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COVARIATE MATCHING METHODS FOR TESTING AND
QUANTIFYING WIND TURBINE UPGRADES

By Yei Eun Shin†, Yu Ding† and Jianhua Z. Huang†,

Texas A&M University †

In the wind industry, engineers perform retrofitting upgrades on
in-service wind turbines for the purpose of improving power produc-
tion capabilities. Considering how costly an upgrade can be, people
often wonder about upgrade effect: whether it indeed improves tur-
bine performances, and if so, how much. One cannot simply compare
power outputs for the purpose of assessing a turbine’s improvement,
as wind power generation is affected by an array of environmental
covariates, including wind speed, wind direction, temperature, pres-
sure as well as other atmosphere dynamics. For a fair comparison to
discern the upgrade effect, it is critical to have these environmental
effects controlled for while comparing power output differences. Most
existing approaches rely on establishing a power curve model and let
the model account for the environmental effects. In this paper, we
propose a different approach, which is to devise a covariate matching
method to ensure the environmental covariates to have comparable
distribution profiles before and after an action of upgrade. Once the
covariates are matched, paired t-tests can be applied to the power
outputs for testing the significance of the upgrade effect. The relative
increase in power production can also be quantified. The proposed
approach is simple to use and relies on fewer assumptions than the
power curve modeling approach.

1. Introduction. Wind power is one of the fastest growing renewable
energy resources [DOE (2015)]. As large wind farms are built, cost con-
siderations are essential for effective wind farm management [Byon et al.
(2013)]. One of the costly management actions for in-service turbine fleet is
to perform retrofitting upgrades, so that outdated or malfunctioning wind
turbines can restore or even improve their power generation capability [Khal-
fallah and Koliub (2007)]. It is, therefore, not a surprise that operators want
to know whether the benefits from an upgrade outweigh the expenses of do-
ing it, including material and labor cost. This inquiry motivates researchers
to scrutinize turbine performances before and after an upgrade. It becomes
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Fig 1. Wind power curve. Wind turbine produces higher power as wind speed increases.
A turbine starts power production at the cut-in speed, reaches its full operation at the
rated speed, and stops producing power at and beyond the cut-out speed. Power outputs are
normalized by the rated power.

the research question we aim to answer in this paper, and if an upgrade does
indeed improve turbine performances, we also want to quantify the improve-
ment.

When it comes to comparing turbine performances between the periods
before and after an upgrade, it is unreasonable to merely compare power
outputs of the two periods because wind power generation is affected by
an array of environmental covariates, such as wind speed, wind direction,
temperature, air pressure and other atmosphere dynamics. Each of the envi-
ronmental covariates observed before an upgrade may probabilistically dis-
tribute differently from the period after an upgrade. These incomparable
input conditions cause different wind power outputs and could mislead the
conclusion: for example, if too many windy days are there after an upgrade,
high power generation might happen due to not only the upgrade effect but
more so due to the high wind speed. For a fair comparison, therefore, these
environmental effects need to be controlled for while comparing power out-
puts.

To handle the problem explained above, the dominating approach is to
establish a model estimating wind power outputs conditioned on the ob-
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servations of environmental covariates, so that the model can be used to
compare the estimated power outputs between the two periods by setting
the same input conditions. Such a model, if taking wind speed as a sin-
gle input, is known as a power curve, explaining the functional relationship
between wind power output and wind speed input [Ackermann and Söder
(2005)]; Figure 1 presents an example.

To estimate a power curve using actual wind speed and power observa-
tions, the International Electrotechnical Commission [IEC (2005)] recom-
mended the use of a binning method, which discretizes wind speed into
intervals of, say, 0.5 meters per second (m/s) width and then uses the wind
power data and wind speed records, averaged in respective intervals, to fit a
smooth curve. Other curve fitting methods are also developed for estimat-
ing a power curve based on wind speed [Yan, Osadciw, Benson, and White
(2009); Kusiak, Zheng, and Song (2009); Uluyol, Parthasarathy, Foslien, and
Kim (2011); Osadciw, Yan, Ye, Benson, and White (2010); Albers (2012)],
but they may be different from the binning method in specifics.

A common drawback of the IEC like approaches is that they regard wind
speed too heavily as a factor driving the power production. While it is true
that wind speed is the most significant effect in wind power generation,
other environmental effects cannot be ignored. In an effort to include other
environmental factors into an extended power curve model, the effect of
wind direction was incorporated, in addition to wind speed [Nielsen, Nielsen,
and Madsen (2002); Sanchez (2006); Pinson, Nielsen, Madsen, and Nielsen
(2008); Jeon and Taylor (2012); Wan, Ela, and Orwig (2010)]. Most recently,
Lee, Ding, Genton, and Xie (2015a) and Lee, Ding, Xie, and Genton (2015b)
developed one of the first truly multivariate-dependency wind power mod-
els that allows all aforementioned environmental covariates to be included.
Understandably, such a model, if fitted separately before and after an up-
grade, could be used to compare a turbine’s performance by setting input
conditions at the same values.

