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A Characterization of Diagnosability
Conditions for Variance Components

Analysis in Assembly Operations
Daniel W. Apley, Member, IEEE, and Yu Ding

Abstract—Variance component estimation algorithms, in con-
junction with automated in-process measurement technology, can
be effective tools for identifying and eliminating major sources of
manufacturing variation in assembly processes. Whether a partic-
ular set of variation sources are diagnosable depends critically on
how the sensor system is laid out. Diagnosability tests are mathe-
matical in nature and provide little insight into why a particular
sensor layout may be nondiagnosable or how to modify the layout
to ensure diagnosability. This paper translates the mathematical
diagnosability conditions into a set of more conceptually mean-
ingful conditions that provide better insight into the reasons be-
hind the nondiagnosability.

Note to Practitioners —This paper was motivated by the problem
of identifying and eliminating major sources of variation in dis-
crete-part manufacturing, which are critical steps in improving
product quality. The effectiveness of statistical algorithms for esti-
mating sources of variation depends on whether the sensor system
for measuring key product and process variables is laid out prop-
erly, so that a particular set of diagnosability conditions are satis-
fied. This paper translates the rather abstract mathematical con-
ditions for diagnosability into a set of more intuitive and concep-
tually meaningful conditions. This provides practitioners with in-
sight into why a sensor system may be nondiagnosable and how
to add or adjust sensors in order to ensure diagnosability. The
diagnosability characterization can also be used to enhance per-
formance and reduce computational expense in numerical search
strategies for optimizing sensor layout.

Index Terms—Assembly systems, fault diagnosis, manufacturing
variation reduction, sensor layout, variance component estimation.

I. INTRODUCTION

I N RECENT YEARS, there has been considerable work on
reducing dimensional variation in assembly processes, in

particular in automobile body assembly [1]–[9]. Major advances
in this area have occurred in part because of the rapid prolifer-
ation of automated in-process dimensional measurement tech-
nology, which includes the noncontact laser-optical metrology
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systems that are now common in automobile manufacturing [1],
[7], [8]. The broad objective of the aforementioned work is to ef-
fectively utilize the dimensional measurement data for the pur-
pose of identifying (and subsequently eliminating) major root
causes of part-to-part dimensional variation. References [3]–[9]
have all developed measurement data analysis algorithms for
diagnosing root causes of variation, with particular emphasis
placed on fixture- and other tooling-related variation sources.
In order to facilitate the root cause diagnosis, most of these ap-
proaches employ the following linear structured model for rep-
resenting the effects of the variation sources on the measurement
data:

(1)

where is a vector of mea-
sured product features, is a
random vector whose elements represent independent vari-
ation sources, is an additive random noise vector (e.g.,
sensor noise), is an matrix relating
the variation sources to the measurement vector, is an observa-
tion index, and is the sample size. The quantity there-
fore represents the effects of the th variation source on the mea-
surements for part number of the sample. The sensor system
is normally assumed to be homogeneous so that the elements of

are independent with equal variance . In other words, the
covariance matrix of is . Alternative assumptions
for the sensor noise are considered in Section V. Because the el-
ements of are assumed independent, its covariance matrix
is a diagonal matrix .

The matrix is assumed available and will depend on a
number of factors, including the geometry of the parts, the
nature and location of the tooling elements and other variation
sources, and the location of the sensors. There have been
a number of recent analytical modeling developments for
conveniently obtaining based on engineering knowledge of
the process physics and a specified set of potential variation
sources [10]–[15]. It is also possible to obtain using other
means, such as expert knowledge and historical databases of
previously identified variation sources.

To illustrate the concepts, consider the following example
involving dimensional variability in the liftgate opening of a
minivan. More detailed examples and descriptions of the auto-
body assembly process and the measurement technology can be
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Fig. 1. Illustration of the actual liftgate opening (a), a schematic box representation (b), and a potential sensor layout (c) with six sensors numbered 1 through 6.

