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Abstract

A functional data approach is developed to jointly estimate a collection of monotone curves that are ir-
regularly and possibly sparsely observed with noise. In this approach, the unconstrained relative curvature
curves instead of the monotone-constrained functions are directly modeled. Functional principal components
are used to describe the major modes of variations of curves and allow borrowing strength across curves
for improved estimation. A two-step approach and an integrated approach are considered for model fitting.
The simulation study shows that the integrated approach is more efficient than separate curve estimation
and the two-step approach. The integrated approach also provides more interpretable principle component
functions in an application of estimating weekly wind power curves of a wind turbine.
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1. Introduction

In this paper we consider the problem of estimating a collection of monoton curves. Estimation of a group
of curves has been studies in the functional data analysis literature but existing methods are not directly
applicable to estimating curves with shape constraints. We have the following three considerations in our
situation. First, the underlying curves to be estimated are smooth and strictly-monotone. The monotonicity
is often assumed on smooth curves such as cumulative distribution functions, survival functions, growth
curves and so on. Second, a collection of curves instead of a single curve are of interest. The hope is
that estimating these curves together can borrow strength across curves and do better than estimating each
curve separately. Lastly, curves are observed with noises on an irregular and sparse grid. Assuming complete
observation of curves on an equally-spaced grid is too restrictive in reality.

Our study is motivated from an application in industrial engineering where estimation of the power curve
of a wind turbine is needed. The power curve explains the functional relationship between wind power output
and wind speed input (Ackermann and Söder, 2005). It is especially useful for forecasting power production
from a wind turbine (Ding, 2019). As illustrated in Figure 1, a power curve is theoretically smooth and
monotonically increasing since a wind turbine produces higher power as wind speed increases. However,
because of measurement errors or other environmental factors that possibly affect the power production, the
data are noisy version of the smooth power curves. Moreover, because wind blows disorderly, the observed
values of the input variable, wind speed, are irregularly spaced, and each power curve may have a different
observed range. Figure 2 shows two examples of observed wind power curve based on weekly observations.
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Figure 1: A nominal wind power curve. A turbine starts power production at the cut-in speed, reaches its full operation at the
rated speed, and stops producing power at and beyond the cut-out speed. Power outputs are normalized by the rated power.

Estimation of single monotone curves has been studied extensively in the statistics literature. Existing
spline-based approaches either use constrained coefficients estimation or use constrained optimization tech-
niques; see Ramsay (1988), Kelly and Rice (1990), Zhang (2004), and Pya and Wood (2015). Through a
reparametrization, Ramsay (1998) developed another spline-based approach that is constraint-free on spline
coefficients and does not rely on constrained optimization. Local polynomial kernel methods for estimating
single monotone curves include Hall and Huang (2001), Hall and Müller (2003) and Mammen and Yu (2007).

Ramsay (1998) proposed to estimate the so-called relative curvature curve instead of a monotone curve
directly. His approach has an advantage of converting the problem of estimating a constrained function
into that of estimating an unconstrained function. Nevertheless, that approach is designed to estimate a
single monotone curve while we aim to estimate a collection of monotone curves sharing similar shapes. In
particular, we would like to borrow strength across different curves during estimation. For example, when a
curve is only partially-observed as in Figure 2(b), details of the curve when reaching the rated power output
at high wind speed would be hardly recognized if the curve is estimated alone.

We thus aim at the joint estimation of a collection of monotone curves, rather than the one-by-one
estimation. To that end, we make use of the concept of functional principal component analysis (fPCA),
which is broadly used to represent multiple curves by a few key functions: a mean function and several
leading principal component functions. The individual characteristics of each curve can also be preserved
through principal component scores. By doing so, an incompletely observed curve such as Figure 2(b) can
borrow the information from entire data; therefore, its estimated curve would have a reasonable shape as
other curves.

