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Abstract

The calibration of computer models using physical experimental data has received

a compelling interest in the last decade. Recently, multiple works have addressed the

functional calibration of computer models, where the calibration parameters are func-

tions of the observable inputs rather than taking a set of fixed values as traditionally

treated in the literature. While much of the recent works on functional calibration

was focused on estimation, the issue of sequential design for functional calibration still

presents itself as an open question. Addressing the sequential design issue is thus the

focus of this paper. We investigate different sequential design approaches and show

that the simple separate design approach has its merit in practical use when designing

for functional calibration. Analysis is carried out on multiple simulated and real world

examples.

KEY WORDS: Calibration, computer experiments, functional calibration, physical

experiments, sequential design.
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1. Introduction

Computer models are often used to mimic, understand and predict the behavior of complex

physical processes. Oftentimes, the computer models contain a set of physically unob-

servable variables referred to as the “calibration parameters.” The true values of these

parameters are unknown, but they can be estimated using physical and computer experi-

mental data such that the computer model aligns itself with its respective physical system.

Such procedure is known in the literature as “calibration.” Traditionally treated in the lit-

erature (Kennedy and O’Hagan 2001; Tuo and Wu 2015), the calibration parameters take a

set of unknown fixed values. In more recent works, multiple researchers consider the more

complicated circumstances where the calibration parameters are functions of the observable

inputs in physical reality (Pourhabib et al. 2015; Atamturktur et al. 2015; Plumlee et al.

2016; Pourhabib et al. 2016). In a physical experiment, the settings of the input variables

are to be chosen. In the computer experiments, however, the input variables and the cali-

bration parameters can be controlled independently. The focus of our paper is on the design

issue in the context of functional calibration, i.e, to investigate on how to sequentially gen-

erate designs for the physical and computer experiments, such that the estimation of the

functional calibration parameters leads to a good alignment between the computer model

outputs and their physical counterparts.

Let us illustrate the problem setting using the buckypaper fabrication experiments

(Wang et al. 2004). Buckypaper is made of carbon nanotubes and has desired proper-

ties such as high tensile strength, relative to the thinness and light weight of the resulting

buckypaper. To enhance the material’s tensile strength, the polyvinyl acid (PVA) is added

to the buckypaper and functions like glue. An important task in the fabrication process

is to understand and test the effect of PVA on the strength of the buckypapers. For that

purpose, a finite element analysis (FEA) model was developed to simulate the response

of the buckypaper’s tensile strength under different PVA levels (Wang et al. 2017). This

computer model is to be calibrated using the outputs from a set of physical experiments.

The nominal amount of PVA is one of the dominating input factors, affecting the result-

ing tensile strength. Materials engineers running the experiments realize that in addition to
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the nominal PVA amount, its absorption rate by the host material also affects the resulting

tensile strength significantly (Pourhabib et al. 2015). The absorption rate, however, is not

physically observable, and instead of being a fixed value over the whole input spectrum, it

depends on the nominal PVA amount mixed with the host material. As such, the absorption

rate is in fact a function of the observable input, i.e., the PVA amount. This dependency

is understandable, because as more PVA is mixed with the hosting material, the absorp-

tion rate tends to decrease and the PVA effect appears saturated. The exact functional

relationship between the PVA amount and the absorption rate is unknown but is likely of

a nonlinear form. In the physical experiment, only the PVA amount can be chosen, while

in the computer model, the absorption rate can also be freely and independently set, just

like another input, in addition to the PVA amount.

In general terms, the design problem under consideration is as follows: a) The physical

experiment has a set of input variables, x = (x1, x2, ..., xp)
T , that can be observed and

adjusted during experimentation. Selecting the settings of x of dimension p constitutes a

design, denoted by DP (x), where the superscript P refers to the design peculiar to the

physical experiment. b) The computer experiment on the other hand, in addition to the

same input vector x, includes a set of extra inputs, θ = (θ1, θ2, ..., θc)
T , referred to as the

calibration parameters. The design of the computer experiment is to select the settings

for both x and θ of a combined dimension p + c and the design is denoted by DS(x, θ),

where the superscript S refers to the design associated with the computer experiment. c)

In physical reality, the calibration parameters θ are functions of the observable inputs x,

i.e. they are functional parameters, rather than just taking on a set of fixed scalar values.

In the buckypaper example, x = (PVA amount), θ = (absorption rate), p = 1, and c = 1.

Closely related to our problem in the sequential design literature is the sequential design

of multi-fidelity (or multi-accuracy) computer-vs-computer experiments, in which sequential

nested design-based strategies (Xiong et al. 2013; Le Gratiet and Cannamela 2015) are

proposed. The core idea of nested designs is to generate small designs that are nested

within larger designs. Small design(s) suggest sampling locations for the more expensive,

high-fidelity computer experiments, whereas larger design(s) correspond to cheaper low-

fidelity computer experiments. Specifically, Xiong et al. (2013) propose a sequential design
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method for two-fidelity computer experiments based on the properties of augmentation and

nesting of Latin hypercube designs (LHD). Le Gratiet and Cannamela (2015) propose a

co-kriging-based nested design method in which not only the sampling locations for each

fidelity level of the computer experiments are sequentially suggested, but also the decision

concerning which fidelity level to execute in the next step is considered.

The nested designs are well suited for the circumstance of the computer-vs-computer

experiments, where the input design regions for computer experiments at different fidelity

levels have the same number of input variables. The physical-vs-computer experiments

circumstance, as we are considering here, have different-sized input spaces for the two

types of experiments, due to the presence of calibration parameters. Furthermore, as in

the buckypaper example explained above (Pourhabib et al. 2015), as well as in several

engineering applications reported in the literature (Bayarri et al. 2007; Atamturktur et al.