In this paper we advocate a different approach. Its basic idea is as fol-
lows. Suppose that one can select a large enough subset of wind turbine
data before and after an upgrade, such that they have comparable distribu-
tion profiles of the environmental covariates. Then one can simply compare
the wind power outputs of the two periods within that selected subset. The
appeal of such a direct comparison approach is its simplicity. Unlike the
model-based approaches (to fit a power curve is to estimate a model), it
relies on fewer assumptions. Additionally, the direct comparison approach
is quick to be carried out in practice, and its working mechanism is easy to
be understood by engineers. The last point is important because a method
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is less likely to have real impact in practice until it is understood and thus
accepted by practitioners.

Covariate matching methods are rooted in the statistical literature. In sta-
bilizing the non-experimental discrepancy between non-treated and treated
subjects of observational data, Rubin (1973) adjusted covariate distributions
by selecting non-treated subjects that have a similar covariate condition as
that of treated ones. Through the process of matching, non-treated and
treated groups become only randomly different on all background covari-
ates, as if these covariates were designed by experimenters. As a result, the
outcomes of the matched non-treated and treated groups, which keep the
originally observed values, are comparable under the matched covariate con-
ditions. For more discussion on covariate matching methods, please refer to
Stuart (2010).

In this paper, we propose a covariate matching method tailored towards
wind application, in which records from a turbine before and after an up-
grade correspond to non-treated and treated subjects, respectively. We fol-
low the four key steps for a matching method, introduced in Stuart (2010),
of which the first three steps represent the design of a matching method,
whereas the fourth step represents the analysis of the matched outcomes:

1. Define the measure of closeness;
2. Implement a matching method;
3. Diagnose the quality of the resulting matched samples;
4. Analyze the outcome and estimate the treatment effect.

Specifically in our approach, we use the Mahalanobis distance [Mahalanobis
(1936)] in Step 1 to determine whether an individual is a good match to
another. In Step 2, we adopt an idea of the k : 1 nearest neighbor matching
method [Rubin (1973)]. In Step 3, we rely primarily on density plots as our
diagnostic tool. As the last step, we analyze the matched outcomes through
paired t-tests and compute the improvement an upgrade makes.

We want to note that in the field of wind power analysis, there exist ana-
log techniques, which have a similar idea to the matching methods, in that
they search for and utilize a set of observations that have the most similar
weather condition to the specific time point. Since these analog approaches
typically aim at forecasting, they then estimate the probability distribution
of the future state of atmosphere [Delle Monache, Eckel, Rife, Nagarajan,
and Searight (2013)]. However, the covariate matching methods discussed
above, including the proposed one, differ from the analog forecasting ap-
proaches, in that the covariate matching methods aim at investigating a
treatment effect, or specifically, an upgrade effect in our context. They also
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do the investigation without any estimation procedure unlike the other ap-
proaches. Another difference is that the analog methods follow a timeline
to find the most similar weather path to the time of interest, whereas the
covariate matching methods break the time order of non-treated records to
construct the counterpart of treated ones.

The remainder of this paper is organized as follows. In Section 2, we de-
scribe the data structure. In Section 3, we propose a matching method for
handling wind turbine data. Section 4 presents an outcome analysis, includ-
ing the quantification of the upgrade effect. Section 5 performs a sensitivity
analysis to verify our approach’s capability in estimating the upgrade ef-
fect and to compare it with a power curve modeling approach. We make a
few further remarks concerning the proposed matching method in Section 6.
Finally, we summarize the paper in Section 7.

2. Data structure. In this study, we use data obtained from the au-
thors of Lee et al. (2015b). For this reason, we study the same two upgrade
cases as in Lee et al. (2015b). We would like to explain briefly the setting
under which the data are obtained.

This study involves two pairs of turbines, which are distant apart enough,
so that one pair of turbines does not affect the other pair. Within a pair,
one turbine is called a test turbine on which an upgrade is applied, while the
other one is called a control turbine of which no change is made. We deem
the two turbines in a pair are identical for practical considerations, as they
are of the same type from the same manufacturer and started their service
at the same time. Both turbines in each pair are also associated with a me-
teorological mast, which houses sensors to measure several environmental
conditions. Figure 2, similar to Figure 5 in Lee et al. (2015b), illustrates the
layout of the two turbine pairs and their associated mast.

As in Lee et al. (2015b), we consider two types of upgrade: one is known
as a vortex generator installation [Øye (1995)] and the other one is a pitch
angle adjustment [Wang, Tang, and Liu (2012)]; both actions are believed
to make the upgraded turbine to produce more wind power under the same
environmental conditions. The vortex generator installation is physically
carried out on a test turbine in a pair and we call this pair the experimental
pair, whereas the pitch angle adjustment is not physically carried out but
simulated on a test turbine; we call the turbine pair with the simulated up-
grade the mimicry pair.