Fig. 2. Illustration of five variation patterns affecting the liftgate opening. (a) Pattern 1—a horizontal enlargement. (b) Pattern 2—a horizontal translation.
(c) Pattern 3—a horizontal matchboxing. (d) Pattern 4—a vertical enlargement. (e) Pattern 5—a vertical matchboxing.

found in [2], [8], and [16]. Fig. 1(a) shows the liftgate opening,
which is illustrated schematically as a box in Fig. 1(b). Sup-
pose that 6 sensors are positioned around the liftgate opening
as in Fig. 1(c). The sensors positioned on the bodyside (sensors
1 through 4) each measure the left/right dimensional deviation
from nominal at their particular location. The sensors positioned
on the roof cross-member (sensors 5 and 6) each measure the
up/down deviation from nominal. Deviations in the up and right
directions are taken to be positive. Deviations in the left and
down directions are taken to be negative. In this case, is the
number of autobodies in the sample, and is the autobody index.

Suppose we are interested in diagnosing the five potential
variation patterns illustrated in Fig. 2, each of which is a rela-
tively common occurrence as the tooling becomes worn, loose,
broken, etc. Throughout, we will refer to the effects of a varia-
tion source as a variation pattern and the corresponding column
of as a pattern vector. Based on the geometry of the patterns
and the locations of the sensors shown in Fig. 1(c), the matrix
for this example is

(2)

In some cases (e.g., the example in Section IV-A) the ele-
ments of are associated with distinct physical quantities. In
this example, however, the elements of are defined implicitly,
as the amount of deviation along each of the patterns shown
in Fig. 2. For example, represents the amount the lift-
gate opening enlarges on autobody number represents
the amount the liftgate opening translates on autobody number
, etc. Note that each pattern represents part-to-part variation,

as opposed to a mean shift. For example, although pattern 1

is shown as a positive enlargement in Fig. 2(a), on some au-
tobodies in the sample the enlargement may be negative (a con-
traction) depending on whether the value of was positive
or negative for that autobody.

The diagnostic objective in this paper and in most of the afore-
mentioned references is to estimate the variance components

for each of the potential variation sources,
based on the data sample . Knowl-
edge of the variance components allows us to assess whether
each variation source is present in the current sample and, if it
is, the severity of the source. All of the existing diagnostic algo-
rithms (the most effective of which are summarized in Section
II) require a set of diagnosability conditions to be satisfied in
order to produce valid, unique estimates of the variance com-
ponents. This is analogous to the issue of singularity in stan-
dard least squares, which results in nonunique parameter esti-
mates. Although there are straightforward mathematical tests
of diagnosability that typically involve checking whether a cer-
tain matrix is singular [17], [18], they provide little insight into
why a system is nondiagnosable or how to add sensors or ad-
just their locations to ensure diagnosability. The main purpose
of this paper is to translate the mathematical conditions for diag-
nosability into a set of more conceptually meaningful conditions
that provides better insight into the reasons behind the diagnos-
ability problems.

The format of the remainder of the paper is as follows. In
Section II, we review algorithms for estimating the variance
components, as well as their mathematical diagnosability con-
ditions. In Section III, we characterize the diagnosability condi-
tions in terms of a set of more conceptually meaningful condi-
tions. Section IV provides some interpretations of the conditions
and illustrates with examples. In Section V, we discuss how the
results extend to variants of the algorithm developed under dif-
ferent assumptions on the sensor noise. Section VI concludes
the paper.
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II. REVIEW OF VARIANCE COMPONENTS

ESTIMATION ALGORITHM

Throughout, the “∧” overscore symbol denotes an estimate
of a quantity. Unless otherwise noted, we assume the sample
mean has been subtracted from the
data so that the resulting sample
can be taken to be zero-mean. The motivation for the pri-
mary algorithm considered in this paper (refer to [19] for
details) is as follows. Express the covariance matrix of as

, and consider the sample covari-
ance matrix as an estimate
of . The variance component estimates are taken to be the
values that minimize the sum of the squares of the elements of
the error matrix . The estimates for
this approach, which we refer to as matrix least squares (MLS),
are given by

(3)

where is the vector of variance com-
ponent estimates

...
...

... (4)

The diagnosability condition for the MLS algorithm is that
has full rank , so that its inverse exists in (3).