2015; Brown and Atamturktur 2018; Plumlee et al. 2016; Pourhabib and Balasundaram

2015; Pourhabib et al. 2016), the calibration parameters can be functions of the observable

inputs. This setting creates a sequential design problem that the nested designs could

not adequately handle. In fact, our analysis shows that the traditional sequential designs

applied separately to each type of experiment could be more effective in many practical

circumstances. Our study investigates the conditions under which a separate design may

be preferred in practice. The insight garnered in this study, namely the merit of the separate

designs for functional calibration, is generalizable to the case where the outputs of a physical

experiment are integrated with multiple levels of computer codes, as in Goh et al. (2013).

The remainder of this paper is organized as follows. Section 2 provides a review of the

calibration literature as well as the sequential design of experiments. Section 3 discusses

the limitations of the nested designs and the merits of the separate design approach for

functional calibration. In Section 4, we introduce a simple extension of Xiong et al. (2013)

to account for the existence of calibration parameters. Two case studies are presented in

Section 5 to demonstrate the merits of sequential design in real-world problems. Section 6

concludes the paper.
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2. Literature Review

The scope of this work lies at the intersection of sequential experimental design and cali-

bration of computer models. This section provides a review of the related background.

2.1 Calibration of computer models

In many real world applications, data could come from more than one source. For instance,

data could come from multi-accuracy computer codes (Kennedy and O’Hagan 2000; Qian

et al. 2006; Le Gratiet and Garnier 2014), or computer codes with tunable precision (Picheny

et al. 2013; Tuo et al. 2013, 2014), or multi-resolution physical processes (Xia et al. 2011),

or the situation where physical and computer simulation data are integrated (Kennedy and

O’Hagan 2001; Reese et al. 2004; Qian and Wu 2008; Joseph and Melkote 2009; Li et al.

2016). Goh et al. (2013) further consider the integration of the output of a physical process

with the outputs of multiple computer codes. In this paper, we are specifically concerned

with the design issues that arise during the integration of computer experiment data with

those coming from a physical system for the purpose of calibrating the computer model.

Denote by x ∈ Ω the vector of explanatory and physically-observable variables, where

Ω is a compact and convex subset of Rp. Denote by yP and yS , respectively, the responses

of the physical and computer experiments. Kennedy and O’Hagan (2001) propose a linkage

model, as in Equation (1) below, to connect the two responses:

yP (xi) = ρyS(xi, θ) + γ(xi) + ei i = 1, . . . , n, (1)

where ρ is a scale coefficient, γ(·) is a bias correction term, ei is the i.i.d zero-mean normally

distributed random variable representing the observational noise, and θ is the calibration

parameter. Recall that the calibration parameters are model attributes that cannot be

physically measured or observed, but can be included in the computer model and easily

manipulated in computer experiments. Hence, yS becomes a function of x and θ. Tech-

nically, yP is also a function of x and θ, but because θ is not physically observable, the

convention is to express yP only in terms of x.
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In most applications, the computer model’s response cannot be evaluated an infinite

number of times. A common approach is to interpolate the missing values by constructing

the unknown function yS(·) using a surrogate model. Oftentimes, yS(·) and γ(·) are both

modeled as independent Gaussian processes. Gaussian process regression is a common tool

in the computer experiment literature to reconstruct an unknown function based on a set

of observations (Santner et al. 2003). A key issue in fitting a Gaussian process is to model

the covariance structure across the domain of x ∈ Ω. Assuming isotropy, the squared

exponential covariance function is a popular choice (Rasumussen and Williams 2006).

In Kennedy and O’Hagan (2001), θ is estimated through a Bayesian framework. Assum-

ing ρ = 1, Tuo and Wu (2015) proposed to estimate θ by minimizing the distance between

the two responses evaluated at a set of commonly sampled locations xP , that is,

θ∗ = arg min
θ∈Θ

||yP (xP )− yS(xP , θ)||L2(Ω), (2)

where ||.|| is the L2 norm. The prediction at any untried location x′ is computed by simply

plugging the values of x′ and θ∗ into the model of Equation (1).

Equation (2) assumes that the calibration parameter takes on a fixed value, regardless of

the values of the observable inputs x. We refer to this case, where θ = θ∗, ∀ x ∈ Ω, as fixed-

value calibration. However, several engineering applications have been recently reported

in the literature that explicitly mention the existence of a functional relationship between

calibration parameters and observable variables (Bayarri et al. 2007; Pourhabib et al. 2015;

Pourhabib and Balasundaram 2015; Atamturktur et al. 2015; Brown and Atamturktur 2018;

Plumlee et al. 2016). Setting it apart from the fixed-value calibration, this case is referred

to as functional calibration, since θ becomes a function of x but the functional form is

unknown prior to the execution of experiments, data collection, and parameter estimation.

Obviously, fixed-value calibration, which assumes θ is a constant function of x, is a special

case of functional calibration.