The traditional approach of fPCA is defined similarly as the classical multivariate principal component
analysis (PCA) but merely a summation changes into an integration (Ramsay, 2006). See also Rao (1958),
Besse and Ramsay (1986), Castro et al. (1986) and Jones and Rice (1992). However, this traditional approach
is limited to the case that all curves are completely observed at an equally-spaced grid. Even though one can
project the data on a common grid and then apply the traditional approach, but it is not the best way to
utilize the data. To overcome the drawbacks of traditional fPCA, James et al. (2000), Rice and Wu (2001),
Zhou et al. (2008) and Guo et al. (2015) developed spline-based approaches for sparsely and irregularly
sampled curves. On the other hand, Besse et al. (1997), Staniswalis and Lee (1998) and Yao et al. (2005)
proposed kernel-based approaches for functional data modeling on an irregular grid. In this paper, we adopt
a spline-based approach as aforementioned and particularly the idea of the reduced-rank model that James
et al. (2000) suggested. While most fPCA techniques are developed for general curves without any shape
constraints, we in this paper propose a fPCA model for monotone-constrained curves that has not been
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Figure 2: Weekly power curves from the cut-in speed to the rated speed (the strictly monotonically increasing range).

developed.
We study two approaches for the joint estimation of monotone curves via fPCA; we call them a two-step

and an integrated approach, respectively. Both target the same structure in a functional model framework,
however, the procedures for estimating unknown functions in the proposed model differ. The two-step
approach simply performs existing two methods in a row; it first estimates a relative curvature for each
monotone curve as suggested by Ramsay (1998), and then, the classical fPCA is applied to the estimated
relative curvatures. On the other hand, the integrated approach is indeed a primary method we want to
recommend, which estimates all of the spline coefficients in the proposed model simultaneously. Unlike the
two-step approach, the integrated approach provides one unified algorithm.

The remainder of the paper is structured as follows. In Section 2, we review Ramsay (1998) to de-
scribe how to estimate a single monotone curve as well as its relative curvature and introduce the necessary
background. In Section 3, we propose a fPCA model for a collection of monotone curves and develop two ap-
proaches to estimate model parameters. Section 4 presents a simulation study to compare the performances
of several approaches: the Ramsay’s approach, the two-step approach and the integrated approach. All
approaches are applied to estimate power curves for a wind turbine in Section 5. The R code for producing
the numerical results in the paper are available at https://github.com/syeeun/jointmono.

2. Estimation of a Monotone Curve

Consider the problem of estimating a function which belongs to the class of monotone curves M that
consists of functions m that satisfy the following conditions,

1. logDm is differentiable;

2. D logDm = D2m/Dm is Lebesgue square integrable,

where Dr refers to a differential operator of order r. These conditions ensure that m is strictly monotonically
increasing (−m is strictly monotonically decreasing) and its first derivative is smooth and finite almost
everywhere. Ramsay (1998) showed that the functions in this class can be represented by a simple linear
differential equation as

m = β0 + β1D
−1 expD−1w, (1)

where β0 and β1 are arbitrary constants and w is a Lebesgue square integrable function such that w =
D2m/Dm. The function w can be interpreted as the relative curvature of m, i.e., the size of the curvature
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Figure 3: Examples of relative curvatures w and monotone curves m. See how monotone curves look like according to their
corresponding relative curvatures.

D2m relative to the slope Dm. The equation (1) can also be written explicitly using integrals as

m(t) = β0 + β1

∫ t

τ0

exp

∫ s

τ0

w(u) duds. (2)

See Ramsay (1998) and Ramsay (2006) for details about this monotone function representation.
We would like to point out that the relative curvature w in (1) and (2) indicates the particular shape

of monotone curve m. Figure 3 illustrates four examples of monotone curves and their relative curvatures.
In the case of constant relative curvatures as in (a) and (b), their explicit forms of m are available; zero
w(t) = 0 leads a straight line m(t) = t, while non-zero constant w(t) = c corresponds to an exponentially
increasing curve m(t) = 1/c exp(ct). More complicated shapes of monotone curves can also be represented
by a certain form of relative curvature curves as shown in (c) and (d); there are no explicit forms of m,
though. In addition, when w is continuous, inflection points, at where a curve changes from concave to
convex or vice versa, can be found by solving w(t) = 0. We set β0 = 0 and β1 = 1 in the figure to describe
curves in a clear way.