Because is a Gram matrix of (appropriately defined)
matrix inner products between pairs of matrices in the set

, an equivalent condition for di-
agnosability is that these matrices are linearly independent.
Otherwise, the variance component estimates that minimize the
MLS error criterion are not unique.

It should be noted that the variance components estimation
algorithms discussed in this paper assume that all variation
sources that are present in the data are included in the model. If
a variation source is present in the data but is not included in
the matrix, then that will introduce bias in the estimates of
the other variance components. Although the missing variation
source could be considered part of the noise vector, this would
result in correlated noise with unequal variances, which violates
other assumptions of the methods.

It should also be noted that variance components estimation
algorithms are intended to diagnose sources of variation, as op-
posed to mean shifts. Any mean shift that is constant over the
data sample will have no effect on the variance components es-
timation, because the sample average is subtracted from the
data when calculating the sample covariance matrix. Although

mean shifts often have large impact on dimensional integrity, en-
tirely different methods are required in order to diagnose them
because of their constant nature.

A variant of the MLS algorithm was developed in [20] as an
approximate maximum likelihood method and also in [19] as a
weighted least squares version of the MLS algorithm that was
designed to improve estimation accuracy. This weighted MLS
algorithm is an iterative procedure that involves pre- and post-
multiplying the error matrix in the
MLS criterion by an appropriately chosen weighting matrix that
depends on the current estimates of the variance components at
each iteration (refer to [19] for details). Because the focus of this
paper is diagnosability, and the diagnosability conditions for the
weighted and unweighted MLS algorithms are equivalent [19],
we will subsequently make no distinction between these two
algorithms and refer to both as simply the MLS algorithm.

One might consider using a more conventional alternative to
the MLS algorithm, such as the standard least squares (LS) al-
gorithm discussed in [4]. In this approach, one calculates the LS
estimate for each . The
variance components are then estimated using the sample vari-
ances of the elements of . This approach clearly requires
that is invertible or, equivalently, that the pattern vectors

are linearly independent. The exact diagnos-
ability conditions for the LS algorithm are that
are linearly independent and that (the strict inequality
results from the manner in which the noise variance is esti-
mated [4], [19]). Reference [19] demonstrated that the MLS al-
gorithm generally outperforms the LS algorithm. Consequently,
this paper focuses primarily on the MLS algorithm.

Reference [19] also showed that diagnosability of the LS al-
gorithm always implies diagnosability of the MLS algorithm,
but that the converse is not necessarily true. In particular, there
are situations in which the pattern vectors are linearly depen-
dent, but the MLS algorithm remains diagnosable. In fact, the
MLS algorithm may be diagnosable even in situations in which

is substantially less than . Although this may violate intu-
ition, there is a reasonable explanation. In the MLS algorithm,
we are not attempting to estimate the elements of directly.
We are only interested in estimating their variances, and for
this it is not necessary that the columns of are linearly in-
dependent. In contrast, because the LS algorithm does attempt
to estimate the elements of directly, it involves the stricter
requirement that have linearly independent columns. In par-
ticular, it requires that we have at least as many sensors as we
have variation sources.

References [19] and [18] provided examples in which the pat-
tern vectors were linearly dependent but the MLS algorithm was
still diagnosable. However, the reasons why certain types of
linear dependencies are allowable, whereas others are not, are
not well understood. The singularity of the Gram matrix is
easy to check mathematically, but it is difficult to interpret and
provides little insight into why a system is or is not diagnos-
able. The remainder of this paper attempts to provide insight
into this issue by characterizing the type of linear dependencies
that result in a nondiagnosable MLS algorithm, versus the type
of linear dependencies that still allow diagnosability.
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III. CHARACTERIZATION OF DIAGNOSABILITY CONDITIONS

In this section, we present theorems that translate diagnos-
ability (nonsingularity of the Gram matrix ) into conditions
on the pattern vectors . We first present a nec-
essary and sufficient set of conditions for the MLS algorithm to
be nondiagnosable for the case that . Results for the case
where follow.

Theorem 1: For , a necessary and sufficient condition
for the MLS algorithm to be nondiagnosable is that all of the
following hold.

C1) There must exist a set of pattern vectors, each
of which can be written as a linear combination of a
second disjoint set of pattern vectors.