For functional calibration, Pourhabib et al. (2015) and Atamturktur et al. (2015) pro-

pose parametric approaches in which θ = θ(x) assumes a parametric functional form and

the parameters therein are estimated by minimizing a distance function. Recently, several
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lines of research have been conducted for developing nonparametric functional estimations

of θ(x) (Plumlee et al. 2016; Brown and Atamturktur 2018; Pourhabib and Balasundaram

2015; Pourhabib et al. 2016). Specifically, Pourhabib et al. (2016) extends Equation (2)

to the functional calibration case by replacing the scalar parameter θ by the functional

parameter θ(x), employing the sample average instead of the L2 integral and adding a reg-

ularization term. As such, the functional calibration formulation proposed by Pourhabib

et al. (2016) is to minimize a penalized distance function given {(xPi , yPi , ySi ); i = 1, 2, .., nP },

as in Equation (3):

θ̂(·) = arg min
θ(·)

1

nP
ΣnP

i=1

{
yP (xPi )− yS(xPi , θ(x

P
i ))

}2

+ λΣq
j=1||θj ||

2
NKj

, (3)

where each θj lies in a reproducing kernel Hilbert space such that NKj(Ω) is the native

space generated by the kernel function Kj(·, ·) with the corresponding norm ||θj ||NKj
as a

measure of roughness of the jth component of θ(·) and λ is a smoothing parameter. While

the functional estimation in Equation (3) may not be universally accepted, it is still a

useful and sensible estimator. Therefore, we adopt this specific nonparametric functional

calibration method to be used for our later design tasks.

If yP and yS are not evaluated at the same set of locations, a reasonable approximation

is to use the surrogate model predictions as a substitute for the true value of the computer

model response in Equations (2) and (3). Such a situation occurs when the computer

model’s response is not sufficiently cheap or when the design generation for the physical

and computer experiments is conducted separately.

2.2 Sequential Design of Experiments

Sequential sampling strategies can be classified, depending on the experimental objective,

into designs for optimization, which attempt to sample at locations that optimize a target

response, and designs for exploration, which are concerned with optimally exploring a

response surface. For instance, the expected improvement criterion is a design strategy

for optimization that sequentially selects points to maximize/minimize a response (Jones

et al. 1998; Williams et al. 2000). On the other hand, Maximum Entropy Sampling (MES)
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(Shewry and Wynn 1987), Active Learning Mackay (Mackay 1992) and Active Learning

Cohn (Cohn et al. 1996) are information-driven criteria that optimally explore a response

surface. Latin hypercube designs (Mckay et al. 1979), distance-based designs (Johnson

1990) and uniform designs (Fang 1979) spatially fill the input space for exploration purposes.

In particular, we review the Maximum Entropy Sampling (MES) criterion for its rele-

vance to the learning framework of this paper, its suitability for designing both physical and

computer experiments, and its easy adjustability to accommodate sequentiality. MES sug-

gests sampling at locations which maximize the information gain about the model param-

eters. The expected information gain achieved by conducting an experiment is quantified

as the expected difference between the amount of information prior to and post sampling.

Shewry and Wynn (1987) prove that the maximal information gain is achieved by sampling

at locations which maximize the entropy of the observed responses, hence absorbing more

in-sample variability. When using a Gaussian process to model the response, maximizing

entropy simplifies to maximizing the determinant of the correlation matrix (Shewry and

Wynn 1987; Gramacy and Lee 2009; Tuo et al. 2014). A sequential MES strategy is to fix

the already-sampled locations and optimize over the remaining sample space.

An emerging field that is related to our problem setting, is the sequential design of multi-

fidelity computer-vs-computer experiments. Xiong et al. (2013) propose a sequential design

framework for a pair of computer experiments with varying accuracies based on nested

Latin hypercube design. Nested LHDs were originally proposed by Qian (2009) allowing

smaller LHD’s of n runs to be augmented to larger LHDs with m = sn runs, where s ∈ Z+

is the data ratio of the small-to-large LHDs. In their proposed method, Xiong et al. (2013)

suggest that small LHDs correspond to the locations at which the high-fidelity computer

experiment response is evaluated, whereas the low-fidelity computer experiment response,

being cheaper, is obtained at the locations suggested by larger LHDs. The high and low-

fidelity outputs are then integrated using a linkage model, as the one proposed in (Kennedy

and O’Hagan 2000), and the nesting step is repeated in a sequential experimental fashion,

until the integrated model reaches a pre-set accuracy or a pre-determined design size.
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3. Separate and Nested Designs for Functional Calibration

Section 3.1 discusses the limitations of nested designs in the presence of functional calibra-

tion parameters. Section 3.2 takes a closer look at the separate design approach, a simple

design strategy that is effective for functional calibration. In Section 3.3 and 3.4, numerical

analyses are conducted to demonstrate the points thus discussed.

3.1 Nested design and its limitations

With the presence of calibration parameters, DS(x, θ) has a higher dimension than DP (x).

In order to apply the nested design, a straightforward treatment is to leave out the cali-

bration parameters in the design stage and restrict the nested design to the common set of

variables in x. Such a design enables the evaluation of yP (x) but not of yS(x, θ), as θ is

not specified in the design stage. A simple adjustment is to “fill out” the missing samples

of θ by using randomly selected values.

The nested design approach is not desirable when designing physical-vs-computer ex-

periments, for three reasons. First of all, a common feature of computer experiments is

that the input factors can be set to any arbitrary level at no cost. In a nested design, the

high-fidelity computer experiment design is a less dense version of its low-fidelity counter-

part and both responses would be evaluated at the exact sampling locations suggested by

the high-fidelity design. In a physical experiment, however, it is not easy to set the factors

as accurate specific values, which makes continuous designs like the LHDs, and naturally

the nested LHDs as well, less practical in the design of physical experiments. The contin-

uous designs could suggest sampling locations for which the physical response cannot be

evaluated.

Second, calibration parameters are present in the physical-vs-computer experiments.