Now we turn to the estimation problem. For monotone curve m ∈ M, suppose its noisy observations
satisfy

y(tj) = m(tj) + εj , j = 1, . . . , n, (3)

where εj is a zero-mean random noise, and n is the total number of observations. Denote the vector of
observations by Y = (y(t1), . . . , y(tn)). According to Ramsay (1998), an estimate of m is obtained by
maximizing the penalized least squares criterion

Fλ(Y |β0, β1, w) = n−1
n∑
j=1

{y(tj)−m(tj)}2 + λ

∫ τ1

τ0

w2(t) dt, (4)

where λ is a smoothing parameter, and τ0 and τ1 are the lower and upper limit of t. Here, the roughness
penalty is applied to the relative curvature function w = m′′/m′, not to the second derivative m′′. This
ensures the smoothness of the relative curvature function w as well as the smoothness of the unknown
monotone curve m. See Section 3 of Ramsay (1998) for more discussions.

Instead of estimating m directly, we estimate the relative curvature function w through basis expansion.
Specifically, w is represented as a member of a q-dimensional space of spline functions, such that w(t) =
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b(t)Tθ, where b(t) = (b1(t), . . . , bq(t))
T is a vector of spline basis functions and θ = (θ1, . . . , θq)

T is a vector
of spline coefficients. In general, the basis expansion is only an approximation. However, when w is a smooth
function, the approximation is good if a sufficiently large q is used (De Boor, 2001).

Following the spline basis expansion of w, the monotone curve m is represented as

m(t) = β0 + β1

∫ t

τ0

exp

∫ s

τ0

b(u)
T
θ duds, (5)

and hence, the problem of estimating the monotone function m becomes the problem of estimating param-
eters β0, β1 and θ. The fitting criterion (4) can be written in a vector-matrix form as

Fλ(Y |β0, β1,θ) = n−1
n∑
j=1

{
y(tj)− β0 − β1

∫ tj

τ0

exp

∫ s

τ0

b(u)Tθ duds
}2

+ λθTΩθ, (6)

where Ω =
∫ τ1
τ0
b(t)b(t)T dt. To minimize the criterion (6), an iterative Fisher scoring procedure is performed

for the basis coefficients θ, and β0 and β1 are updated by ordinary linear regression at each iteration. The
smoothing parameter λ may be chosen by cross-validation techniques. For more details about this fitting
algorithm, see section 3.1 of Ramsay (1998). With the estimated parameters β̂0, β̂1 and θ̂, the fitted
monotone curve is

m̂(t) = β̂0 + β̂1

∫ t

τ0

exp

∫ s

τ0

ŵ(u) duds,

where ŵ(t) = b(t)T θ̂.

3. Joint Estimation of Monotone Curves

Our study primarily aims at estimating a collection of monotone curves, rather than a single monotone
curve. Section 3.1 proposes a functional model that can represent a collection of monotone curves. Two
approaches for estimating the proposed model are presented in Section 3.2 and Section 3.3.

3.1. Modelling a collection of monotone curves

Consider a collection of M functions in the class of monotone curves, {mi ∈M | i = 1, . . . ,M}. Suppose
observations of a function mi have the same structure as (3), while each mi is observed at a possibly different
set of t in a common fixed interval [τ0, τ1]. Precisely, an observation of mi at tij is given by

yi(tij) = mi(tij) + εij , j = 1, . . . , ni, (7)

where ni denotes the number of observations for the i-th curve. Following (refeqn:ramsay2), each mi is
expressed via a relative curvature function wi such that

mi(t) = β0i + β1i

∫ t

τ0

exp

∫ s

τ0

wi(u) duds, (8)

where τ0 is a common lower limit of integration. In practice, it is natural to choose τ0 and τ1 respectively
as the minimum and maximum of the observation points tij ’s from all M functions.

3.2. Two-step approach

The two-step approach literally estimates model parameters in the following two steps.
First, we fit a single monotone curve model (5) for each curve by applying the approach described in

Section 2. Then, we obtain a collection of individually-fitted monotone curves denoted as

m̃i(t) = β̂0i + β̂1i

∫ t

τ0

exp

∫ s

τ0

w̃i(u) duds,
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where w̃i(t) = b(t)T θ̃i with the estimated parameters β̂0i and β̂1i, and the estimated basis coefficients θ̃i
for i ∈ {1, . . . ,M}.

Second, we discretize each of the fitted relative curvature functions {w̃i | i = 1, . . . ,M} on a sufficiently
dense grids (ν1, . . . , νG) in the range (τ0, τ1); that is τ0 ≤ ν1 < . . . < νG ≤ τ1 for a moderate size G
and νj+1 − νj = νj − νj−1 for any j ∈ {2, . . . , G − 1}. Then, we treat the augmented data, denoted by
{w̃i(νj) | j = 1, . . . , G; i = 1, . . . ,M}, as if they were equidistantly and completely observed data. We finally
fit the augmented data with the reduced rank model proposed in James et al. (2000).