C2) .
C3) Denote the two sets of pattern vectors in condi-

tion (C1) as and
with

and two disjoint sets of
indices. Write their relationship as for some

matrix . There must exist a nonzero diagonal
matrix such that
is diagonal.

Proof: We first prove necessity. If the MLS al-
gorithm is nondiagnosable, then the set of matrices

are linearly dependent, in which
case there exists a set of scalars , not all
zero, such that .
In order for this to hold, we must have . Otherwise,

, whereas the summation of matrices on the
left hand side can have at most rank . Let denote
the number of nonzero ’s and order the pattern vectors
so that are nonzero and
are linearly independent, where .
Define

, and .
Because , each column of must be
a linear combination of the columns of . Write this as
for some matrix , where . We must have ,
because if are linearly dependent,
then so must be . This proves the necessity
of condition (C1).

To prove the necessity of condition (C3), rewrite the relation-
ship as

. Because the columns of are lin-
early independent, this implies that , which proves
the necessity of condition (C3). From this last equality, it also
follows that ,
which proves the necessity of condition (C2). It is straightfor-
ward to show that conditions (C1) through (C3) together imply
that are linearly dependent, which
proves the sufficiency part of the theorem.

Remark 1: Condition (C1) holds iff the full set of pattern
vectors are linearly dependent. Thus, for

, condition (C1) alone is a necessary and sufficient condition
for the LS algorithm to be nondiagnosable. In addition to this,

conditions (C2) and (C3) must also hold in order for the MLS
algorithm to be nondiagnosable. Clearly, the MLS algorithm is
diagnosable for a broader class of problems. Examples where
the MLS algorithm is diagnosable, but the LS algorithm is not,
are given later.

The following theorem provides similar results for the case
that .

Theorem 2: For , a necessary and sufficient condition
for the MLS algorithm to be nondiagnosable is that either con-
dition (C4) or condition (C5) below holds.

C4) All of conditions (C1) through (C3) hold.
C5) The columns of are orthogonal.

Proof: We first prove necessity. As in the proof of The-
orem 1, if the MLS algorithm is nondiagnosable, then there
exists a set of scalars , not all zero, such
that . If

, then the necessity of condition (C4) is proven as in The-
orem 1. If , write the linear dependency as

, where . It follows that
, so that the ma-

trix has full rank and is invertible. Thus,
, or . This implies that

is diagonal, which requires that the full-rank is diagonal.
In other words, the columns of are orthogonal, so that (C5) is
a necessary condition if .

The sufficiency of condition (C4) can be proven as in
Theorem 1. To prove the sufficiency of condition (C5), suppose
the columns of are orthogonal. It follows that with

and each . Pre- and
post-multiplying by
gives . The
matrix is therefore orthogonal, so that

.
This implies that the set is
linearly dependent, in which case the MLS algorithm is
nondiagnosable.

For , the full set of necessary conditions for nondi-
agnosability is more involved than when . However, a
straightforward repetition of the proofs of sufficiency in Theo-
rems 1 and 2 yields a similar set of sufficient conditions stated
in Theorem 3 below. Note that the sample covariance matrix

is symmetric and contains only nonredundant
elements, which must be used to estimate unknown quan-
tities in the MLS algorithm. Consequently, the absolute min-
imum number of sensors required for diagnosability must sat-
isfy .

Theorem 3: For , a sufficient condition for the MLS
algorithm to be nondiagnosable is that either condition (C4) or
condition (C6) below holds.

C6) contains orthogonal columns.

Remark 2: Regardless of and , conditions (C1) through
(C3) are always sufficient conditions for the MLS algorithm to
be nondiagnosable. Although the meaning of conditions (C1)
and (C2) are quite straightforward, the meaning of condition
(C3) is less intuitively clear. Fortunately, we can often bypass
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Fig. 3. Three-station assembly system where Parts 1 and 2 are joined in Station I; the Part 1–2 subassembly is joined to Parts 3 and 4 in Station II; and the final
assembly is measured in Station III.

this condition. When conditions (C1) and (C2) hold with ,
condition (C3) can be neglected because it will hold automati-
cally. Indeed, if , then is a scalar and condition (C3)
holds trivially. If is a matrix. It is straightforward
to verify that for any with , we can always find a non-
trivial diagonal so that is diagonal. More generally, it
can be shown that condition (C3) holds automatically whenever
conditions (C1) and (C2) hold with .

