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Robust Parameter Design (RPD) has been used as the primary technique to reduce process and product variability. The offline choice
of appropriate control factor settings allows RPD to ensure that noise factors have a minimum influence on responses. In this article,
an alternative methodology of automatic process control is proposed, that is, controllable factors are adjusted online based on in-
process observations of noise factors. A cautious control strategy, which explicitly considers the observation uncertainty in adjusting
the settings of controllable factors, makes the system performance consistently more favorable when compared with the certainty
equivalence control strategy and RPD. On the other hand, RPD can be considered a special case of automatic control laws using a
constant control setting during production. A case study of a sheet-metal stamping process demonstrates that the implementation of
the proposed method in an industrial facility can lead to significant quality improvements.

1. Introduction

In manufacturing processes, there are many process vari-
ables that interact in a complicated nonlinear fashion. In
general, these variables are classified into controllable fac-
tors x (variables which can be easily manipulated online)
and noise, or uncontrollable, factors n (variables that vary
randomly and are difficult to manipulate online). If y is used
to denote the system response, the relationship between x,
n, and y can be generally expressed as:

y = f (x, n) (1)

For a discrete-part manufacturing process, the relation-
ship in Equation (1) can often be expressed in the format
of a regression model (Box and Draper, 1987). This type of
regression model, usually having no input-output dynam-
ics, mainly focuses on the description of the dependency of
the process response y on the process variables (x, n) and
their interactions.

Regression models have been widely used for process op-
timization and Robust Parameter Design (RPD). RPD,
which was pioneered by Taguchi (1986), is considered
a cost-effective tool for reducing process variability. By
choosing the settings of the controllable variables, RPD
minimizes the influence of noise factors on system re-
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sponses. A summary and discussion of RPD can be found in
the panel discussion edited by Nair (1992); more technical
details are presented in Wu and Hamada (2000).

RPD is essentially an offline technique for selecting nom-
inal settings of key parameters at the design stage. The
RPD approach assumes that the distribution of noise fac-
tors is known from tolerance design or can be identified
from historical data, but real-time observations of noise
factors are unknown during production. However, in re-
ality, some noise factors, although not controllable, may
be measurable or can be estimated through other measure-
ments during production. In this paper, these factors are
called “observable noise factors.” Examples of observable
noise factors include (but are not limited to) the quench
oil temperature in heat treatment processes and incoming
material thickness in a sheet-metal stamping process. It is
desirable to fully utilize these additional real-time observa-
tions of noise factors to regulate the levels of controllable
factors accordingly. If this is achieved, a superior process
performance can be expected. In a broad sense, this concept
goes beyond the statistical offline RPD with the intention of
exploring a new class of online Automatic Process Control
(APC) using regression models.

This paper aims to develop a feedforward controller that
can utilize in-process observations of observable noise fac-
tors, and thereby, adjust controllable factors online accord-
ingly, while also taking into account the uncertainty of
noise factor estimations. The paper will show that if it is
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possible to develop and implement such a controller for
a process having observable noise factors, the proposed
APC approach works better than simply doing offline RPD
optimization (without taking advantage of the observable
noise). On the other hand, if the process is already being
used as opposed to being manufactured, it is impossible to
add any controllers. In this case, RPD is the best choice for
process variability reduction. In this situation, RPD can be
considered as a special case of the automatic control laws
with a constant control setting predetermined for control-
lable factors.

Some research work has recently been initiated, which
uses information from observable uncontrollable factors
to achieve a better performance in robust design (Pledger,
1996). Although the problem in that paper is solved in a
similar manner to the special case of designing a certainty
equivalence controller pledger do not consider observation
uncertainty nor does she discuss implications in the context
of APC.

This paper will develop a general APC methodology
for solving RPD-like problems based on a given regres-
sion model. The paper will investigate two types of control
strategies: (i) Cautious Control (CC); and (ii) Certainty
Equivalence (CE) control, and compare them with RPD.
Following this introduction, in Section 2, the analysis pro-
cedures for determining an optimal APC strategy are in-
vestigated. A simulation study follows to demonstrate the
applicability and validity of the resulting APC strategies.
Section 3 presents an industrial case study, where the pro-
posed method for process control is implemented in a sheet-
metal stamping process. Finally, the paper is summarized
and conclusions drawn in Section 4.

2. The APC strategy

2.1. Cautious and certainty equivalence control

As we mentioned in Section 1, the APC strategy developed
in this paper utilizes observable noise factors and gener-
ates control laws by explicitly considering the observation
uncertainty. The concept of CC found in control theory
(Stengel, 1986; Astrom and Wittenmark, 1995) will be used
in our controller design. If the observation uncertainty is
not considered, the controller would be designed following
the principle of CE control that is widely used in control the-
ory. We will present more detailed discussions about these
two different control strategies after a general control law
is developed.

In a regression model, we classify noise factors into two
sets: (i) observable noise e; and (ii) unobservable noise n.
The real-time values of the observable noise factors can
be obtained either from direct sensor measurements dur-
ing production or from estimations using other measurable
variable(s) correlated to those observable noise factors. A
general regression model can be expressed in terms of x, e,

and n as:

y = f (x, e, n). (2)

We focus on the nominal-the-best problem, namely the re-
sponse y should be controlled as close to the target or nomi-
nal value as possible. Therefore, the quadratic loss function
is selected as the control objective function, i.e.,:

