins, with b ¼ 1;…;m as the index
for binning, and I b3I and J b3J the subsets of data belonging
to the b-th bin of the respective PRE and POST datasets. Let the
number of observations in I b and J b be nPREb and nPOSTb ,
b ¼ 1;…;m, respectively.

If equation (4) is true, then it implies C ¼ ½VPOST
VG � VPOST

Ctrl �
�½VPRE

VG � VPRE
Ctrl �. As such, the bin-wise offset Cb can be estimated by

using the sample averages as follows:

Cb ¼ 1
nPOSTb

X
j2J b

�
VPOST
VG;j � VPOST

Ctrl;j

�
� 1
nPREb

X
i2I b

�
VPRE
VG;i � VPRE

Ctrl;i

�
:

(8)

Once Cb's, b ¼ 1;…;m, are estimated, they are used to adjust the
wind speed measurements taken from the VG turbine during the
POST period, namely that for b ¼ 1;…;m,

~V
POST
VG;j ¼ VPOST

VG;j � Cb; if j belongs to bin b: (9)

In summary, the revised Kernel PLUS method entails the
following step:

1. Match the probability distribution of the wind direction in the
PRE and POST periods.
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2. Calculate the bin-wise wind speed offsets, Cb's.
3. Adjust the wind speed of the VG turbine in the POST period.
4. Apply the Kernel PLUS method as in [6].

The Kernel PLUS method can be individually applied to the VG
turbine data and the control turbine data, producing two per-
centage improvement values, DVG½%� and DCtrl½%�, respectively. Since
the power-vs-power approach reports the VG turbine improve-
ment relative to the control turbine, we recommend using the
difference, DVG½%� � DCtrl½%�, as the final Kernel PLUS's estimation of
the VG effect to make it consistent with that of the power-vs-power
approach.

4. Analysis outcome

In this case study, we have turbine pairs from two different wind
farms. Both wind farms are inland but of different terrain
complexity. Each farm presents four pairs of wind turbines, and
each pair comprises a control turbine and a VG turbine co-located
on a wind farm. The historian data was collected in high temporal
resolution (	 0:01� 1 Hz) with no averaging applied; this is the
high frequency data referred to earlier in this report. The 10-min
data is produced from the historian data. The power-vs-power
approach uses the high frequency data, whereas the Kernel PLUS
method uses the 10-min data. Periods that are known to be under
curtailment were manually excluded prior to the analysis. The two
teams conducted their studies independently. The datawas initially
provided by the respective wind farm operator to SMART BLADE,
who conducted their analysis first. Then, SMART BLADE provided
the data to the TAMU team for them to conduct the analysis using
the Kernel PLUS method. At that stage, SMART BLADE withheld
their own analysis results, meaning that the TAMU team conducted
its analysis without knowing SMART BLADE's estimates of the VG
effect.

4.1. Wind farm #1

The layout of the four turbine pairs on the first wind farm is
illustrated in Fig. 2. The wind farm is not on flat terrain but that of
Pair 4

Pair 1 Pair 2

Pair 3

Control 
VG

North

Wind Farm #1
Fig. 2. Layout of the four turbine pairs on wind farm #1. The distance among the
turbines are not scaled precisely, but their relative positions, as well as their locations
on the farm, reflect the reality. The between-turbine distances are expressed as mul-
tiples of turbine rotor diameter, d, as follows: Pair 1, 7d; Pair 2, 5:5d; Pair 3, 3d; and Pair
4, 4:5d. The met mast is directly north of all turbine pairs. Its distance to the turbine
pairs are: Pair 1 & Pair 2, 11 kilometers (km); Pair 3, 8.8 km; and Pair 4, 6 km.
medium complexity. The turbines on the farm belong to the general
2 MW turbine class. The VG installation took place in a summer
month of 2014, but it was conducted on different days for each of
the four VG turbines. There are six months of turbine data,
including wind speed and wind power, in the PRE period and 13
months of the data in the POST period. As mentioned before,
several of the environmental measurements, such as air density
and humidity, were taken from the mast. Mast data is available for
almost the same period of time; approximately six months in the
PRE period and 13 months in the POST period. Missing data is
common in all data sets and in both periods. Other details of the
datasets and turbines are withheld due to the confidentiality
agreement in place.