IV. DISCUSSION AND EXAMPLES OF DIAGNOSABILITY

CONDITIONS

The results in the previous section translate the singularity of
the Gram matrix into a set of conditions on the pattern vec-
tors . The pattern vectors are generally much
easier to interpret and to work with than the Gram matrix. Engi-
neers usually have a clearer conceptual understanding of how a
modification to the sensor layout will affect the pattern vectors
than of how it will affect the Gram matrix. This section discusses
various implications of the characterization of diagnosability in
terms of the pattern vectors and provides illustrative examples.

A. Diagnosable Versus Nondiagnosable Linear Dependencies

One conclusion of the previous section was that there are cer-
tain types of linear dependencies among the pattern vectors that
result in nondiagnosability, and other types of linear dependen-
cies that are allowable. In light of Remark 2, we can focus pri-
marily on conditions (C1) and (C2) to understand what types
of linear dependencies are nondiagnosable. For nondiagnosable
linear dependencies, there must exist a set of pattern vectors

that can be written as a linear combination
of a set of other pattern vectors. We
can view this as being able to “cancel out” the effects of each

of with a single set of
pattern vectors that are of equal of fewer number. The simplest
example of this is when , in which case we have two
collinear pattern vectors. This is obviously a sufficient condition
for nondiagnosability, because there is no way to distinguish be-
tween the effects of two collinear pattern vectors.

The situation when is less obvious. If we have only a
single pattern vector (say ) that can be written as a linear com-
bination of other pattern vectors (say and ), then the
system may still be diagnosable. On the other hand, if we can
also write a second pattern vector (say ) as a linear combi-
nation of the same and , then the system will always be
nondiagnosable. For , if we have
pattern vectors that can be written as a linear combination of
three other pattern vectors, then the system will always be non-
diagnosable. This is illustrated in the following example from
rigid panel assembly, which is similar to the example consid-
ered in [18].

The assembly process shown in Fig. 3 welds four parts to-
gether in two stations (Stations I and II). In Station I, Parts 1 and
2 are joined, and the resulting subassembly is joined to Parts 3
and 4 in Station II. In an assembly station, each part (or sub-
assembly) is located in a fixture using a pin that mates with a
hole in the part and second pin that mates with a slot in the part.
A pin/hole combination constrains two degrees-of-freedom and
a pin/slot constrains only one degree-of-freedom. Together, a
pin/hole and pin/slot completely constrain all three degrees-of-
freedom of the part in the - plane. The active holes and slots
at each station are shown in solid dark color. Holes and slots
that are not shown darkened are not used in that particular sta-
tion. Station III is a measurement station in which no assembly
takes place (measurement is not restricted to Station III, how-
ever). The distances between the holes and slots are shown in
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Fig. 4. Nondiagnosable sensor layout for the assembly system shown in Fig. 3.

the Station III figure (the units have no physical meaning and
have been scaled for convenience).

The variation sources we will consider are deviations of the
pin/hole combinations in the - and -directions and deviations
of the pin/slot combinations in the -direction for the two as-
sembly stations. Because there are a total of five active pin/hole
combinations and five active pin/slot combinations in Stations
I and II, there are a total of 15 variation sources. These are in-
dicated by the arrows labeled through in the Station I
and Station II figures. Deviations in the positive - and positive

-directions are taken to be positive.
Suppose we are considering a sensor layout in which we place

two sensors (one measuring the -deviation and one measuring
the -deviation) on each of the four parts in Station III. One
such layout is shown in Fig. 4. The locations of the eight sen-
sors are labeled through , where the direction of the arrows
indicate whether the -coordinate or -coordinate is being mea-
sured. Based on the geometry of the parts and fixtures shown in
Fig. 3 and the positions of the sensors shown in Fig. 4, we can
calculate as shown in the equation at the bottom of the page
(the bar overscore indicates a repeating digit). The reader is re-
ferred to [7], [10], or [12], for a systematic procedure for mod-
eling the matrix in multi-station assembly processes such as
this. In this particular example, the geometry was simple enough
to obtain using basic kinematic arguments. Note that the above
expression for reflects the fact that deviations at one station
may be partially compensated at downstream stations. For ex-
ample, a deviation in Station I causes Part 2 to rotate about
the pin. However, because the slot is an active locator
in Station II (in which it is constrained to mate with the pin),
the Part 1/Part 2 subassembly will rotate in the opposite direc-
tion to some extent when it is placed in the Station II fixture.