J(x) = c{var(y) + (E(y) − t)2}, (3)

where var(y) and E(y) are the variance and expectation
of y, respectively, t is the target specified by engineering
design, and c is the monetary coefficient. In this paper, we
assume c = 1 without loss of generality. The optimal setting
of control factor x∗ is defined as that which minimizes the
quality loss. Because the regression model in Equation (2)
is only validated within the experimental region, any set-
ting outside of the experimental region should be treated
with caution. Hence, a constraint on x is constructed to
ensure that the proposed optimal solution is within the ex-
perimental region. Since x is coded as a value in [−1,1]
during the experimental designs, the unit hypercube of {x:
‖x∗‖∞ ≤ 1} constrains the coded values of control settings.
Mathematically:

x∗ = arg min
x

{J(x)}, subject to ‖x‖∞ ≤ 1, (4)

and the corresponding minimum quality loss is J(x∗).
A regression model f (x, e, n) generally includes various

interaction terms and is nonlinear in terms of the inputs
but still linear in terms of the parameters. In this paper, we
use the following second-order regression model:

y = β0 + βT
1 x + βT

2 e + βT
3 n + xT B1e

+ xT B2n + xT B3x + eT B4n + ε, (5)

where x ∈ n×1, e ∈ m×1, n ∈ p×1, and other vectors and
matrices are of appropriate dimensions. It needs to be clar-
ified that the regression model used to generate the control
law is a reduced model with only factors found to be signif-
icant. In this sense, we believe that factors and their inter-
actions included in model (5) are fairly comprehensive for a
reduced model in many engineering applications. Further,
we make the following assumptions:

1. We assume model (5) is for a time-invariant system, that
is, all model parameters (β’s and B’s) do not change
over time. It is also a static model with no input-output
dynamics. This model would be appropriate to represent
many discrete-part manufacturing processes with slowly
and smoothly changing variables

2. It is assumed that e, n and ε are independent of one
another with a covariance of Σe, Σn and variance σ 2

ε ,
respectively. n and ε have a zero mean. The residual error
ε is i.i.d. noise.

3. There exists an online observer for observable noise fac-
tors e (called the “noise observer” hereafter) that can
provide an unbiased observation of e during real-time
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production, i.e., E[ê − e | ê] = 0 and cov[ê − e | ê] ≡ Σê,
where ê is the observation of e, and Σê represents the
observation uncertainty.

In the above assumptions, we do not assume that the
observations of noise factor e are independent over time
in Assumption 2. Instead, we assumed that different error
sources (e, n and ε) are independent of one another. The
dependency of noise factor e over time will not limit the ap-
plication domain of the proposed methodology. It will affect
our choice of a noise observer which will be explained in
Section 2.2, but will not affect the general procedure for con-
troller design. Assumption 3 specifies an unbiased observer
for observable noise factor estimation/measurement. In the
case that the observer is biased, E[(ê − e)2 | ê] rather than
cov[ê − e | ê] should be used to indicate the observation
uncertainty. The estimation of the observation uncertainty
will also be discussed in Section 2.2.

When the observation ê is obtained through an online
observer, the corresponding control objective function is

J(x) = (Ee,n,ε[y | x, ê] − t)2 + vare,n,ε[y | x, ê], (6)

and the constraint function is the unit hypercube ‖x‖∞ ≤
1. The subscripts on E(·) and var(·) indicate the ran-
dom variables on which E(·) or var(·) operates. Based on
Equations (5) and (6), the block diagram of the controller
is shown in Fig. 1.

To develop the controller, we can further derive:

Ee,n,ε[y | x, ê],

= Ee,n,ε

[
β0 + βT

1 x + βT
2 e + βT

3 n + xT B1e + xT B2n

+ xT B3x + nT B4e + ε | x, ê
]
,

= β0 + βT
1 x + Ee

[
βT

2 e | ê
] + Ee

[
xT B1e | ê

] + xT B3x,

= β0 + βT
1 x + βT

2 ê + xT B1ê + xT B3x, (7)

Fig. 1. Controller block diagram.

where we use the result E[e | ê] = E[e − ê | ê] + E[ê | ê] = ê.

varn,e,ε[y | x, ê],
= En{vare,ε[y | x, ê, n]} + varn{Ee,ε[y | x, ê, n]}
= σ 2

ε + En
{(
β2 + BT

1 x
)T × σê × (

β2 + BT
1 x

) + (
BT

4 n
)T

×Σê × BT
4 n

} + varn
{
β0 + βT

1 x + βT
2 ê + βT

3 n

+ xT B1ê + xT B2n + xT B3x + nT B4ê
}
,

= (
β2 + BT

1 x
)TΣê

(
β2 + BT

1 x
) + tr

(
B4ΣêBT

4 Σn
)

+ (
β3 + BT

2 x + B4ê
)TΣn

(
β3 + BT

2 x + B4ê
) + σ2

ε,

(8)

where tr(·) is the trace of a matrix and we use the result
cov[e | ê] = cov[e − ê | ê] + cov[ê | ê] = Σê. Therefore, the
objective function is:
J(x) = (

β0 − t + βT
1 x + βT

2 ê + xT B1ê + xT B3x
)2

+ (
β2 + BT

1 x
)TΣê

(
β2 + BT

1 x
) + tr

(
B4ΣêBT

4 Σn
)

+ (
β3 + BT

2 x + B4ê
)TΣn

(
β3 + BT

2 x + B4ê
) + σ 2

ε ,

(9)
The constrained optimization as described in

Equation (4) has to be solved by numerical search.
Searching algorithms can be found in the optimization
literature (Pierre, 1986). There are two approaches to
conduct the search. One way is to conduct a search over the
constrained region and find the optimal solution according
to the objective function. An alternative way is to solve
an unconstrained problem first, by setting the first-order
partial derivative of J(x) to zero, i.e., ∂J(x)/∂x = 0. In this
case, the solution x∗

p may not be the final optimal solution
because the constraint ‖x∗

p‖∞ ≤ 1 might be violated.
However, if the solution is outside the unit hypercube {x:
‖x‖∞ ≤ 1}, the optimal solution will be achieved on the
boundary D ≡ {x: ‖x‖∞ = 1}. Denote the optimal points
on the boundary:

x∗
b = min

x∈D
{J(x)}. (10)

Thus, the eventual optimal solution is:

x∗ =
{

x∗
p if ‖x∗

p‖∞ ≤ 1,

x∗
b if ‖x∗

p‖∞ > 1.
(11)

The second approach could be more efficient in find-
ing the optimal solution since searching is only conducted
on the boundary. The computation complexity is much
less than the first approach which searches the entire con-
strained region.