To be specific about the reduced rank model, we assume that for a fixed i, {w̃i(νj) | j = 1, . . . , G} are
observed trajectories of a smooth function wi, that is

w̃i(νj) = wi(νj) + ζij , (9)

where ζij ∼ N (0, ξ2), and wi is represented by a mean function µ(t) plus a linear combination of a common
set of functions f(t) = {f1(t), . . . , fK(t)}T , with its own set of coefficients αi = (αi1, . . . , αiK)T ;

wi(t) = µ(t) + f(t)Tαi. (10)

For identifiability of the representation (10), the orthonormality of f(t) is required such that∫
f(t)f(t)

T
dt = IK , (11)

where IK is a K ×K identity matrix (i.e.
∫
fkfl = 0 and

∫
f2k = 1 for all k 6= l ∈ {1, . . . ,K}). It is also

assumed that the coefficients are drawn from a multivariate normal distribution that has a mean zero and
a diagonal covariance matrix with decreasing diagonal components; αi ∼ (0,Σ). We call f(t) the principal
component functions and αi the principal component scores. A large enough K ensures the needed flexibility
in representing unknown relative curvature functions.

However, in our setting the principal component functions are not pre-specified and need to be determined
by the data. To this end, we suppose that these principal component functions fall in a low-dimensional
subspace of a function space spanned by a set of B-spline functions, b(t) = {b1(t), . . . , bq(t)}T with q � K,
such that

µ(t) = b(t)Tθµ; f(t) = b(t)TΘf , (12)

where θµ is a q× 1 vector and Θf = (θf1 , . . . ,θfK )T is a q×K matrix of basis coefficients. A large enough
q ensures the needed flexibility in representing the unknown functions. Furthermore, we restrict that the
basis functions are linearly independent and standardized,

∫
b(t)b(t)Tdt = Iq, and the coefficient matrix to

be orthonormal, ΘT
f Θf = IK . Such restrictions guarantee the orthonormality of the principal component

functions in (11) as ∫
f(t)f(t)Tdt = ΘT

f

∫
b(t)b(t)Tdt Θf = ΘT

f Θf = IK .

In the simulation and data application studies of later sections, the B-splines are used and the creation of
orthonormal B-splines follows the procedure in Appendix A.

Denote w̃i = {w̃i(ν1), . . . , w̃i(νG)}T and ζi = {ζi(ν1), . . . , ζi(νG)}T , then the model for the augmented
data (9) gets the vector-matrix form as

w̃i = bTθµ + bTΘfαi + ζi, (13)

where b = {b(ν1), . . . , b(νG)} is a q×G matrix of basis function values evaluated at the fine grids (ν1, . . . , νG).
To estimate the unknown parameters in the model (13), EM algorithm is used since α is unobservable and
hence treated as a missing variable (Dempster et al., 1977).

Finally, plugging in the estimated coefficients θ̂µ and Θ̂f , we get µ̂(t) = b(t)T θ̂µ and f̂(t) = b(t)T Θ̂f .
Compute the conditional expectation α̂i = E(αi|w̃i) for i ∈ {1, . . . ,M}. Then, the fitted monotone function
via the two-step approach for each i ∈ {1, . . . ,M} is

m̂i(t) = β̂0i + β̂1i

∫ t

τ0

exp

∫ s

τ0

{
µ̂(u) + f̂(u)T α̂i

}
duds,

where the parameters β̂0i and β̂1i are estimated at the first step.
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3.3. Integrated approach

The integrated approach is inspired by the two-step approach, however, it does not fit the augmented
data but fit the observed data directly. In other words, it unifies the two steps of Section 3.2 so that all the
parameters are estimated together, not step-by-step.