It can be verified that the resulting Gram matrix is singular, so
that the system is nondiagnosable. Because we are considering
15 pattern vectors but using only 8 sensors, there are obviously
a number of linear dependencies among the columns of . The
row-reduced echelon form [21] of was used to identify the
following:

Not all of the linear dependencies are responsible for the nondi-
agnosability, however. The only linear dependencies that violate
conditions (C1) and (C2) are [ in condition
(C2)], and and both being a linear combination of and

[ in condition (C2)]. The other linear dependen-
cies do not contribute to the nondiagnosability. To substantiate
this claim, suppose hypothetically that variation sources 4 and
5 did not exist and we were only interested in estimating the re-
maining 13 variation sources. If we eliminate the fourth and fifth
columns of the above and consider the resulting 8 13 matrix
as the new , then we still have all of the above linear dependen-
cies except the first two. The remaining six linear dependencies
do not violate conditions (C1) and (C2), however. Consequently,
even though we would still have a number of linear dependen-
cies among the columns of , the system would be diagnosable.

Because we want to include variation sources 4 and 5 in
the diagnosis, the only recourse is to modify the sensor layout.
Knowledge of the offending linear dependencies can be useful
for this purpose. Recall that the offending linear dependencies
are i) is collinear with , and ii) and are both linear
combinations and . In order to avoid this in the modified
sensor layout, we must place a sensor at Station I. If we move
the sensor from Station III to the exact same position on Part
1 but in Station I, the new matrix becomes (only the first row
changes) as shown in (5) at the bottom of the next page. It can
be verified that the Gram matrix for this is full rank, so that the
new sensor layout is diagnosable. This is in spite of the fact that



APLEY AND DING: CHARACTERIZATION OF DIAGNOSABILITY CONDITIONS FOR VARIANCE COMPONENTS ANALYSIS 107

Fig. 5. Two-part assembly with four sensors and two different sensor layouts. (a) Four variation patterns are decoupled and nondiagnosable. (b) Four variation
patterns are diagnosable.

we are estimating 15 variance components with only 8 sensors
and still have the following linear dependencies:

The reason these linear dependencies do not cause nondiagnos-
ability is that they do not violate conditions (C1) and (C2).

B. Implications of the Orthogonality Conditions

The orthogonality condition (C6) also has a straightforward
interpretation. An alternative proof that it is a sufficient con-
dition for nondiagnosability uses the following simple argu-
ment. Suppose we have a set of orthogonal pattern vectors
(say through ) with . Define the orthog-
onal matrix and the diagonal matrix

. The covariance matrix of becomes

If we add any constant to the variance components
and subtract the same constant from ,

then we clearly do not change the covariance of . The variance
components estimates are therefore not unique, and the system
is nondiagnosable. Note that this is not problematic if we have
an a priori estimate of the noise variance, as will be discussed
in Section V.

The orthogonality condition has implications when laying
out a sensor system. One implication is that we should avoid
“decoupling” the variance components, as illustrated in the fol-
lowing example. Fig. 5(a) shows an assembly station in which
two parts are joined. Suppose we are not concerned with the

-direction displacement of the parts and are only considering
the four variance components that represent the -direction de-
viations of the four pin/hole or pin/slot combinations. Because
the four sensors in layout are located directly above the four
pins, the layout decouples the effects of the four variation pat-
terns (each pattern affects a single distinct sensor). The resulting

matrix is the 4 4 identity matrix, and the sensor layout in
Fig. 5(a) is therefore nondiagnosable. If we move sensors 2 and
4 to positions that are half way between the pins, as shown in
Fig. 5(b), the variation patterns are no longer decoupled. Pattern
1 now affects both and , and pattern 3 affects both and

. In this case

no longer has orthogonal columns. It can be verified that the
Gram matrix is full rank, and the system is diagnosable.