The resulting control law described by Equation (11) (or a
control law derived from Equation (9) by a direct search) is a
CC because the control action x (the control setting here) is
a function of not only the instantaneous noise observation,
ê, but also the variance of observations, Σê. The description
of cautious comes from the fact that control actions tend
to be smaller if the estimation error of states in a dynamic
system is large (Stengel, 1986; Shi and Apley, 1998). For the
settings of controllable factors in this static control, the key
property of CC is that it automatically adjusts the settings
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according to the observation uncertainty of noise factors.
The objective function in Equation (9) is accordingly la-
beled as JCC(x).

Another principle widely used in controller design is
called CE control (Stengel, 1986; Astrom and Wittenmark,
1995). In this paper, the CE control law is obtained through
the separate design of a controller and an observer by as-
suming that the observation ê is the true e. Thus, the CE
control law can be generated by using the objective function
of Equation (9) with Σê = 0.

JCE(x) = (
β0 − t + βT

1 x + βT
2 ê + xT B1ê + xT B3x

)2

+ (
β3 + BT

2 x + B4ê
)T × Σn

× (
β3 + BT

2 x + B4ê
) + σ 2

ε . (12)

This equation is almost the same as the objective function
used in Pledger (1996) except that we include the control-
by-control interaction xT B3x. The procedure of control law
generation is the same as that for the CC.

It is worth noting that the existence of the control-by-
(observable noise) interaction xT B1e results in the essen-
tial difference between CC and CE control. If B1 = 0,
the difference between JCC(x) (Equation (9)) and JCE(x)
(Equation (12)) is βT

2 Σêβ2 + tr(B4ΣêBT
4 Σn), which is not

related to any controllable variable x. After taking the first
partial derivative of x in the objective function, the differ-
ence between JCC(x) and JCE(x) vanishes. Thus, the result-
ing control law is always CE control if there is no interaction
between controllable factors and observable noise factors
in the regression model.

If the noise factor e is not observable, the controller de-
sign becomes equivalent to choosing an offline RPD setting
instead of an online adjustment mechanism. In RPD, it is
generally assumed that e has a zero mean and a known co-
varianceΣe. Then, finding the control law becomes a matter
of determining a constant setting for controllable factors in
RPD. The quality loss is:

JRD(x) = (Ee,n,ε[y | x] − t)2 + vare,n,ε[y | x]. (13)

where Ee,n,ε[y | x] = β0 + βT
1 x + xT B3x, and

vare,n,ε[y | x] = Ee{varn,ε[y | x, e]} + vare{En,ε[y | x, e]},
= σ 2

ε + (
β3 + BT

2 x
)TΣn

(
β3 + BT

2 x
)

+ tr
(
BT

4 ΣnB4Σe
)

+ (
β2 + BT

1 x
)TΣe

(
β2 + BT

1 x
)
. (14)

Then, JRD(x) becomes:

JRD(x) = (
β0 − t + βT

1 x + xT B3x
)2

+ (
β3 + BT

2 x
)TΣn

(
β3 + BT

2 x
) + tr

(
BT

4 ΣnB4Σe
)

+ (
β2 + BT

1 x
)TΣe

(
β2 + BT

1 x
) + σ 2

ε . (15)

In this sense, the setting of the controllable factors in
RPD can be considered a constant control law without in-
cluding any feedback/feedforward information.

2.2. Noise factor observer and uncertainty analysis

Observer design significantly depends on specific applica-
tions. Determination of the observation uncertaintyΣê will,
in turn, depend on how the observations ê are obtained. The
following subsections briefly discuss three typical noise ob-
servers, as well as how to assess the associated observation
uncertainty. More details of observer design techniques can
be found in Stengel (1986) and McGarty (1974).

2.2.1. Direct sensor measurement of observable noise factors
With the advanced development of sensor techniques, dif-
ferent types of in-process sensors are now available for
directly measuring the change of noise factors. When this
direct measurement can be done,Σê is actually the measure-
ment uncertainty. The covariance, Σê, induced by sensors
or devices can be calibrated offline through a gage repeata-
bility and reproducibility (known as gage R&R) study. The
value Σê is often indicated by the manufacturer’s specifica-
tions of particular sensor devices. In this case, if each noise
factor is measured independently, the diagonal elements of
Σê will correspond to the variance of measurement errors
of each sensor device, and the covariance terms in Σê will
be zero.

2.2.2. Indirect estimation of noise factors from other
measurable variables

When the noise factors of interest cannot be directly mea-
sured, we may be able to estimate them through the mea-
surements of other variables correlated with these noise fac-
tors. In this case, the observation uncertainty, Σê, needs to
be estimated based on an observer model. In general, the
process noise factors can be classified into two classes in
terms of state characteristics of noise factors: (i) noise fac-
tors with time-dependent states, i.e., the state of a noise
factor depends on its previous states; and (ii) noise factors
with independent states, i.e., the occurrence probability of
each state is independent of all others. In the second case,
usually a noise factor will have finite states that are known
to the observer designer. The following discussion will show
how to analyze the observation uncertainty for these two
classes of noise factors.