The following data modification is done to the test turbine data in the
mimicry pair. The actual wind turbine data, including both power produc-
tion data and environmental measurements, are taken from the actual tur-
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Fig 2. Wind farm layout. This layout shows the relative locations of turbines and masts
on a wind farm. Wind power production is measured at each turbine, and environmental
conditions are measured by sensors at the nearby meteorological mast. An experimental
pair includes an actually-upgraded test turbine (a vortex generator installation) and its
control turbine, whereas a mimicry pair includes an artificially-upgraded test turbine (a
pitch angle adjustment) and its control turbine.

bine pair operation. Then, the power production from the designated test
turbine on the range of wind speed over 9 m/s is increased by 5%, namely
multiplied by a factor of 1.05; see Figure 3 for an illustration. This sim-
ulation of an pitch angle adjustment is motivated by Wang et al. (2012).
Including the simulated data set in our study helps us get a sense of how
well a proposed method can detect a power production change due to an
upgrade and how accurately it can quantify the change.

We denote the power output of a turbine by P (in kilowatts), so that
P ctrl and P test are associated with a control turbine and a test turbine, re-
spectively. In this study, power output values are normalized by the rated
power, to protect the identities of the turbine manufacturer and the wind
farm operator.

Environmental conditions directly measured at a meteorological mast are:
wind speed, V , wind direction, D, ambient temperature, T , and air pres-
sure, Q. Using these measurements, the values of additional environmental
covariates can be computed, including air density, A, wind shear, W , and
turbulence intensity, I, using the following formulas:

• air density, A = Q
R·T (kg/m3), where R = 287 (Joule/(kg·K)) is a gas

constant;

• wind shear, W = ln(V2/V1)
ln(g2/g1)

, which represents a vertical variation of wind,
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Fig 3. The modification in the mimicry test turbine data as if a pitch angle adjustment
were applied. The power on the range of wind speed over 9 m/s is increased by 5%.

where V1 and V2 are wind speeds measured at heights g1 = 80 m and g2 =
50 m, respectively;

• turbulence intensity, I = σ̂
V , where σ̂ is the standard deviation of wind speed

in a 10-minute duration.

The air density A represents the combined effect of temperature and pres-
sure; once the air density is included to explain wind power outputs, temper-
ature and pressure are no longer needed. The wind shear W and turbulence
intensity I measure certain aspects of atmospheric dynamics that wind speed
itself does not fully represent.

As such, each data set has five explanatory covariates, (V,D,A,W, I), and
two power outcomes, (P ctrl, P test). Note that wind turbine data are arranged
into 10-min blocks, so that the values of (V,D,A,W ) are the averages of the
10-min intervals and I is the ratio of the standard deviation of wind speed
in the 10-min blocks over the average wind speed of the same block. This
10-min block data arrangement is commonly used in the wind industry.

For the experimental pair, we have 14 months worth of data in the non-
treated period (i.e., before the upgrade) and 5 weeks worth of data in the
treated period (i.e., after the upgrade), whereas for the mimicry pair, we
have 8 months worth of data in the non-treated period and 7 weeks in the
treated period. Note that it is preferable to have a much larger set in the
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non-treated period than the treated. That is because a sufficiently large can-
didate pool to match can avoid too many of repeatedly selected individuals,
and therefore the matched subset of the non-treated period reflects reality
such as varying weather conditions.

3. Matching methods. Our investigation starts off with exploring the
discrepancy of the covariate distributions. Figure 4 demonstrates for each
covariate the difference in empirically fitted density functions between the
non-treated and treated periods. The last subplot in both the upper and
lower panel is the density function of the power output of the respective con-
trol turbine. For the control turbine, as it is not modified, the distribution
of its power output is supposed to be comparable, should the environmental
conditions be maintained the same. But the data show otherwise, suggesting
the existence of environmental influence, which confounds the upgrade effect
in power outputs.

Let us introduce a few notations and terminologies. The environmen-
tal covariate vector is denoted by X. In this study, X := (V,D,A,W, I)T ,
but it can include more variables, should their measurements be available.
The data pair (X, P ) forms a data record, containing the value of the envi-
ronmental covariates and its corresponding power outputs. The data records
collected before the upgrade form the non-treated data group, whereas those
collected after the upgrade form the treated group. Let Sbef and Saft be the
index set of the data records in the non-treated and treated group, respec-
tively. Let YS denote the values of a covariate Y for data indices in S. For
example, VSbef

is the vector of all wind speed values that are observed before
the upgrade.

This section presents a matching method to create comparable distribu-
tion profiles of covariates. Before going through the four-step procedure of
developing a matching method, as mentioned in Section 1, we first describe
the preprocessing steps in Sections 3.1 and 3.2. Then, Sections 3.3, 3.4, and
3.5 describe Step 1, 2 and 3, respectively. Step 4 is discussed in Section 4.

3.1. Hierarchical Subgrouping. The first action of preprocessing is to nar-
row down the set from which we will perform the data records matching sub-
sequently. The reason for this preprocessing is to alleviate a computational
demand arising from too many pairwise combinations when comparing two
large size data sets.