Although the nondiagnosability of the layout in Fig. 5(a) may
seem counterintuitive, it is because of the presence of noise. If
there were no noise , or more generally if were
known, then the layout in Fig. 5(a) would indeed be diagnosable.
This is implied by Corollary 1 of Section V.

(5)
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The orthogonality condition also comes into play in the lift-
gate opening example discussed in Section I with the five varia-
tion patterns shown in Fig. 2. Suppose that we can place sensors
anywhere on the roof cross-member (measuring up/down devia-
tion from nominal) and/or on the left and right bodysides (mea-
suring left/right deviation). We would like to use the smallest
number of sensors that will still result in diagnosability for the
five variation sources. Because patterns 4 and 5 affect only roof
measurements (and not the bodysides), we need at least two sen-
sors on the roof. Otherwise, if we had only one sensor on the
roof, and would be collinear and violate conditions (C1)
and (C2) with . Similarly, because patterns 1 through
3 affect only the bodysides, we need at least two sensors on the
bodysides. Otherwise, if we had only one sensor on the body-
sides, , and would all be collinear and violate condi-
tions (C1) and (C2) with and . Consequently, we
need at least 4 sensors—2 on the roof and 2 on the bodysides.

In order to determine a suitable layout for the two bodyside
sensors, we can again consider the collinearity condition. The
two sensors cannot be located on the same bodyside [for ex-
ample, sensors 1 and 2 in Fig. 1(c)]. Otherwise, and will
be collinear. They cannot be located at the same height on oppo-
site bodysides [for example, sensors 2 and 4 in Fig. 1(c)]. Oth-
erwise, and will be collinear. In light of these constraints,
we must place the 2 bodyside sensors on opposite sides and at
different heights. For example, we could place the sensors at lo-
cations 2 and 3 in Fig. 1(c) or at locations 1 and 4.

In order to determine where to place the roof sensors, consider
that if we place the bodyside sensors on opposite sides (which
we must), then we have

which are orthogonal. Consequently, we cannot place the two
roof sensors at equal distances from the left/right centerline of
the liftgate opening, such as is the case with sensors 5 and 6 in
Fig. 1(c). Otherwise, we would have

where is a constant that is proportional to the distance between
the sensors and the left/right centerline of the liftgate opening.
In this case, would constitute a set of
orthogonal pattern vectors, which violates condition (C6). In
light of all of these constraints, we might consider placing the
four sensors as shown in Fig. 6, for which we have

(6)

It can be verified that the resulting Gram matrix is nonsingular,
so that the layout shown in Fig. 6 is diagnosable.

Fig. 6. Diagnosable layout with four sensors in the liftgate opening example.

C. Independent Versus Dependent Variation Sources

In the example of Section IV-A, it was possible to diagnose 15
variation patterns using only eight sensors. One of the reasons
why it is often possible to find a diagnosable layout with
is because of the assumption that the variation sources are all
independent. In this case, the covariance structure of takes the
form , in which there are only
unknowns . We have distinct
elements of with which to solve for the unknowns,
however.

Although there are many situations in which the varia-
tion sources are independent, and virtually all of the vari-
ance components estimation algorithms were developed
under this assumption, one may also be interested in the
more general situation in which the variation sources are
not independent. In this case, the covariance structure of

is , where
denotes the covariance between the th and th

variation sources. There are unknown variances
or covariances for which we must solve, and we would require a
minimum of sensors. Because of this, it may be preferable
to use a version of the regular least squares algorithm in [4] for
the case of dependent variation sources, rather than a version
of the MLS algorithm.