The existence of calibration parameters creates a dimensionality mismatch between the

two sets of designs, deeming the nested design in its current form impractical, and a ran-

dom sampling treatment inevitable, as the one described above. Moreover, the calibration

parameters can take on a functional form, as the buckypaper example shows, and as such,

their functional estimation could heavily rely on the quality of the input designs.
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Third, the data ratio parameter s in a nested design can only take positive integer val-

ues, namely s = {2, 3, . . .}. Given the high cost that is often associated with the physical

experiments as in the case of the buckypaper fabrication, it is impractical to set the pa-

rameter s to a value higher than 2. A large value for s makes the size of the design for the

physical experiments increase drastically and the design would quickly become infeasible,

because the current design for the computer experiment becomes the design for its physical

counterpart in the next iteration of the sequential procedure. Practically, the data ratio

parameter s is fixed at the value of 2 throughout the sequential design process, but doing

so takes away the flexibility of varying the data amount ratio, when needed, to achieve a

better physical-to-simulation data balance.

3.2 Separate designs for calibration

As its name implies, separate design handles the physical and computer experiment designs

independently through two separate sequential design processes. The integration between

the two designs takes place in the linkage modeling step as opposed to in the design phase.

The steps of generating a separate design are explained in Algorithm 1. Here, one could

use two different design methods, MP and MS , to generate the physical and computer

simulation designs, respectively, depending on the application of interest. For instance, an

experimenter can choose a classical factorial design for the physical experiment, while using

a space-filling design for the computer experiment.

Admittedly, the separate design is a naive approach. But surprisingly, when designing

for functional calibration, separate designs could have desirable properties in practice. Sep-

arate designs generate the physical and computer experiment designs without concerning

the dimensionality constraint, enabling reliable calibration, whether constant or functional,

using Equations (2) and (3), respectively. Moreover, as shown in Algorithm 1, separate

designs give the experimenter the choice of different design strategies for the physical and

computer experiments. Given the different nature of the physical and computer experi-

ments, such advantage can be meaningful in practice. Additionally, separate designs en-

tertain a full flexibility in varying the physical-to-simulation data amount ratio at each

iteration of the sequential procedure, which is a flexibility lacking in the nested designs.
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Algorithm 1 Separate sequential design for physical-vs-computer experiments with func-
tional calibration parameters.

0. Set the design threshold NP .
1. Let d = p + c, where p and c are the number of observable variables and calibration

parameters, respectively.

2. Specify the sampling methods, MP and MS , used to generate the physical and
computer experiment design points, respectively.

3. At i = 1, randomly initialize a p-dimensional design for DP
i and a d-dimensional

design for DS
i .

repeat
4. Evaluate yP and yS associated with DP

i and DS
i , respectively.

5. Estimate θ(x) by solving Equation (3).
6. Integrate the physical and simulation data using Equation (1).
7. Use MP to find xPnew and MS to find (xS , θS)new. Concatenate DP

i and xPnew
to form DP

i+1, and DS
i and (xS , θ)new to form DS

i+1. Now, nP is set to
the current number of design points in DP

i+1.

until nP ≥ NP

One of the drawbacks of separate designs, however, is that such designs cannot ensure

that yP and yS are evaluated at the same locations xP , which is required in the linkage

phase. When there is no observed yS at a location, the prediction based on its surrogate

model is then used as a substitute in the linkage model. Nested designs, on the other hand,

were specifically devised to ensure the co-location of yP and yS at xP ’s through the nesting

property, so that the substitution of yS by ŷS is not needed. On the other hand, nested

designs are not entirely free of involving a surrogate model, as the inclusion of calibration

parameters into nested designs requires the use of surrogate model predictions to enable

the estimation of calibration parameters. Separate designs also do not consider the relative

location of DS(x) \ DP (x) with respect to DP (x), while nested designs account for such

relative design configuration which provides a higher explorative capability for the input

space of the observable variables.

It is apparent that in the presence of calibration parameters, separate and nested designs

could have their own pros and cons. A question of interest is to investigate the merits of

each strategy with respect to the calibration framework. Our research suggests that three

performance influencing factors should guide the choice of the appropriate design approach.

The three factors are: the computer experiment data amount nS , the physical data amount
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nP , and the form of the calibration parameter θ.

As more computer experiment data become available, that is, nS gets larger, the con-

fidence in a trained surrogate model to accurately reconstruct the unknown function yS(·)

increases. When ŷS ≈ yS , the adverse impact due to lacking co-location of inputs that

separate designs suffer from, is reduced. This observation suggests that the performance of

separate designs improves when nS is large. This condition can be easily satisfied when the

computer experiment is cheap, because it can be executed in a large number of runs. The

total flexibility of the physical-to-simulation data ratio in separate designs makes it possi-

ble to take full advantage of a cheap computer experiment at each iteration in a sequential

procedure, as opposed to nested designs that restrict the data ratio to 1-to-2.

The performance of separate designs also tends to improve when the amount of physical

data, nP , is large. Considering the cost of physical experiments relative to their computer

experiment counterparts, the amount of computer experiment data will be even greater

when there are plenty of physical data. Following the logic explained above, the disadvan-

tage of separate designs in terms of lacking the co-location is then greatly alleviated. In

the meanwhile, larger sample sizes of both physical and computer experiment data improve

the quality of estimation of the calibration parameters, especially if they are of a func-

tional form, e.g., the θ(x) in the buckypaper example. In general, functional estimations

are known to be data-dependent/intensive. Nested designs, which do not account for the

presence of calibration parameters in the design stage and do not make use of a cheaper com-

puter experiment by acquiring more data, can be prone to poor functional estimation. It is

therefore not surprising that nested designs are often followed by estimating a constant θ∗

through the fixed-value calibration. In the separate designs, on the other hand, the calibra-

tion parameters are considered as part of the design inputs and the physical-to-simulation

data balance could be adjusted accordingly to ensure a good estimation capability even for

functional calibration.