This objective is fulfilled via a procedure we label as hierarchical sub-
grouping. The idea goes as follows.

1. Locate a data record in the treated group, Saft, and label it by the
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Fig 4. Overlapped density functions of unmatched covariates and power output of control
turbine; solid line = before upgrade (non-treated), dashed line = after upgrade (treated).
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index j.
2. Select one of the covariates, for instance, wind speed, V , and designate

it as the variable on which we measure similarity between two data
records.

3. Go through the data records in the non-treated group, Sbef, by select-
ing the subset of data records such that the difference, in terms of the
designated covariate, between the data record j in Saft and any one
of the records in Sbef is smaller than a pre-specified threshold. When
V is in fact the one designated in Step 2, the resulting subset is then
labeled by placing V as a subscript to S, namely SV .

4. Next, designate another covariate and use it to prune SV in the same
way as one prunes Sbef into SV in Step 3. This produces a smaller
subset nested within SV . Then continue with another covariate until
all covariates are used.

The order of the covariates in the above hierarchical subgrouping procedure
is based on the importance of them in affecting wind power outputs; accord-
ing to Lee et al. (2015a), it is V , D, A, W , and I, from the most important
to the least important. We will discuss more about the matching order of
covariates in Section 6.1. Also note that wind direction D is a circular vari-
able and an absolute difference between two angular degrees is between 0
and π; we then adopt a circular variable formula from Jammalamadaka and
Sengupta (2001) to calculate the difference between two D values.

The above process can also be written in set representation. For a data
record j in Saft, we define subsets of data records in Sbef, hierarchically
chosen, as

SV := {i ∈ Sbef : |Vi − Vj | < αV σ(VSbef
)};

SD := {i ∈ SV : π − |π − |Di −Dj || < αDσ(DSV
)};

SA := {i ∈ SD : |Ai −Aj | < αAσ(ASD
)};

SW := {i ∈ SA : |Wi −Wj | < αWσ(WSA
)};

SI := {i ∈ SW : |Ii − Ij | < αIσ(ISW
)},

where σ(Y ) is the standard deviation of Y and αY is a thresholding coeffi-
cient. We discuss how to determine these α’s in Section 3.5. This hierarchical
subgrouping establishes the subsets nested as such: SI ⊂ SW ⊂ SA ⊂ SD ⊂
SV ⊂ Sbef. Consequently, the data records in the last hierarchical set SI
have the closest environmental conditions as compared with the data record
j in Saft.

This hierarchical subgrouping procedure shares certain similarity with the
coarsened exact matching (CEM) approach [Iacus, King, and Porro (2012)],
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in that it performs the data records matching on broader ranges of covari-
ates and builds factor-sized strata. Unlike CEM, however, the strata from
our procedure have a hierarchical and nested structure that CEM does not
have.

3.2. Unmeasured Factors. There could be other environmental condi-
tions, in addition to V,D,A,W and I, which may affect wind power pro-
duction while not measured. For instance, humidity is one variable that was
shown to have an appreciable impact on wind power production for offshore
wind turbines [Lee et al. (2015a)] but for the wind farm data we worked
with, humidity was not measured.

The possible existence of unmeasured environmental factors presents the
risk of causing a distortion in comparison, even when the aforementioned
measured environmental factors are matched between the treated and non-
treated groups. In order to alleviate this risk, we make use of the power
output of the control turbine in each turbine pair, P ctrl. What we propose
is to further narrow down from the most nested subset produced in Sec-
tion 3.1, SI , by taking the following action – we select records from SI
whose P ctrl values are comparable to the P ctrl value of a data record j in
Saft. Specifically, this amounts to continuing the hierarchical subgrouping
action in Section 3.1, producing a SP , a subset of SI , based on P ctrl, such
that

SP := {i ∈ SI : |P ctrl
i − P ctrl

j | < αPσ(P ctrl
SI

)}.

We perform this procedure for all data records in the treated group so
that each record j in Saft has its matched set SP,j . In the case that SP,j is
an empty set, we then discard the respective index j from Saft. Because of
this, Saft may shrink after the subgrouping steps.

What we do in this subsection is essentially to use the control turbine to
calibrate the conditions affecting the test turbine. A similar idea was tried by
Albers (2012), but his approach is different from ours. Albers used a power
curve based approach, in which the author fitted a relative power curve
between the control and test turbines and hoped using that can calibrate the
conditions for the test turbine. The rationale behind Albers’s relative power
curve is not as transparent as our subgrouping procedure and that approach
is still model-based rather than direct comparison; in fact, it involved several
modeling steps in its analysis.

3.3. Mahalanobis Distance. Denote SP,j as a set of candidate matches
of data records in the non-treated group to a data record j in the treated
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group. Our next goal is to choose a data record in SP,j that is the closest to
a data record j. For this purpose, we need to define a dissimilarity measure
to quantify the closeness between two data records.