2.2.2.1. Kalman filter observer for noise factors having time-
dependent states. When the states of noise factors are time
dependent, a state space model is generally used to model
the dynamics of the noise factors as:

e(t + 1) = G e(t) + ξ(t), (16)
Z(t) = F e(t) + ζ(t), (17)

where Z(t) is the observation or measurement vector at time
t(t= 1, 2, . . . .) and will be used for inference about the states
of noise factors e(t), G is the state transition matrix, F is
the observer model parameters, ξ(t) ∼ N(0, W) and ζ(t) ∼
N(0, V) are the state equation error and the observation
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error, respectively, and are assumed independent of each
other.

The state space representation describes the state depen-
dency of the noise factor e(t) by the state Equation (16)
and the relationship between observations and noise factor
states by the observation Equation (17). When the variances
of V and W are known through system identification and
measurement error calibration, the well-known Kalman re-
cursive algorithm can be used to obtain the state estimate
ê(t | Z(1), . . . , Z(t)) and its estimation uncertainty Σê =
E{[e(t) − ê(t)][e(t) − ê(t)]T | Z(1), . . . , Z(t)} as (McGarty
(1974) and Astrom and Wittenmark (1995) give detailed
derivations):

ê(t) = ê(t − 1) + K(t)(Z(t) − Fê(t − 1)) (18)
Σê(t) = GΣê(t − 1)GT + W − K(t)FΣê(t − 1)GT , (19)

where K(t) is the Kalman gain matrix, defined as K(t) =
GΣê(t − 1)F[V + FΣê(t − 1)FT ]−1.

If a time series model is used for noise factor model-
ing, the Kalman filtering algorithm can also be applied,
provided that the time-series model is translated into an
equivalent state space model (McGarty, 1974).

2.2.2.2. Classification observer for noise factors having inde-
pendent states. When the states of a noise factor are finite,
or we can discretize a continuous state by a finite set of dis-
crete states, the state of the noise factors can be estimated
by performing a classification (Johnson and Wichern, 2002)
of online observations of other correlated variables. For
example, vibration signals of a machine tool can be used
for classifying its degradation states (normal versus worn-
out), and stamping force signals can be used for classifying
the in-coming material thickness state (normal versus thin-
ner/thicker material). Given k states of a noise factor, each
of which is characterized by a mean vector µk and a com-
mon covariance matrix Σ, a linear discriminant function
for state k can be defined as:

δk∗ = max
k

[
fTΣ−1µk − 1

2
µT

k Σ−1µk + logπk

]
, (20)

where πk is the prior probability of state k and f is the mea-
surement vector or a transformation of the measurement

Fig. 2. Classification-based noise factor observer.

vector. Using this linear discriminant function, the noise
factor is considered in state k∗ if δk∗ is the largest among all
δkof all states (Johnson and Wichern, 2002).

In practice, those easily measured physical quantities (i.e.,
the correlated variables) such as vibration or force signals
are often waveform signals, which have a high data di-
mension. In this situation, data transformation and feature
extraction becomes unavoidable for data dimension reduc-
tion in the classifier design. The methods for data trans-
formation and feature extraction are rather diverse and
also application specific. Jin and Shi (2000) have demon-
strated that Principle Component Analysis (PCA) is one
effective multivariate statistical tool for feature extraction.
In their paper, PCA is employed as an integral component
of a hierarchical classifier, which determines the states of
significant process variables identified by Design Of Exper-
iments (DOE). This hierarchical classifier will be used as
the observer for in-coming material thickness in the lat-
ter case study in Section 3. For the reader’s convenience,
a brief review of the hierarchical classification method is
given in Appendix A. Overall, Fig. 2 illustrates how the
classification-based observer works.

The performance of a classification method is bench-
marked by its misclassification rate. This misclassification
rate will be used to determine the uncertainty of the noise
factor estimation. Appendix B derives a formula for obser-
vation uncertainty using the misclassification rate when the
noise factor e has a binary state, i.e., it can only take two
values +1 and −1. For a general case where e has k dis-
crete states, the observation uncertainty can be computed
similarly.

2.3. Simulation study

The direct analytical comparison of the system perfor-
mances under given control laws (including RPD) is very
difficult, if not impossible. We therefore employ a simula-
tion study to provide a general understanding of the perfor-
mance of APC strategies and their applicability. The per-
formance of the automatic controller is compared to the
RPD solution through a leaf spring experiment adopted
from Wu and Hamada (2000).
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A forming process followed by a heat treatment pro-
cess creates the curvature in leaf springs and should the-
oretically generate an unloaded spring with a height of
8.0 inches. The objective of process control is to make
the free spring height as close to the target 8.0 inches as
possible. Five factors were chosen across various stages
of the process: high heat temperature (B), heating time
(C), transfer time (D), hold down time (E), and quench
oil temperature (Q). The labels B through Q are chosen
to be the same as those used in Wu and Hamada (2000).
The quench oil temperature (Q) is the hard-to-control fac-
tor, namely the noise factor. The detailed physical mean-
ings of these factors may be found in Wu and Hamada
(2000) or the original report (Pignatiello and Ramberg,
1985).

Among these factors, the quench oil temperature can be
measured during the heat treatment process so that Q is an
observable noise factor and e = [Q]. The other four factors
are controllable factors. According to the analysis in Wu
and Hamada (2000), we have a reduced response model
with the significant factors being:

y = 7.6360 + 0.1106B + 0.0881C − 0.1298Q
+ 0.0519E − 0.0827CQ + 0.0423BQ + ε. (21)

Equation (21) is used to generate various control laws, in-
cluding the CC law, the CE control law, and the RPD set-
ting, following the approaches outlined in Section 2.1.