The discussion on the above two factors leads us to expect that when θ is of a functional

form, the separate designs allow for a better performance than the nested designs as the

sequential procedure progresses and the data amounts get greater, which we do observe in

our numerical analyses. On the other hand, in the simple and traditional case, where θ

12



has a fixed and unknown value, we should not expect a notable difference between the two

approaches.

The third performance-influencing factor is the form of the calibration parameter in the

application of interest. Naturally, a complex functional relationship θ(x) needs more care in

selecting the sampling locations. In the meanwhile, it becomes less reasonable to assume it

a fixed constant as in the fixed-value calibration formulation. We therefore expect separate

designs which are suitable for the more general functional calibration setting to show a

greater advantage over nested designs when θ(x) is of a nonlinear form with increasing

complexity.

3.3 Numerical analysis

To demonstrate the above-mentioned points, consider the following simulated example

where the physical response is given by yP = exp( x10) sin(x)+ε, and ε ∼ N (0, 0.05). The as-

sociated computer model is imperfect and its response is given by yS = exp( x10) sin(x)( x2θ )−

(x−1
9 )2. The true function relating the observable variable x ∈ [π, 3π] to the calibration

parameter θ ∈ [0.5π, 1.5π] is θ(x) = x
2 . The physical, computer simulation and calibration

response surfaces are illustrated in Figure 1.

Figure 1: The simulation response as a function of both x and θ in 3D, the physical response
as a function of x only (dashed line), and the calibration function θ(x) (crosses).

We compare three approaches, which are: a separate design followed by functional

calibration, a separate design that uses cheap computer experiments followed by functional
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calibration, and a nested design followed by fixed-value calibration. The three approaches

are simply referred to as the separate design, the cheap separate design, and the nested

design, respectively.

For the separate design approaches, the MES criterion is used to generate two individual

designs of different dimensions, namely a 1-D design for x and a 2-D design for (x, θ). The

two designs are then fed into the functional calibration by solving Equation (3). Prediction

at a new location x′ is computed by plugging (x′, θ(x′)) into a Gaussian process model,

trained on the computer experiment data {(xSi , θi, ySi ); i = 1, .., nS} and adjusted by the

physical responses. For the nested design approach, we generate a 1-D nested LHD for

x. A vector of random values is chosen for the calibration parameter for the purpose of

evaluating yS(x, θ). We then use the physical and computer experiment responses to find a

fixed constant θ∗ that minimizes Equation (2). Prediction at a new location x′ is then made

by plugging (x′, θ∗) into the Gaussian process model, trained on {(xSi , θi, ySi ); i = 1, .., nS}

and adjusted by the physical responses.

In the approach besides the cheap separate design, the prediction performance is eval-

uated at sample sizes of proportional physical-to-simulation ratios, namely (nP , nS) = {(1,

2); (2, 4); (4, 8); (8, 16); (16, 32); (32, 64); (64, 128)}. Those sample sizes are chosen

to maintain the amount ratio constrained by the nested LHDs. In the cheap separate

design, because obtaining computer experiment data is assumed to be relatively cheaper,

the physical-to-simulation data ratio is no longer restricted to 1-to-2. Specifically, we fix

nS = 128 at each iteration regardless of the physical data amount used.

For the purpose of comparison, 3 random test sets, each with 10 points uniformly

spread over the input region and 3 random design sets, are used. Given a set of design

points, the physical and computer experiment data are generated and the trained linkage

model of Equation (1) is used to make predictions at each of the 10 points in one of

the test sets. Then, a root mean squared error (RMSE) is computed for this design-test

combination. Repeat this process for all nine design/test combinations for each design

scenario. Eventually, the average root mean squared error from all nine combinations along

with its standard deviation, are reported as the performance measure of a design approach.

Figure 2 presents the performance of each design approach as the data amount increases,
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in which the horizontal axis is the amount of the physical experiment data, nP . The sep-

arate design and nested design approaches have a specific corresponding nS that increases

proportionally with nP . We note that the nested design outperforms the separate design

at the small sample sizes. As the data amount increases, however, this order is reversed.

The superiority of a functionally calibrated separate design over a fixed-value calibrated

nested design is much as anticipated. The cheap separate design further demonstrates the

advantage of separate designs: in relaxing the data ratio constraint, RMSEs can be further

lowered.
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Figure 2: The average RMSE and its standard deviation of different design approaches as
the data amount increases. SFC: Separate design followed by functional calibration; SFC-2:
Separate design that uses cheaper computer experiments followed by functional calibration;
NFVC: Nested design followed by fixed-value calibration.

We would like to further demonstrate the message using examples of higher dimensional

inputs. We consider two additional simulated examples of higher dimensions. For the second

simulated example, the physical design consists of two observable variables (p = 2), denoted

by x1 and x2, and the physical response is given by yP = exp(x110 ) sin(x2)+ε, ε ∼ N (0, 0.05).

The simulation design consists of two observable variables and one calibration parameter,

where the simulation response is given by yS = exp(x110 ) sin(x2)(x22θ ) −
√

x2
5 , such that

θ(x2) = x2
2 is a linear univariate function, (x1, x2) ∈ [π, 3π], and θ ∈ [0.5π, 1.5π]. In the third

simulated example, the physical design consists of four observable variables (p = 4), where

the physical response is given by yP = 0.25x2
1 + 0.75x2 + 0.5x3 + 0.25x4 + ε, ε ∼ N (0, 0.05).
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The simulation design consists of four observable variables and one calibration parameter,

where the associated response is given by yS =
(x21+3x2)2

8θ + 0.5x3 + 0.25x4− x1x2
5 , such that

θ(x1, x2) =
x21+3x2

2 is a bivariate quadratic function, (x1, x2, x3, x4) ∈ [1, 2], and θ ∈ [2, 3.5].