We decide to use the Mahalanobis distance [Mahalanobis (1936)] as our
dissimilarity measure, which is popularly used in the context of multivariate
analysis. It re-weighs the Euclidean distance between two covariate vec-
tors with the reciprocal of a variance-covariance matrix. Before presenting
the definition of the Mahalanobis distance between two wind turbine data
records, we first introduce a transformed covariate vector, denoted by X∗,
such that

X∗ := (V cosD,V sinD,A,W, I)T .

Using X∗ makes it easier to deal with the circular wind direction variable
D. The Mahalanobis distance (MDij) between a data record j in Saft and a
data record i in SP,j is defined as

MDij :=
√

(X∗i −X∗j )
TΣ−1(X∗i −X∗j ),

where Σ = Cov(X∗Sbef
). Obviously, the larger an MD value, the more dissimilar

two data records.
Alternatively, the propensity score can be used as a dissimilarity measure

[Rosenbaum and Rubin (1983)]. The propensity score has an advantage for
a large number of covariates, whereas the Mahalanobis distance works quite
well when there are fewer than eight continuous covariates [Zhao (2004)].
Moreover, since the Mahalanobis distance can reflect the interaction among
covariates, which indeed exists in our data as described in Section 6.1, we
choose the Mahalanobis distance rather than the propensity score.

3.4. One-to-one matching. As the simplest form of the k : 1 nearest
neighbor matching, introduced by Rubin (1973), we perform the 1 : 1 match-
ing; it selects, for each treated record j, the non-treated record with the
smallest distance from j. As the size of the matching candidates for each
treated subject is reduced while undertaking the subgrouping step, there
is no need to search in the entire non-treated group but simply within the
resulting subgroup.

In a set representation, given SP,j and MDij from Section 3.2 and 3.3,
respectively, we select the data record ij in SP,j that has the smallest Ma-
halanobis distance as the best match to data record j in Saft. That is, the
data record ij is found such that

ij = arg min
i∈SP,j

MDij ,
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for each j in Saft. In case that two or more are tied for the smallest value,
we choose one of them randomly. After this step, each data record j in
the treated group has one non-treated counterpart ij , with the exception of
those already discarded during the subgrouping step. We define the index
set of the matched data records from the non-treated group as

S∗bef := {ij ∈ Sbef | j ∈ Saft}.

As such, the data records in Saft are now individually paired to those in S∗bef.
It should be noted that we allow replacement in our matching procedure.

In other words, ij is not eliminated from the candidate set SP , even though
it has matched to j once. When the next data record j + 1 is selected from
Saft, the same non-treated data i is thus possible to be matched again. We
believe that allowing replacement helps achieve a fair matching because the
data records in Saft have no presumed order to be paired in advance. We
will provide further discussions related to the matching with replacement in
Section 6.2.

3.5. Diagnostic. After performing the matching procedure, it is crucial
to diagnose how much the discrepancy of the covariate distributions has been
removed, as compared to the original (unmatched) data set. Only after the
diagnostics signifies a sufficient improvement, an outcome analysis is then
ready to perform in the next step.

We measure the discrepancy of distributions in two ways, numerically
and graphically. For the numerical diagnostics, the standardized difference
of means (SDM) is used as a measure of dissimilarity of a covariate between
the treated and non-treated groups [Rosenbaum and Rubin (1985)];

SDM :=
Y Saft

− Y Sbef

σ(YSaft
)

,

where Y is one of the covariates, and Y S denotes the average of Y in the
set of S. The SDM decreases if the matching procedure indeed reduces the
discrepancy between the two groups. As shown in Table 1, SDM decreases
significantly for all covariates. A previous study [Rubin (2001)] found that
SDM should be less than 0.25 to render the two distributions in question com-
parable. Otherwise, the differences between the distributions of covariates
in the two groups are regarded as substantial.

For the graphical diagnostics, we overlap the empirical density function of
each covariate as well as that of the control turbine power, associated with
the treated group and the matched subset of the non-treated group. We can
visually inspect the discrepancy between the two density functions and see
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Table 1
Numerical diagnostics. See the decrease of SDM after the matching. The matching

procedure indeed reduces the discrepancy between the two periods

V D A W I P ctrl

Unmatched 0.6685 0.0803 3.2715 0.2312 0.1382 0.8132
Matched 0.0142 0.0026 0.0589 0.0721 0.0003 0.0083

(a) Experimental data

V D A W I P ctrl

Unmatched 0.0605 0.1647 1.6060 0.2759 0.4141 0.0798
Matched 0.0077 0.0029 0.0263 0.0158 0.0111 0.0036

(b) Mimicry data

if they are similar enough. An example is shown in Figure 5, in which we
observe the well-matched distributions of covariates after the matching pro-
cess. The improvements in term of distribution similarity are clearer when
compared to Figure 4, which demonstrates the dissimilarity in covariate dis-
tributions of the unmatched original set.