Note that the response in this experiment is much less
than the target of 8.0 inches. The intercept is only 7.636
inches, suggesting that the deviation from the nominal dom-
inates the quality loss. If 8.0 inches is used as the target
value, all efforts will be made to move the mean value closer
to the target. Under that circumstance, the control factors
B, C and E are always set to (+) for both automatic con-
trol laws and RPD setting. In order to demonstrate the
APC strategy, we change the target value to 7.6 inches
to balance the effects from both location deviation and
dispersion.

Suppose that the quench oil is varied within the range
170◦F (high level) to 130◦F (low level) in an uncontrolled
environment during the processing. We can see that Q is
almost uniformly distributed in the coded range of [–1, 1],
thus σQ = 0.5774 and E(Q) = 0.

The APC control law is a function of online observations
Q̂ and is generated by conducting the search within the unit
hypercube {x: ‖x‖∞ ≤ 1}, where x = [B, C, E] in this exam-
ple. The control law will be different under different levels
of observation uncertainty. In this simulation, we assume
that the observation uncertainty is uniform over the ex-
perimental region. That is, σ 2

Q̂
= var(Q̂ − Q | Q̂) is constant

regardless of the value of Q̂. This is similar to a practical
case where the temperature is measured using a thermome-
ter and its σQ̂ is the precision of this thermometer indicated
by the instrument specification.

Fig. 3. Factor B against noise Q under different estimation uncer-
tainty levels.

The discussion about the impact of uncertainty is classi-
fied into three levels: (i) no observation uncertainty σ Q̂ = 0;
(ii) low observation uncertainty σQ̂ = 0.01σQ; and (iii) fair
observation uncertainty σQ̂ = 0.1σQ. The optimal setting
of factor B in terms of Q̂ under the different levels of ob-
servation uncertainty is shown in Fig. 3, where CC-1 rep-
resents the control setting with σQ̂ = 0.1σQ, CC-2 is the
control setting with σQ̂ = 0.01σQ, and CE means that there
is no uncertainty in the observation. It can be seen that
the magnitude of changes in control setting is larger when
the observation is more accurate. On the other hand, the
controller takes a smaller magnitude adjustment (in chang-
ing the setting) when the observation of the noise factor
is less accurate. The same conclusion holds true for other
control factors, but only factor B against Q is plotted in
Fig. 3 for illustration. This conclusion is consistent with
the meaning of CC in control theory (Stengel, 1986; Astrom
and Wittenmark, 1995). In fact, the control law determined
under σQ̂ = 0 is the CE control. The other two cases are
CCs. When the noise observation is so uncertain that it is
close to the anticipated noise variability, the setting of fac-
tor B becomes constant and with the value close to the RPD
setting.

These control laws, together with the RPD setting, are
used to control the simulated leaf spring forming pro-
cess. We would like to use a different system model than
Equation (21) to simulate the process. A full response model
containing various factors and interactions is (also ob-
tained by Wu and Hamada (2000)):

y = 7.6360 + 0.1106B + 0.0881C − 0.1298Q + 0.0519E
− 0.0827CQ + 0.0423BQ + 0.0269DQ − 0.0235BEQ
− 0.0202CEQ − 0.0177BE + 0.0144D + 0.0135EQ
+ 0.0098CE + 0.0085BC + 0.0052BCQ + ε. (22)

The comparison of the process performances under dif-
ferent control laws is given in Fig. 4(a and b). Dis-
cussions in regard to each control setting are given as
follows.
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Fig. 4. (a) Quality loss obtained using the CE control law compared to the RPD setting; and (b) the performance of the CC law.

1. RPD setting: the RPD setting is [B C E] = [1 −1 −1]. This
is different from that given in Wu and Hamada (2000,
ch. 10) because the target value has been changed to 7.6
inches. If this new target value is used, Equations (10.8)
and (10.9) in Wu and Hamada (2000) yield the same
values for [B C E]. Factor D is not significant: it is always
set to a low level (i.e., the transfer time is 2 seconds) so
that throughput can be increased. The quality loss using
this RPD setting is JRD = 8.84 × 10−3.

2. CE control law: there is considered to be no obser-
vation error when the CE controller is designed. Its
performance compared with the designer performance
under RPD setting is shown in Fig. 4(a), where the
abscissa is the sigma ratio of σQ̂/σQ and the ordinate
is the ratio of quality loss under the CE control and
RPD. The CE controller performs well when the obser-
vation is accurate. It can reduce the quality loss approxi-
mately 43.9% as compared with the RPD design solution
when the observation is perfect. However, the perfor-
mance of this CE controller deteriorates quickly when
there exists observation uncertainty. The CE controller
causes a larger quality loss than RPD controller when
σQ̂/σQ > 0.2.

3. CC law: a cautious controller considers observation un-
certainty explicitly. Its performance compared with the
RPD performance is shown in Fig. 4(b), where JAPC is
the quality loss under a given control law: APC could
be CE or CC. The cautious controller, which does not
change the control factor settings as aggressively as the
CE controller does, yields a better performance than
a CE controller. Meanwhile, the performance of the
CC controller is better than that of RPD even when
σQ̂/σ Q is as large as 0.9. When the observation un-
certainty is too large, the RPD yields a better perfor-
mance. On average the CC law reduces the quality loss
about 15% as compared to RPD and is 11% better than

the CE controller with a fair observation uncertainty
(e.g., σQ̂/σ Q = 0.2).