V. DIAGNOSABILITY FOR ALTERNATIVE SENSOR

NOISE ASSUMPTIONS

It has been assumed throughout this paper that the sensors are
homogeneous, and the common noise variance is unknown
and must be estimated. In this section, we briefly consider di-
agnosability conditions for different variants of this assump-
tion. First, suppose the sensors are homogeneous, but that is
known or that a sufficiently accurate a priori estimate is avail-
able. For example, gage repeatability and reproducibility (gage
R&R) studies are widely used to determine measurement sys-
tems capability in manufacturing by estimating measurement
error variances [22]. Assuming we use a version of an MLS
algorithm that estimates by minimizing the
(weighted or unweighted) sum of the squares of the elements
of the error matrix , the system is di-
agnosable iff the set is linearly inde-
pendent. In other words, the upper left block of the Gram
matrix in (4) must be nonsingular. A repetition of the proof of
Theorem 1 yields the following corollary, which holds regard-
less of and .

Corollary 1: If is known for a homogeneous sensor
system, then a necessary and sufficient condition for nondiag-
nosability is that conditions (C1) through (C3) all hold.
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Now suppose that we have a nonhomogeneous sensor
system, and denote the variance of the th sensor noise by

. If the noise variances were known
(e.g., through gage R&R studies), then we could estimate
the variance components by minimizing the (weighted
or unweighted) sum of the squares of the elements of

. Because
diagnosability in this case is identical to the case of homo-
geneous sensors with known, Corollary 1 also applies to
nonhomogeneous sensor systems with known noise variances.

If the noise variances are unknown, we can estimate the
variance components and noise variances together by mini-
mizing the (weighted or unweighted) sum of the squares of the
elements of .
Define to be the th unit vector (an -length column
vector of zeros with a 1 as the th element), so that this ex-
pression becomes .
It follows that the system is diagnosable iff the set

is lin-
early independent. Once again, a straightforward repetition of
the proof of Theorem 1 yields the following corollary, which
holds regardless of and .

Corollary 2: If the noise variances are unknown for a nonho-
mogeneous sensor system, then a necessary and sufficient con-
dition for nondiagnosability is that conditions (C1) through (C3)
all hold with the set of pattern vectors replaced by the aug-
mented set of vectors.

The conditions in Corollary 2 for nonhomogeneous sensor
systems are much more restrictive than for homogeneous sys-
tems. We cannot have a variation pattern that affects only a
single sensor, because the corresponding pattern vector would
be collinear with one of the unit vectors. This would violate con-
ditions (C1) and (C2) with . Similarly, we cannot
have two variation patterns that affect the same two sensors but
no other sensors, because the two corresponding pattern vectors
would each be a linear combination of the same two unit vectors.
This would violate conditions (C1) and (C2) with . In
general, we should attempt to lay out the sensor system so that
each variation pattern affects as many sensors as possible.

It is interesting to note that none of the examples considered
in Section IV would be diagnosable if the sensor systems were
nonhomogeneous with unknown noise variances. For the ma-
trix in (5), there are numerous violations of the above conditions.
Patterns 4 and 5 affect only sensors 2 and 3, patterns 11 and 12
affect only sensors 5 and 6, pattern 13 affects only sensor 7, etc.
For the matrix in (6), there are similar violations of the above
conditions.

VI. CONCLUSION

This paper has translated the diagnosability condition of
Gram matrix singularity for a common variance component
estimation algorithm into a set of conditions on the pattern
vectors . It was shown that only certain types
of linear dependencies among the pattern vectors result in
nondiagnosability, whereas other types of linear dependencies

are allowable. Because the pattern vectors have a much clearer
physical interpretation than the Gram matrix, the character-
ization of diagnosability in terms of the pattern vectors can
provide insight that is useful when laying out a sensor system.
Examples from autobody panel assembly were used to illustrate
the results.

The diagnosability characterization could also be used in
conjunction with sensor layout optimization strategies (e.g.,
[23], [24]) that search over all possible candidate sensor lay-
outs. Insight from the characterization could be used to reduce
the search space by narrowing down the set of diagnosable
candidate layouts or to provide an initial guess for the optimal
layout.

As a final comment, we point out that all methods discussed
in this paper are based on the assumption that variation sources
have linear effects on the measurements, as represented by (1),
and that the matrix is known. This may be unrealistic for pro-
cesses in which the effects of the variation sources are difficult
to model and there is no historical database of common vari-
ation patterns. These situations require the more versatile but
less powerful methods in which the variation pattern vectors and
the variance components are simultaneously estimated, based
on only the measurement data. Examples of such methods can
be found in [1], [8], and [25].
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