Either the numerical or the graphical diagnostics may fail to provide cred-
ible evidence to perform an outcome analysis; for example, SDM increases,
rather than decreases, or some non-overlapped bumps are observed in the
density plots. If this happens, we adjust the thresholding coefficients α’s
and repeat the procedures of Section 3.1 and 3.2 until a well-matched set is
obtained. It should also be noted that, if the size of Saft after the matching
loses too many data records, and this can happen when too small α’s are ap-
plied, we suggest to enlarge the size of Saft prior to the matching process, so
that we can secure a sufficient amount of representative weather conditions
in the matched Saft.

4. Outcome analysis. This section describes the outcome analysis,
Step 4 of a matching method as outlined in Section 1. It fulfills the re-
search goal of testing the significance of the upgrade effect and quantifying
its improvement in terms of extra power production under comparable en-
vironmental conditions.

4.1. Paired t-tests. From the matching procedure, we have the paired
data records of the two groups, (ij , j) where ij ∈ S∗bef and j ∈ Saft. Us-
ing these paired indices, we can retrieve the paired test power outputs,
(P test

ij
, P test

j ). The power output pair can be interpreted as repeated measure-
ments under comparable environmental conditions, which makes the power
outputs also comparable.

As such, we apply a t-test to analyze the difference of the two paired test
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(b) Mimicry data

Fig 5. Overlapped density functions of matched covariates as well as that of power output
of control turbine; solid line = before upgrade (non-treated), dashed line = after upgrade
(treated). Compare this figure to Figure 4 and notice the improvement in agreement between
the pairs of density plots.
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Table 2
Outcome analysis. The results of paired t-tests and upgrade quantification

t-stat p-value UPG

3.015 0.003 1.13%

(a) Experimental data

t-stat p-value UPG

7.447 < 0.0001 3.16%

(b) Mimicry data

outcomes, Dj = P test
j − P test

ij
. The assumption of independence is met; this

will be reviewed in Section 6.2. It tests the null hypothesis that the expected
mean of the difference is zero, that is H0 : E(D) = 0, where D is the sample
mean of {Dj : j ∈ Saft}. Accordingly, the test statistic t is

t :=
D

s/
√
n
,

where s and n are the sample standard deviation and the sample size of
{Dj : j ∈ Saft}, respectively. If the test concludes a significant positive mean
difference, the upgrade on the test turbine is then concluded as effective.

In Table 2, the first and second cells show the results from a paired t-test.
In both datasets, the tests show a significant upgrade effect at the 0.05 level.

4.2. Quantification. Reporting a percentage value representing the rela-
tive increase in power production is a typical way to quantify an improve-
ment of a turbine’s performance after an upgrade. As such, we quantify the
upgrade effect (UPG) in percentage terms by computing

UPG :=

∑
j∈Saft

(P test
j − P test

ij
)∑

j∈Saft
P test
ij

× 100,

where ij ∈ S∗bef is the counterpart of j ∈ Saft.
The quantification results are shown in the third cell of Table 2. Re-

call that we have increased the test turbine power in the mimicry pair by
5% for wind speed 9 m/s and above, which translates to a 3.11% increase
for the whole wind spectrum. Our quantification shows an improvement of
3.16% overall, which appears to present a fair agreement with the simulated
amount. If the quantification amount is to be trusted, the vortex genera-
tor installation enables a turbine to produce 1.13% more wind power than
without the upgrade.

4.3. Mean Comparison. In Figure 6(a), we present the boxplot of P test

data for the both datasets under the unmatched conditions (i.e., the original
data) and the matched conditions (i.e., the matched subset of the original
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data). We noticed that the unmatched data of the experimental set show a
higher mean power before the upgrade than after. This mean power pattern
is, however, reversed on the matched data, as expected. The interpretation
of the mean power pattern of the unmatched data is obvious; the difference
in the environmental covariates causes the wind turbine to produce more
wind power in the period before the upgrade, so the upgrade effect is over-
whelmed and not detectable. Even though the unmatched data seemingly
shows an improvement in power production like the mimicry data in Fig-
ure 6(b), the imbalanced profile of weather conditions should be noticed,
and so the matching is required to stabilize their discrepancy. This anal-
ysis demonstrates the benefit of executing this matching procedure before
comparing the test power outputs and quantifying its net effect.

5. Sensitivity analysis. Recall that the mimicry pair is analyzed for
the purpose of getting a sense of how well a proposed method can estimate
a power production change, owing to a turbine upgrade. While only the
5% simulated improvement is used when illustrating the methodology in
Section 3 and 4, this section re-performs the matching on various degrees of
improvement. There are two reasons for this practice: (a) to see how sensitive
the proposed method is in terms of estimating the power production change
when the change magnitude varies (in Section 5.1), and (b) to compare the
proposed matching method to the kernel plus method proposed by Lee et al.
(2015b) (in Section 5.2).