3. Implementation: stamping process

3.1. Sheet-metal stamping process

Sheet-metal stamping is a complex manufacturing process
used to produce products by deforming the sheet metal in
accordance with the prefabricated geometry of a die. An
example of a stamping press, with some of the important
process variables, is shown in Fig. 5(a). In this case study,
the product is a quarter panel of a truck body, shown in
Fig. 5(b). The quality concern is the dimensional accuracy
at the defined Key Product Characteristics (KPC) points on
the stamped part. The position of each KPC point is mea-
sured in the normal direction of the sheet metal surface by
using a coordinate measuring machine. In this article, one
KPC point, as shown in Fig. 5(b), is selected for illustration.
The deviation from its nominal value, denoted as y, is used
as the system response. Our objective is to make y as close
to zero as possible.

Stamping tonnage signals contain rich process informa-
tion and have been widely used for monitoring the changes
of process variables (Jin and Shi, 2000). In order to measure
the stamping tonnage force, four tonnage sensors (shown
in Fig. 5(a)) are mounted on the four press uprights. The
total stamping force is obtained by summing the tonnage
forces on the four uprights.

Figure 6 shows tonnage signals of one stroke. It is clear
from the graph that if the thickness of incoming metal
blanks changes, the tonnage signal will change accordingly,
providing the possibility of detecting a change of blank
thickness during production. Therefore, in this case study,
material thickness is treated as an observable noise factor,
and the adjustable process setup variables, such as shut
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Fig. 5. (a) A stamping press; and (b) a stamped part.

height and punch speed, can be used as controllable fac-
tors, and the lubrication on the blank surface is consider an
unobservable noise factor.

The general analysis procedure for implementing the
APC strategy is shown in Fig. 7. In the following sections,
we will discuss the regression modeling of the stamping pro-
cess and the determination and evaluation of the control
strategy.

3.2. Process regression model

Six important process variables are selected based on the
engineering understanding of the characteristics of forming
operations and the performance of the tooling and a press
machine. The selected process variables are: (i) lubrication;
(ii) material thickness; (iii) inner shut height; (iv) outer shut
height; (v) punch speed; and (vi) blank wash pressure. These
variable are denoted A, B, C, D, E and F, respectively.

Fig. 6. A one-stroke tonnage signal.

Using a fractional factorial design, the regression model
with significant factors is obtained by Jin and Shi (2000) as:

y = 0.018 97B − 0.113 59C − 0.013 03BC − 0.021 93D + ε.

(23)

According to the regression model in Equation (23),
only factors B, C and D are identified as significant fac-
tors, where factor B (material thickness) is considered an
online observable noise factor, and factor C (inner shut
height) and factor D (outer shut height) are considered
controllable factors. Lubrication factor A, an unobservable
noise factor, is identified as being insignificant by the
DOE. Using the notation defined in Equation (5), we
have that x = [x1x2] = [C D], and e = e1, β0 = 0, βT

1 =
[β11β12]T = [−0.11359 −0.02193]T , β2 = [β21] = 0.018 97,
and B1= [B11] = −0.013 03.

3.3. Uncertainty of thickness observer and constraints
on controller implementation

If there is an online thickness measurement sensor installed
in the stamping process, the variance of the thickness ob-
server measurement can be easily obtained from the device

Fig. 7. Analysis procedure of APC of a stamping process.
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specification or using an offline gage R&R study. In prac-
tice, however, most stamping plants do not have a direct on-
line sensor measurement of blank thickness. Instead, they
usually have a tonnage monitoring system on the stamp-
ing press machine. Figure 6 illustrates the feasibility of us-
ing online tonnage sensing signals as an alternative way
to monitor material thickness change. A hierarchical clas-
sifier has been developed (Jin and Shi, 2000), which can
classify the material thickness into a binary state (normal
status = −1 and thicker status = +1) at an acceptable cor-
rect rate. A brief review of the hierarchical classifier is in-
cluded in Appendix A for the reader’s information. More
details of its design and analysis can be found in Jin and Shi
(2000).

In our stamping process, the shut height adjustment
(both the inner shut height x1 and the outer shut height
x2) is manually performed by operators, setting them either
at a high level (+1) or low level (−1). It is thus prohibitive
to make adjustments too often during the production since
frequent adjustments could cause too much production
downtime or even press damage due to a wrong adjust-
ment from a fatigued operator. For this reason, classifying
the in-coming material thickness to a binary state (nor-
mal or thicker) actually better fits this control constraint
because the resulting control strategy will take no action
under a frequent yet small fluctuation in material thick-
ness but will adjust the shut height when the state of the
material thickness is flipped, that is, when the material
thickness undergoes a significant yet infrequent change,
such a change would probably occur only between dif-
ferent batches. Box and Luceno (2002) discussed a feed-
forward controller to compensate an expected step change
of the material thickness occurring at different batches. In
their research, a dynamic first-order IMA time series model
was used for the controller development, which is differ-
ent from our cautious controller development based on a
static regression model with consideration of the interac-
tion among the controller variables and the observable noise
variables.

The constraints on controller implementation in the
stamping process make it reasonable to adopt the hi-
erarchical classifier as the noise factor observer. When
a classification-based observer is used, its observation
uncertainty will be computed using the misclassifica-
tion error rate, which is determined through a cross-
validation assessment of an offline training data set.
The obtained misclassification rates for the hierarchi-
cal classifier are p = Pr(ê1= −1 | e1= 1) = 2.78% and
q = Pr(ê1= 1 | e1= −1) = 1.39%. Thus, the observer vari-

Table 1. JCC(x) for the eight combinations of control settings [x1 x2] and observations ê1

[x1 x2] = [−1,−1] [x1x2] = [−1,1] [x1 x2] = [1,−1] [x1 x2] = [1,1]

ê1 = 1 0.0282 0.0154 0.0074 0.0168
ê1 = −1 0.0108 0.0037 0.0095 0.0200

ance is calculated as σ 2
ê1=1 = 0.056 and σ 2

ê1=−1 = 0.107. The
detailed computations are given in Appendix B.