Because the nacelle wind speed is used in the Kernel PLUS
method, the wind speed correction procedure presented in Section
3.2 is used. The estimated VG effect on the four pairs of turbines is
presented in Fig. 3. Uncertainty quantification is conducted via the
bootstrap resampling method [15], and as such, 90% confidence
intervals are added in the plot on top of the respective mean esti-
mates. Understandably, the two sets of estimates are not exactly the
same, but they are reasonably consistent, especially in terms of the
relative significance of the VG effect on a specific turbine. The dif-
ference between the two sets of estimates are well within the
margin of error, and the overall difference between the two
methods, averaged over the four pairs of turbines, is about 0.86%,
with the Kernel PLUS slightly overestimating relative to the power-
vs-power approach.

4.2. Wind farm #2

The layout of the four turbine pairs on the second wind farm is
illustrated in Fig. 4. The wind farm is in a coastal area and on
relatively flat terrain. The turbines on the second farm belong to the
general 2 MW turbine class. The VG installation took place in
December of 2015, but it was also conducted on different days for
each of the four VG turbines. The duration of the common period
where both the turbine data and mast data are available is 3.5
months in the PRE period and onemonth in the POST period. In this
analysis, because the mast is close to the turbines, we use the wind
speed measurements from the mast. Of course, the rest of the
environmental measurements were taken from the mast as well.
The humidity was not measured on site. We therefore use the
average of the humidity measurements taken from two weather
stations, one located at 10 km north of the wind farm and the other
at 10 km east of the farm. Missing data is also common in all data
sets and in both periods. Other details of the datasets and turbines
are withheld due to the confidentiality agreement in place.

The estimated VG effect on the four pairs of turbines is pre-
sented in Fig. 5, in which the confidence intervals are computed via
a bootstrap resampling procedure. Again, we see consistent out-
comes from the two methods: the overall difference between the
two methods, averaged over the four pairs of turbines, is about
0.15%, with the Kernel PLUS still slightly overestimating relative to
the power-vs-power approach.

5. Discussion

Wewould like to stress themerit of this academia-industry joint
exercise: it presents a pair of methods to tackle a challenging, yet
critically important question in the wind industry. Despite the
profound difference in the underlying mechanism design and data
usage, the two methods produce consistent results on two wind
farm case studies, each of which presents four turbine pairs. We
want to emphasize that the raw data has a considerable amount of
noise. Yet, our two respective methods differ, on average, 0.86% and



Fig. 3. Estimates of the VG effects, together with the respective 90% confidence intervals, on the four pairs of turbines on wind farm #1.

North Control 
VG

Wind Farm #2

Pair 4

Pair 1

Pair 2

Pair 3

Mast

Fig. 4. Layout of the four turbine pairs on wind farm #2. The between-turbine dis-
tances are: Pair 1, 3d; Pair 2, 3:3d; Pair 3, 3:3d; and Pair 4, 3:7d. The met mast's distance
to the turbine pairs are: Pair 1, 0.2 km, Pair 2, 1.3 km; Pair 3, 3.6 km; and Pair 4, 1.3 km.

Fig. 5. Estimates of the VG effects, together with the respective 90% co
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0.15%, respectively, and no individual pair has a difference greater
than 1%. We hope that this consistency presents a degree of clarity
and credibility on the estimated VG effect and helps address the
validation difficulty in the general study of estimating the VG effect
in the field.

While bringing up the side-by-side approach in [6], the
academia authors of this report commented previously that “It
would be interesting and valuable to conduct a carefully devised
comparison study to determine which method [Kernel PLUS versus
side-by-side (or power-vs-power)] is more effective and robust in
practice.” We suppose that the case study presented here fulfills
that wish with the conclusion being, when carefully designed, that
the two methods could be both effective and produce comparable
results.

We call attention to the pros and cons of both methods. The
power-vs-power method is a data-driven method. The procedure is
nfidence intervals, on the four pairs of turbines on wind farm #2.
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simple and relies on fewer assumptions. We can see why practi-
tioners could be in favor of this approach. By using the high fre-
quency data and having a larger sample size, the power-vs-power
approach produces VG estimates with tighter confidence intervals.
The main assumption for the power-vs-power approach is that the
control and VG turbines are subject to comparable wind and
environmental conditions, which is ensured by using the data in
the valid wind sector and checking wind turbine operations. On the
other hand, the power-vs-power approach can only be used for a
pair of turbines. For small wind farms on which there are too few
turbines and no two of them form a reasonable pair due to, among
other reasons, the relatively large distance between them, the
power-vs-power approach will no longer be applicable.