5.1. Sensitivity of estimating changes. Considering how the mimicry pair
is created, it is unreasonable to use the nominal power increase rate, denoted
by r, to represent the power change magnitude over the entire spectrum of
wind power. This is because the nominal power increase rate is applied only
to the partial range of wind power corresponding to wind speed higher than
9 m/s. Therefore, when it comes to verifying the estimation quality in the
mimicry case, we should compute the effective power increase rate, denoted
by r′, such as

r′ :=

∑
j∈Saft

P test
j {1 + r · I(V test

j > 9)} −
∑

j∈Saft
P test
j∑

j∈Saft
P test
j

,

where I is an indicator function.
As shown in Table 3, as r changes from 2% to 9%, r′ changes from 1.25%

to 5.6%. This range of the power improvements is considered practical for
the detection purpose. If an improvement is smaller than 1%, it is going
to be considerably hard for detection, and given the amount of noises in
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Fig 6. Boxplots of the normalized test power values; x points, referred to by the label in
percentage above it, are the mean of the respective normalized P test. The upgrade effect is
revealed in the matched test powers while confounded in the unmatched test power.
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Table 3
r = nominal power improvement rate; r′ = effective power improvement rate; UPG and
DIFF* estimate r′ through the matching method and the kernel plus method, respectively.

r 2% 3% 4% 5% 6% 7% 8% 9%

r′ 1.25% 1.87% 2.49% 3.11% 3.74% 4.36% 4.98% 5.60%

UPG 1.74% 2.21% 2.68% 3.16% 3.63% 4.11% 4.58% 5.05%
UPG/r′ 1.4 1.2 1.1 1.0 1.0 0.9 0.9 0.9

DIFF* 1.97% 2.56% 3.15% 3.73% 4.30% 4.86% 5.42% 5.97%
DIFF*/r′ 1.6 1.4 1.3 1.2 1.1 1.1 1.1 1.1

wind and power measurements, no known method can do an adequate job.
On the other hand, when an improvement is greater than 6%, it becomes a
bit unrealistic due to technology limitations, and if indeed so, the detection
becomes easier – it is possible that even the standard IEC binning method
can detect this level of change. That is why we choose this specific range to
test the sensitivity of our method.

The middle two rows in Table 3 compare UPG to r′. We notice that UPG

considerably overestimates r′ when r′ is small (smaller than 2%); the over-
estimation is as much as 40% for the smallest change at 1.25%. But the
estimation quality of UPG gets stabilized as r′ increases. In fact, for the last
six cases, the differences between UPG and r′ are within 10%. This result re-
flects the reality that the smaller degree of turbine upgrade is indeed difficult
to estimate and demonstrates the merit of the proposed matching method.

5.2. Comparison between the matching method and the kernel plus method.
The best benchmark method for upgrade quantification is the kernel plus
method presented in Lee et al. (2015b). In this section, we compare the co-
variate matching method with the kernel plus method.

The metric quantifying a turbine’s improvement used by Lee et al. (2015b)
is labeled as DIFF, which indicates a percentage value measuring the power
production difference before and after the turbine upgrade. Although DIFF

has a similar concept to UPG in this paper, there is a subtle difference that
needs to be addressed. In Lee et al. (2015b), DIFF values are computed
for the test and control turbine separately, which are denoted by DIFFtest
and DIFFctrl, respectively. However, UPG uses the control turbine’s record
as a baseline reference during the matching process, so deals solely with
and represents the net effect. For that reason, the metric from the kernel
plus method, to be fairly compared with UPG, should be DIFF* := DIFFtest
- DIFFctrl, which also adjusts the test turbine outcomes using the control
turbine as a baseline.

This adjusted metric DIFF* is then estimated for each r and compared to
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r′ in the last two rows of Table 3. As we notice here, the kernel plus method
also considerably overestimates the small r′ values and does better as r′ gets
bigger. The degree of overestimation of DIFF* is severer than that of UPG;
while DIFF*/r′s have 10% or more values over all of r values, UPG/r′s are
mostly within 10% and even make almost correct estimations at r = 5% and
6%. Therefore, the covariate matching method outperforms the kernel plus
method for the practical range of improvement rate, from r = 2% to 9%.

If applied to the experimental turbine pair, our analysis in Section 4.2
shows UPG = 1.13%. On the other hand, DIFF* from the kernel plus method
is 1.48%. This result is anticipated, in that the kernel plus method tends to
overestimate a little more, and both methods are in fact less accurate when
estimating a small improvement such as 1% or less.

Please note that DIFF* values reported here are different from those re-
ported in Lee et al. (2015b). This discrepancy is due to the different use
of data; while Lee et al. (2015b) use 2-week-after-upgrade worth of data in
their analysis, we use in this study 7-week-after-upgrade worth of data for
the mimicry turbine pair and 5-week-after-upgrade worth of data for the
experimental pair, as our covariate matching requires a longer duration to
ensure a sufficient amount of data.

6. Remarks. This section presents further discussion of a few issues
arising in our research undertaking. Section 6.1 reviews in more details about
the priority order and the interaction effect of the environmental covariates
as well as how the right order can benefit the analyses. Section 6.2 discusses
the issue of replacement while matching data records and affirms that the
independence assumption of a t-test is approximately satisfied.