3.4. Control strategy

According to Equation (9), the JCC(x) of Equation (23) is:

JCC(x) = (β11x1 + β12x2 + β21ê1 + B11ê1x1)2

+ (β21 + B11x1)2σ 2
ê1

+ σ 2
ε . (24)

Since in our stamping process, the shut height adjustment
(inner shut height x1 and the outer shut height x2) are set
either at a high level (+1) or low level (−1), and thickness
observation ê1 is also classified as binary states (−1) and
(+1). A simple search conducted on the corner points of
the constrained border D ≡ {x : ‖x‖∞ = 1} will yield the
optimal value of JCC(x), given different settings of x1 and
x2 as well as different values of ê1. The values of JCC(x) for
each of the total of eight combinations are calculated and
listed in Table 1.

The control law is determined by selecting the setting of
x1 and x2 that yields the minimal JCC(x) for an observed
ê1. In this particular example, the CC law is the same as the
CE control law. It is:

[x∗
1 , x∗

2 ] =
{

[ − 1, 1] if ê1 = −1,

[1, −1] if ê = 1.
(25)

The RPD setting can also be computed using Equation
(23). First, we consider using the factor x1 to reduce the vari-
ability since x1 has interaction with noise factor ê1. Given
that:

σ 2
ŷ = positive constant + 2(−0.013 03)(0.018 97)x1σ

2
e1
,

(26)

then x1 is set to the high level (+1) to minimize σ 2
ŷ . On the

other hand, the mean of y is:

E(y|x1=1) = 0.018 97E(e1) − 0.113 59
− 0.013 03E(e1) − 0.021 93x2, (27)

which suggests that x2 should be set at the low level (−1)
to minimize the mean deviation. Thus, the RPD setting of
this process is [x1, x2] = [1, −1].

Factors E (punch speed) and F (blank wash pressure),
since they are not significant in the response model, are free
to be set to either the high level or low level. Because of the
desire to achieve a higher throughput, they are set at the
high level for both the APC and RPD cases.



908 Jin and Ding

Fig. 8. Controlled output and deviation of y.

3.5. Control performance evaluation

The cautious APC strategy was successfully demonstrated
in a stamping plant of a major automobile manufacturer.
Data were collected for the cases corresponding to a con-
stant RPD setting and an online APC adjustment strategy.
The two data curves correspondence to RPD and APC are
shown in Fig. 8. The quality losses as defined in Equation
(3) are also calculated for each case, and the results are listed
in Table 2.

In Fig. 8, the first 12 points correspond to the case of
ê1 = 1, and the next 12 points correspond to ê1 = −1. We
note that the data shifts accordingly under the APC strat-
egy. The APC strategy, in fact, automatically adjusted the
control setting to yield the minimum quality loss in each
case, that is, [x1, x2] = [−1, 1] when ê1 = −1; and [x1, x2] =
[1, −1] when ê1 = 1. After comparing the values of quality
loss in Table 2, the APC strategy produces gains in quality
by taking the best setting whenever the noise factor changes.
In comparison to the RPD, the new APC methodology ren-
ders a 31.9% improvement in quality when the noise factor
is at the low level (ê1 = −1). Since the APC setting and the
RPD setting are the same when ê1 = 1, the overall quality
improvement that APC gains is 17.9%.

In this example, the facility limitation in adjusting the
control settings mandates that the APC setting must be the
same as the RPD setting for half of the production runs,
where no quality improvement is achieved as compared
to the RPD. In a general situation when control settings
could have been adjusted continuously given different ob-
servations of noise variable, the APC strategy can minimize

Table 2. Comparison of CC and constant RPD settings for the
stamping process

RPD setting
Approach CC [x1, x2] = [1, −1]

Quality loss J
ê1 = −1 0.0077 0.0113
ê1 = 1 0.0088 0.0088
Overall 0.0165 0.0201

quality loss over all the settings and thus gain more in qual-
ity improvements than RPD.

This case study shows that the methodology is effective
when it is applied to a stamping process under actual indus-
trial circumstances. It also demonstrates how to implement
the proposed APC strategy when there are special facility
constraints during the development of a real-world con-
troller. Although the stamping process model is a special
simple model of the general regression model, the devel-
oped methodology in Section 2.1 can also be applied to
other manufacturing processes. These processes may have
a different model from the stamping process but can still be
covered by the general regression model of Equation (5).

4. Summary and conclusions

Process control to achieve on-target production with mini-
mized variation significantly impacts manufacturing qual-
ity, productivity, and cost. This paper proposed an APC
methodology based on the regression models of complex
manufacturing processes. Both the analysis framework and
implementation procedures were presented.

The central idea of the proposed method is to develop
a general APC strategy, which is capable of better solv-
ing RPD-like problems with a feedforward controller. The
paper further classifies the noise factors in the traditional
offline RPD into observable noise factors and unobservable
noise factors, and utilizes the in-process observations of ob-
servable noise factors to automatically adjust the settings
of controllable factors.

Generally, when there exists an observable noise factor
and σ 2

ê < σ 2
e , an APC approach should be employed. When

σ 2
ê ≈ σ 2

e or there exists no observable noise factors, a RPD
approach should be employed. If the observation uncer-
tainty is explicitly considered in the control laws, a CC ap-
proach is used to achieve better control performance over a
wide range of observation uncertainty, as evidenced in the
simulation study. When the observation is perfect σ 2

ê = 0
or there is no interaction between controllable factors and
observable noise factors B1 = 0, the CC becomes a CE con-
trol, and the observer and controller can be designed and
implemented separately. When the observation has a large
uncertainty, the CC is close to the RPD.