Figure 3 presents the comparison between the separate design and the nested design for

these high-dimensional examples. It is apparent that the findings suggested in the single

dimension simulated examples are extendable to their high-dimensional peers. Moreover, it

appears that, as the calibration function θ(x) takes on a more complicated functional form,

as the one in the third simulated example, the advantage gained by adopting the separate

design appears to be more notable.
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Figure 3: The left panel is for p = 2 and the right panel is for p = 4. SFC: Separate design
followed by functional calibration; SFC-2: Separate design that uses cheaper computer
experiments followed by functional calibration; NFVC: Nested design followed by fixed-
value calibration.

To summarize the analysis, a separate design is expected to be more advantageous than

a nested design in the intermediate and later stages of a sequential design procedure. The

merits of a nested design are continuously taxed by its inability to capture the nature of

the calibration parameter and its constrained physical-to-simulation data ratio. Generally

speaking, only when data-scarcity of both sets of experiments is the dominant trait would

a nested design provide a relatively competitive performance. On the other hand, if the

computer experiment data is significantly cheaper than their physical counterparts, a sep-

arate design is preferred for its ability to exploit the information in a denser computer

experiment design grid. Moreover, if θ(x) is known a priori to be sufficiently complex, the

advantage brought by separate designs in capturing this relationship ultimately favors its
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Scenario Formula

1. yS = exp( x10) sin(x)( x2θ )
2. yS = exp( x10) sin(x)( x2θ )− 0.25
3. yS = exp( x10) sin(x)( x2θ )− (x−1

9 )2

Table 1: Response functions for the computer models.

use over nested designs. In practice, a calibration parameter θ(·) is oftentimes known to be

functional but its specific form is unknown. Then, it is safer to employ the separate design

strategy under such circumstance.

3.4 Further Discussion

In this subsection, we discuss the issue of identifiability, which has been repeatedly raised

in the calibration literature (Loeppky et al. 2006; Arendt et al. 2012; Tuo and Wu 2015).

Simply speaking, identifiability arises in the context of calibration, when the computer

model’s deviation from the physical system is sufficiently sizeable, deeming the effect of

the calibration parameter and that of the model bias indistinguishable. In order to explore

that issue, we compare three variants of the first simulated example presented in Section

3.3. The three variants have the same physical response given by yP = exp( x10) sin(x) + ε,

and ε ∼ N (0, 0.05), but the associated computer models are different and their response

functions are given in Table 1.

In the first scenario, the computer model has no model bias and the only source of dis-

crepancy between the simulation and physical system comes from the unknown calibration

parameter. Should the true θ(x) be known, the outputs from the computer model would

exactly match those of the physical system. The second and third scenarios represent the

response functions of an “imperfect” computer model, in which there is an inherent bias

between the simulation and physical responses. The third scenario includes a model bias

term of a complex functional form; this third scenario is what was used in the study in Sec-

tion 3.3. Given these three scenarios, we take a deeper look into the functional calibration

estimation procedure, as well as the resulting predictive performance.

Specifically, we compare the three scenarios in Figure 4 using two metrics: the cal-

ibration error and the model prediction error. The calibration error, denoted by Errc,
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represents the discrepancy between the estimated and the true calibration parameter, as

defined in Equation (4).

Errc =

√∑nP

i=1

[
θ(xPi )− θ̂(xPi )

]2
nP

. (4)

The prediction error, in RMSE, measures how well the calibrated response surface

predicts the true response at the test locations. This is the same metric presented in

Figures 2 and 3 of Section 3.3.
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Figure 4: The left panel presents the calibration error, whereas the right panel presents the
prediction error for the three scenarios. Zero bias scenario: blue; constant bias scenario:
green; and variable bias scenario: red.

By looking at the left panel of Figure 4, we note that the calibration error increases

as the model’s bias takes on a more severe and complex functional form, with the lowest

error associated with the unbiased computer model across all sample sizes. As the sample

size gets larger, i.e., more information about both the physical and simulation models is

acquired through sequentially adding more design points, it appears that this effect does

not vanish, but it is mitigated. This is understandable, since identifiability issues are not

directly resolved by simply adding more design data, as concluded by Arendt et al. (2012).

In the right panel, the three scenarios perform comparably when it comes to prediction

accuracy.

The observation leads us to conclude that for imperfect computer models with sizeable

model bias, a perfect estimation of the calibration parameters is not necessarily achievable;

18



that is to say, making reliable inference about the calibration parameters cannot be guaran-

teed. We understand that making inference about calibration parameters, especially when

they are physically meaningful, is sometimes desirable in engineering applications. On the

other hand, the goal of calibration, in many other applications such as originally introduced

in Kennedy and O’Hagan (2001), is to align the computer model with the physical system.

Such objective appears achievable, even in the presence of sizeable computer model bias.

For the buckypaper fabrication example, an enhanced prediction as achieved by the cali-

brated computer model can help decide the optimal amount of PVA to be added, while a

biased, imperfect estimation of the absorption parameter, in and by itself, does not harm

the decision making process.