The Kernel PLUS method can possibly be applied to a single
turbine when a control turbine does not exist. This explains why
the Kernel PLUS passed the blind test [7] in which no prior
knowledge of control and VG turbines was given and no turbine
pairs were provided. Yet, it is always beneficial to have a control
turbine, whenever possible, as an additional reference. The premise
of Kernel PLUS is that it controls for the influence of the environ-
mental factors through the learning of f ð,Þ, but the number of in-
puts currently included in f ð,Þ may not be comprehensive enough.
It is, of course, possible that measurements of certain environ-
mental factors are not available on a wind farm or, for the time
being, people may not realize the importance of other environ-
mental factors. Still, the studies conducted so far (here and previ-
ously) show that using the current six input variables produces a
remarkably competent model. The method itself, however, is
certainly open to accommodating other input variables as they
become available in operations.

For a wind farm without a mast or with a malfunctioning mast,
many of the environmental measurements may be unavailable.
This will make the Kernel PLUS inapplicable. The power-vs-power
approach can still be used without a mast. The approach does
need wind measurements, as wind direction is used in Step 1, and
wind speed (through the use of power curve) is used in Step 5, but
the wind measurements could be obtained at a nacelle instead of at
a mast.

The Kernel PLUS method makes a connection with the IEC
standard procedure. Briefly speaking, the Kernel PLUS method can
be considered as a generalization of the IEC procedure. As explained
in [7], the Kernel regression uses a smoothly curved window to
produce a weighted average of all the data points falling into that
window, whereas the IEC standard procedure can be viewed as
using a step-function window to produce an equally weighted
average (a step function gives equal weights to all data points in the
window); please refer to Fig. 5 in [7] for an illustration. In addition
to the window type difference, Kernel PLUS extends the input
dimensionality from one to multiple inputs. Combining these two
aspects, the IEC standard procedure can be considered as a one-
dimensional special case of the Kernel PLUS method using a step-
function window. Understanding this connection makes it easier
to appreciate why Kernel PLUS can do better where the IEC pro-
cedure falls short.

Onemore observationwewould like to discuss is that, while the
general understanding of the VG effect is an extra 1e5% power
production, we do see a greater than 7% improvement on Pair #3 of
Farm 1, but at the same time, a near 0% effect on Pair #4 of Farm 1.
As noted before, Wind Farm 1 is a medium complexity site that
makes the wind inflow conditions complicated. Our studies indi-
cate that the VG effect tends to be greater when the wind inflow
condition is more turbulent on a complex terrain. Because the IEC
recommends using the clean wind sector data that are less turbu-
lent, this partially explains why the IEC method, for VG effect
quantification, usually produces a smaller estimate of the effect.
The existence of this variation also suggests the importance of

testing on more than one pair of turbines to get a general sense of
the VG benefit through a site specific average, which, in this case, is
about 2.80% based on the power-vs-power approach and 3.66%
based on the Kernel PLUS. The range of site-averaged VG effects is
consistent with the current understanding in industrial practice. On
the other hand, the performance of the second site, which is flat
and at which wind inflow conditions are simpler and measured
with higher confidence, the VG effects fall into a much narrower
range, with the site average at 1.60% based on the power-vs-power
approach and 1.75% based on the Kernel PLUS method. The differ-
ence between the two methods tends to be greater when the
terrain is more complex and this tendency is more accurately re-
flected in the farm-level averages rather than in the difference
between an individual turbine pair.

Another reason for using site-specific averages for decision
making is because we do anticipate that the difference between the
two methods on some individual turbines may be greater than
those on others. But, the averaged difference from a few turbine
pairs on the same farm is more stable. The use of the farm-level
average irons out potential biases and reduces variability. The de-
cision for wind farm owners/operators is not whether to install VGs
on a particular turbine, but rather, whether to install VGs on the
tens or even hundreds of turbines on their wind farm. For that
purpose, the site-specific average is a more indicative metric.
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