6.1. The priority order and interaction of covariates. The priority order
of the environmental covariates used in the hierarchical subgrouping proce-
dure in Section 3.1 is as the following: wind speed, wind direction, air density,
wind shear and turbulence intensity. The importance of wind speed V is
obvious and it is universally agreed to be the most important factor affecting
wind power production. Wind direction D also matters a great deal even
though wind turbines have a yaw control mechanism that is supposedly to
track wind direction and point the turbine towards the direction from which
the wind blows. Nonetheless, a score of studies showed that this tracking is
not perfect, and consequently, including wind direction as one covariate can
significantly reduce the prediction error of wind power [Lee et al. (2015a);
Jeon and Taylor (2012); Wan et al. (2010)].

The effects of the next tier of factors, namely air density A, wind shear
W and turbulence intensity I, come more in the form of interacting with
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Table 4
Numerical diagnostics when matching with a reversed priority order, P ctrl, I,W,A,D, V ;
notice less decreased SDMs of D,A,W and P ctrl than those of Table 1 (b), which implies

that a poorly defined order may lead to an unsatisfactory quality of matching.

V D A W I P ctrl

Unmatched 0.0605 0.1647 1.6060 0.2759 0.4141 0.0798
Matched 0.0022 0.0036 0.0377 0.0208 0.0055 0.0085

the two main effects, wind speed and wind direction. Lee et al. (2015a) illus-
trated, in Figure 4 of their paper, the existence of interaction effects between
these second-tier factors and the wind speed/direction.

We believe the nested structure of our hierarchical subgrouping helps
handle the priority of the main and interacting covariates. The variance-
covariance matrix in the Mahalanobis distance (Section 3.3) also captures
the interaction effects through the covariance terms and incorporates them
in the calculation of the dissimilarity measure.

If a priority order is poorly defined, the quality of matching may not be
as satisfactory as compared to a well-defined order. To show some numeri-
cal evidence of this argument, we conducted the matching on the mimicry
set with a reversed order, P ctrl, I,W,A,D, V ; their numerical diagnostics
are shown in Table 4. Comparing this result to Table 1 (b), the SDMs of
D, A, W and P ctrl with the reversed order are greater than those with the
proper order. It should be noted that the thresholding degrees in Table 4
are the same as those in Table 1 for a fair comparison. However, as long as
those SDMs are acceptable to perform an outcome analysis, the significance
and quantification of turbine improvement does not change dramatically.
The analysis using the reversed order leads to a UPG = 3.33% with p-value
< .0001, which is similar to that with the well-defined order (UPG = 3.16%,
while true value = 3.11%).

Still, although an outcome analysis appears to show a certain degree of
robustness under acceptable SDMs, one might as well make use of the pri-
ority information, if known, since it helps find the acceptable matched set
much more efficiently. If a priority order of covariates is unknown, it is rec-
ommended to perform some statistical analysis using, for example, random
forests [Breiman (2001)], which can measure the importance of covariates,
before applying the matching method.

6.2. Matching with replacement and assumption of independence. Recall
from Section 3.4 that we allow replacement when carrying out the match-
ing procedure. Because of this, a data record in the non-treated dataset
Sbef could possibly be paired with two or more data records in the treated



22 SHIN ET AL.

dataset Saft.
A potential problem of allowing replacement is that the replication of the

same data records may cause a violation of independence of outcome vari-
ables. In order to settle this issue, information about frequency weights, such
as the relative number of replications, may need to be taken into account
[Stuart (2010)].

In our application, however, replacement does not seem to cause too much
of a problem, for the following reasons: (a) such replication happens rather
rarely by starting with the much larger set of non-treated period than the
treated; (b) we in fact analyze the differences between the treated period
(not replicated, so independent) and the non-treated period (possibly repli-
cated, so dependent), and taking differences further reduces the dependence
caused by replication.

7. Summary. We are interested in statistical inference about the up-
grade effect on wind turbine performance. It is a challenging issue because
the upgrade effect on wind power production could be biased and confounded
by unmanageable environmental conditions. Some of these conditions are
measured on a wind farm, while others are unknown or not measured. We
propose a covariate matching method, allowing for a fair and direct com-
parison of power outcomes without establishing power curve models.

Compared to the current studies on wind power analysis, our match-
ing method entertains several advantages: (a) it does not compare the es-
timated power outputs from the fitted power curve models, but compares
the observed power outputs directly; (b) by using the control turbine power
output as a benchmark, our method takes into account both measured and
unmeasured environmental conditions; (c) when future technology innova-
tions allow additional environmental covariates to be measured, their inclu-
sion in our matching method is straightforward and it does not complicate
the subsequent analysis steps. By testing on both experimental data and
simulated data, the proposed matching method appears to be sensitive to
detecting small to moderate changes resulting from an upgrade on a wind
turbine.
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