4. Nested Designs with Functional Calibration Parameters

One of the motivations behind using separate designs is its ability to account for the di-

mensionality difference between the physical and computer experiment data in the presence

of calibration parameters by generating two respective optimal designs. Here we propose a

simple extension of the nested design by Xiong et al. (2013) so that the extended version can

accommodate calibration parameters in the design phase, thus exploiting other advantages

offered by the nested designs.

Recall that we have p input variables and c calibration parameters. We are interested in

designing a sequential selection strategy that generates a p-dimensional physical experiment

design and a d-dimensional computer experiment design at each iteration, such that d =

p+ c. We call the resulting approach a functional calibration nested design.

Specifically, at the first iteration of the sequential procedure, a pair of d-dimensional

nested LHDs are generated using the method of Xiong et al. (2013), such that DP
1 ⊂

DS
1 . Then, DP

1 is projected onto the p-dimensional design subspace of input variables

to form the physical design, D̂P
1 . The physical and computer experiment responses are

evaluated at the projected D̂P
1 (x) and DS

1 (x, θ), respectively. The two sets of responses are

then fed to Equation (3) to estimate the functional calibration. Subsequent experiments

in the sequential procedure can be conducted using the augmentation property, namely
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augmenting DS
1 to a larger LHD to form DS

2 , and then, letting DS
1 be DP

2 , whose projection

into the p-dimensional subspace forms again the corresponding physical design D̂P
2 . The

steps of generating a functional calibrated nested design are presented in Algorithm 2.

Algorithm 2 Functional calibrated nested design

1: Set design threshold NP . Let d = p + c, where p and c are the number of observable
variables and calibration parameters, respectively.

2: At i = 1, initialize a pair of d-dim nested LHDs {DP
i , D

S
i } such that DP

i ⊂ DS
i .

3: Project the d-dimensional design DP
i onto a p-dimensional space to obtain D̂P

i (x).
4: repeat
5: Evaluate yP and yS associated with D̂P

i and DS
i , respectively.

6: Feed D̂P
i and DS

i into a functional calibration estimation to estimate θ(x) by solving
Equation (3).

7: Integrate the physical and simulation data using Equation (1).
8: Let DP

i+1 = DS
i , project DP

i+1 onto the p-dimensional space to form D̂P
i+1 and enlarge

DS
i to form a larger LHD DS

i+1. Now, nP is set to the current number of design

points in D̂P
i+1.

9: until nP ≥ NP

We illustrate the merit of the functional calibration nested design approach in terms

of its predictive performance, likewise defined in Section 3.3. At sample sizes of (nP , nS)

= {(1, 2); (2, 4); (4, 8); (8, 16); (16, 32); (32, 64); (64, 128)}, Algorithm 2 is employed

to generate the respective physical and computer experiment designs, which are fed to a

functional calibration, as in Equation (3).

Figure 8 presents the comparison between the functional calibration nested design with

aforementioned three other approaches, using the three sets of simulated data from Section

3.3. Overall, the functional calibration nested design outperforms the earlier version of the

nested design in nearly all data sizes. The most noticeable benefit of the functional cali-

bration nested design is that it can improve upon the separate design at the regions where

physical data size is small, so that the functional calibration nested design performs more

robust than the separate design. The functional calibration nested design also competes

with the cheap separate design in most of data sizes, except where physical data size is

small. The functional calibration nested design keeps the data ratio restriction and does

not take the full advantage of the abundance of cheap computer experiment data even if

they are available; this restriction apparently hurts all forms of nested design, albeit at an

alleviated degree for the functional calibration nested design.
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Figure 5: Comparison of the functional calibration nested design versus the other three de-
sign approaches using the three simulated datasets, where p = 1 (left panel), p = 2 (middle
panel) and p = 4 (right panel). SFC: Separate design followed by functional calibration;
SFC-2: Separate design that uses cheaper computer experiments followed by functional
calibration; NFVC: Nested design followed by fixed-value calibration; NFC: functional cal-
ibration nested design.

5. Case Studies

In this section, the merit of the sequential separate designs in the presence of functional

calibration parameters is demonstrated using two real-world examples. The first example

is the fabrication process of PVA-treated buckypaper, which involves a 1-D physical design

and a 2-D computer simulation design. The second example is a resistance spot-welding

experiment, which involves a 2-D physical design and a 3-D computer simulation design.

5.1 Buckypaper fabrication

We briefly explained the buckypaper fabrication process in Section 1, the full details can be

found in Wang (2013). Its computer simulation model (Wang et al. 2017) is based on a finite

element analysis, in which each carbon nanotube is treated as a bar with certain length

and diameter. Tens of thousands of the nanotubes are randomly simulated with varying

sizes, locations and orientations in the hosting epoxy resin matrix. The effect of PVA is

simulated as the key binding mechanism that glues the nanotubes together, so that the

nanotubes form a network enhancing the tensile strength of the resulting buckypaper. To

estimate the functional calibration parameter (PVA absorption rate), we use the functional

calibration approach in Equation (3), which was proposed in Pourhabib et al. (2016).

The data for the physical and computer experiments have already been collected in pre-
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vious studies. The physical experiment was run at 17 sampling locations uniformly chosen

over the range of x ∈ [0.4, 1.2] by an increment of 0.5. As for the computer simulation data,

149 data points were obtained from the computer experiments through a non-rectangle,

2-D space-filling design; for details, please see Pourhabib et al. (2015). In this case study,

the computer experiments are sufficiently cheap such that the number of simulation data

points is one order of magnitude greater than that of the physical data.