According to the simulation study, the quality loss is re-
duced by 15 to 44% (depending on the ratio of σQ̂/σ Q)
by employing the resulting APC strategy, compared to the
use of RPD. The method was successfully implemented in
a sheet-metal stamping process, where product quality is
improved about 20% in comparison to the RPD.
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Appendix A

In Jin and Shi (2000), a hierarchical classifier is developed
to classify the states of the significant process variables iden-
tified by the DOE regression model in a stamping process.
The development procedures for a hierarchical classifier
are shown in Fig. A1. The measured waveform signals of
the stamping tonnage force as shown in Fig. 6 are repre-
sented by a high dimensional data vector. The training data
were collected under the DOE tests with different settings
of six tested variables: (i) lubrication; (ii) material thick-
ness; (iii) inner shut height; (iv) outer shut height; (v) punch
speed; and (vi) blank wash pressure which are denoted as A,
B, . . . , F, respectively. Each variable has two levels namely
either −1 or +1.

As shown in Fig. A1, the PCA transform is first used to
identify the significant variation patterns of the stamping
tonnage forces, which are associated with the larger eigen-

Fig. A1. Development procedures for a hierarchical classifier.

values. Starting from the first loading score vector of the
variation patterns, a DOE regression analysis is used to de-
termine the significant variables, called diagnostic variables,
of the corresponding variation pattern, which are the major
contributors to the variability of this principal component.
This iteration analysis is repeated until all significant vari-
ation patterns have been analyzed. The identified diagnos-
tic variables are used to cluster the DOE observations to
obtain the training data set. Then, a piecewise linear clas-
sifier is trained for the identified diagnostic variables and
the cross-validation method is used to assess the classifier
performance.

In the design of classifiers, a hierarchical classification
structure is used to remove the effect of the factor interac-
tions. Figure A2 shows a hierarchical classifier with three
layers which is used to determine the binary states of four
diagnostic variables (B C D E) in the stamping process.
The states of those four diagnostic process variables are
identified layer by layer, in which the state of factor B
(thickness) is determined at layer 2 and used as the on-
line thickness observer in our case study in Section 3 of this
paper.

At layer 2, two classifiers will be designed corresponding
to the binary states of factor D at the first layer. Since two
factors B and E are identified as the diagnostic factors at
layer 2, there will be four possible states (BE = −1−1, −11,
1−1, 11) to be classified at layer 2 under the given state of
factor D. A piecewise linear classifier is designed in Jin and
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Fig. A2. Hierarchical classification structure for variable state classification.

Shi (2002) as:

Cluster k∗

= max
k

{
µ(k)TΣ−1xi − 1

2
µ(k)TΣ−1µ(k) + log P0(k)

}
,

(A1)

where µ(k) is the mean vector of the principle components
at layer 2 corresponding to state k (k = 1, 2, 3, 4) of the
two diagnostic factors (BE = −1−1, −11, 1−1, 11) for a
given state of factor D. P0(k) is the occurrence probability
of state k, and  is the pooled variance of those states (we
are more interested in the difference of states induced by
the mean difference, and assume the same variance for all
states).

After the classifier is designed using the DOE training
data set, the cross-validation method is used to obtain the
average misclassification error rate to evaluate the perfor-
mance of the designed classifier (Jin and Shi, 2002). The
misclassification error rate is represented by the ratio of
the number of misclassified samples to the total number of
the samples clustered by the given states in the DOE training
data set. In layer 2, the misclassification error rates of fac-
tor B are obtained as: p = prob(B̂ = −1 | B = 1) = 2.78%,
and q = prob(B̂ = 1 | B = −1) = 1.39%.

In our DOE, two-level tests are conducted for each factor
leading to a binary state of each factor in the classifier. In
fact, the developed hierarchical classification method can be
generally applied to multiple state classifier design if train-
ing data with multiple states are available.

Appendix B

As discussed in Appendix A, a hierarchical classifier is used
to classify factor B at two levels based on online tonnage sig-
nal measurements. Let p and q be the misclassification rate
when B equals 1 and −1, respectively, i.e., p, q are defined
as p = Pr(B̂ = −1 | B = 1) and q = Pr(B̂ = 1 | B = −1).

In the test, the raw material is assumed equally likely to
have a high level (+1) or low level (−1) thickness; using the

Bayesian formula, we have:

Pr(B = −1 | B̂ = 1) = q
(1 − p) + q

and Pr(B = 1 | B̂ = −1) = p
(1 − q) + p

. (A2)

The observation is slightly biased, as indicated by the fol-
lowing equation:

E(B | B̂ = 1) = 1 − 2 Pr(B = −1 | B̂ = 1)

and E(B | B̂ = −1) = −1 + 2 Pr(B = 1 | B̂ = −1). (A3)

The conditional observation uncertainty is:

var(B | B̂ = 1)

= (−1 − E(B | B̂ = 1))2 Pr(B = −1 | B̂ = 1)

+ (1 − E(B | B̂ = 1))2 Pr(B = 1 | B̂ = 1),

and

var(B | B̂ = −1)

= (−1 − E(B | B̂ = −1))2 Pr(B = −1 | B̂ = −1)

+ (1 − E(B | B̂ = −1))2 Pr(B = 1 | B̂ = −1). (A4)

The classifier developed in Jin and Shi (2000) has p = 2.78%
and q = 1.39% . Then, substituting those values, we have
var(B | B̂ = 1) = 0.056 and var(B || B̂ = −1) = 0.107.
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