Since the physical and simulation data have already been obtained from the previous

experiments and they do not have the nested structure, it is not possible for us to generate

the nested designs for the case study in hand. For this reason, we here test the predictive

performance of the separate design strategy, specifically, the cheap separate design, by

applying the MES criterion on a discrete search space. We compare the performance of

the separate sequential design over a single-stage design strategy that does not account for

the sequentiality but rather generates the physical design all at once by randomly sampling

from the pool of available data with a designated sample size. We reserve four design points

for testing and ensure that the test points are a mix of interior and peripheral points of

the design region, so that we test both the interpolation and extrapolation ability of the

model.

The left panel of Figure 6 compares the predictive RMSE of the cheap separate design

versus multiple realizations of the single-stage design. In the cheap separate design, the

physical data is increased through an increment of one data point at a step, whereas the

simulation data is fixed at nS = 149.

In the left panel of Figure 6, there is a significant improvement in the performance of

the cheap separate design when the number of physical data points increases from 1 to 5

but the improvement beyond that is marginal. In a sequential manner, the cheap separate

design quickly learns the physical response surface, as well as the functional calibration

relationship θ(x), so that the experimenter could possibly stop after exhausting six or

seven physical data points. In doing so, it saves the time and expense in the experimental

stage. By contrast, the single-stage designs suffer from a large variability in performance;

in some extreme cases, say realization #3, it can exhaust nearly all the available physical

resources to reach the desired level of accuracy.
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Figure 6: Buckypaper fabrication case study: comparison of the cheap separate design with
the single-stage designs (left panel) and comparison with the physical-alone and simulation-
alone designs (right panel).

We would also like to show the benefit of a sequential design for calibration over designs

that only use the physical or the simulation data alone. Please note that when using

only one source of data without the other, the calibration parameter does not play a role.

When using the simulation data without the physical data, for instance, the calibration

parameter can no longer be estimated and becomes a nuisance factor in prediction. For

the simulation-alone design, all the 149 simulation data points are used to develop the

simulation model, while in both the cheaper separate design and the physical-alone design,

a sequential procedure is adopted. The right panel of Figure 6 presents the percentage

improvements of the cheap separate design over the other two approaches in terms of

prediction accuracy. The x-axis again represents the physical data amount employed in the

designs at each run.

When the physical data amount is small, the performance of the cheap separate design

converges to that of the simulation-alone design because the predictive model is dominated

by the simulation data. The limited information provided by a small amount of physical

data is not enough to allow a quality estimation of θ(x). As the amount of physical data

increases, cheap separate design improves upon the simulation-alone design steadily. As

more and more physical data points become available, using the simulation data alone

is simply not a good option anymore. The improvement made by cheap separate design

over the physical-alone design initially increases, reaches a peak when there are around

five physical data points, and then gradually declines afterwards. When there are enough
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physical data points, using the physical data alone gradually converges to the performance

of the calibrated model. This is much expected because as physical data become denser,

the under-sampling error is gradually alleviated and then using the physical data solely

becomes self-sufficient. A similar finding is observed in Pourhabib et al. (2015).

5.2 Resistance spot-welding experiment

The second case study is a resistance spot-welding experiment that was initially studied

by Bayarri et al. (2007). The observable input variables are x1, the applied load that

compresses the water-cooled copper electrodes against the two metal sheets to be welded

and x2, the electric current intensity applied to melt a local area of the sheet metals and

thus weld them together. The welding action produces a weld nugget and the size of the

nugget is the response y. The calibration parameter θ in this process is the resistance at the

interface, known to be a function of the localized temperature, which is in turn dependent

on the combination of the applied load and the current intensity. But the resistance cannot

be directly observed and its functional relation with the temperature is unknown. For

this experiment, p = 2, x = (applied load, current intensity)T , c = 1, θ = (resistance),

d = p+ c = 3. Furthermore, θ is a function of both inputs, denoted by θ(x1, x2).

The available dataset consists of 12 physical experiment data points and 35 simulated

data points from a finite element analysis. As in the buckypaper fabrication example, the

cheap separate design approach is compared to a single-stage design, in which the data

points are randomly sampled, all at once, from the pool of available data. Four data points

are reserved for testing. The RMSE is compared in the left panel of Figure 7 as the physical

sample sizes increases in an increment of one data point per run. The right panel of Figure

7 presents the percentage improvements of cheap separate design over both physical-alone

and simulation-alone designs. This case study suggests a similar message to that resulting

from the buckypaper fabrication case study.
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Figure 7: Resistance spot welding case study: comparison of the cheap separate design with
the single-stage designs (left panel) and comparison with the physical-alone and simulation-
alone designs (right panel).

6. SUMMARY AND CONCLUDING REMARKS

Since the emergence of the calibration framework, the associated design issues have not

received enough attention. Recently, several engineering applications have been reported

where calibration parameters are of a functional form and as such, their functional estima-

tion heavily relies on the quality of designs of the inputs to the calibration. Our analysis

suggests that handling the sequential designs separately for the physical experiments and

for the computer experiments can offer tempting advantages to the experimenters. This

is particularly true when the computer experiments are cheap enough to be executed in

a large number of runs. Moreover, given the different nature of physical and computer

experiments, the separate design strategy provides experimenters the flexibility to choose

different design mechanisms, more fitting to the needs of the respective experiments.

Our study can be considered as a guideline for researchers, practitioners and experi-

menters to design their data collection procedures when combining physical and computer

experimental data in the presence of functional calibration parameters. This research also

calls upon both the research community and practitioners in the area of calibration and

multi-fidelity analysis to look for possibly more sophisticated solutions beyond the separate

design approach or our simple extension of the nested design for dealing with the different

sized design spaces and the existence of functional calibration parameters.
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