The integrated approach is based on the model specified by (7), (8), (10), and (12), while the principal

component scores are treated as fixed effects that satisfy (1/M)
∑M
i=1αi = 0. Combining (8) and (10), our

model for the ith monotone curve is

mi(t) = β0i + β1i

∫ t

τ0

exp

∫ s

τ0

{µ(u) + f(u)Tαi}duds, (14)

for i = 1, . . . ,M . With the basis expansions of µ and f given in (12), we represent (14) as

mi(t) = β0i + β1i

∫ t

τ0

exp

∫ s

τ0

{b(u)Tθµ + b(u)TΘfαi} duds, (15)

for i = 1, . . . ,M . For simplicity of notations, we define

hi(t) = h(t;θµ,Θf ,αi) =

∫ t

τ0

exp

∫ s

τ0

{b(u)Tθµ + b(u)TΘfαi} duds,

and denote the observed data as Y i = {yi(t1), . . . , yi(tni)}T . Accordingly, (7) and (15) can be represented
in the vector-matrix form

Y i = β0i1ni + β1iHi(θµ,Θf ,αi) + εi, (16)

where 1ni is an ni × 1 vector of ones, Hi(θµ,Θf ,αi) = {hi(ti1), . . . , hi(tini)}T , θµ,Θf ,αi are unknown
parameters, and εi = {εi1, . . . , εini}T .

Inspired by (4), we estimate the unknown parameters by minimizing the following penalized scaled sum
of squared residuals

Fλµ(θµ,Θf ,α,β) =
1

σ2

M∑
i=1

||Y i − β0i1ni − β1iHi(θµ,Θf ,αi)||2 + λµ

∫
µ2(t) dt, (17)

where β = {(β01, . . . , β0M )T , (β11, . . . , β1M )T } is a set of intercepts and slopes, α = {α1, . . . ,αM}T is an
M ×K matrix of principal component scores, and λµ is a penalty parameters. Note that the penalty term∫
µ2(t) dt extends the penalty

∫
w2(t) dt in the penalized least squares criterion (4) for single curve estimation

(Ramsay, 1998). Since the relative curvature function wi(t) = m′′i (t)/m′i(t) measures the smoothness of the

monotone curve mi, µ(t) = (1/M)
∑M
i=1 wi(t) can be interpreted as a measure of average smoothness.

Moreover, similar to
∫
w2(t) dt, the penalty

∫
µ2(t) dt has the effect of keeping fitted curves away from the

boundary condition m′i(t) = 0 for all i. If m′i(t) = 0 for some i, then µ(t) = (1/M)
∑M
i=1m

′′
i (t)/m′i(t) =∞.

The penalty term in (17) also helps ensure computational stability of the Fisher scoring algorithm
(Appendix B). Using the orthonormality of the basis functions b(t), we obtain∫

µ(t)2 dt = θTµ

∫
b(t)b(t)T dt θµ = θTµθµ. (18)

Without this penalty term, the cross-product matrix of gradient vectors used in the algorithm for updating
θµ is numerically close to being singular, causing instability of the algorithm (see Appendix C), while the
penalty effectively adds λµI to this cross-product matrix and solves the problem. The singularity issue
also occurs when updating Θf in the Fisher scoring algorithm, and a natural solution is to add a penalty∑K
k=1 θ

T
fk
θfk to (17). Therefore, the final minimizing objective function for estimating the parameters is

Fλµ,λf (θµ,Θf ,α,β) =
1

σ2

M∑
i=1

‖Y i − β0i1ni − β1iHi(θµ,Θf ,αi)‖2 + λµθ
T
µθµ + λf

K∑
k=1

θTfkθfk . (19)
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The orthonormality constraint on Θf , ΘT
f Θf = IK , implies that

∑K
k=1 θ

T
fk
θfk = K. Thus, the second

penalty term in (19) does not depend on unknown parameters to be estimated, so it does not have the

regularization effect as the first penalty term. It cannot be dropped from (19) because
∑K
k=1 θ

T
fk
θfk = K

may not be satisfied in some steps of the Fisher scoring algorithm. The inclusion of the second penalty term
is mainly for numerical stability of the computational algorithm.

Details of the iterative Fisher scoring algorithm to minimize (19) is given in Appendix 5. See the next
subsection for details about the choice of penalty parameters.

Denote the estimated parameter obtained by minimizing (19) as θ̂µ, Θ̂f , and α̂i, β̂0i, β̂1i for i ∈ {1, . . . ,M}.
For each i ∈ {1, . . . ,M}, the fitted monotone function via the integrated approach is given by

m̂i(t) = β̂0i + β̂1i

∫ t

τ0

exp

∫ s

τ0

{
µ̂(u) + f̂

T
(u)α̂i

}
duds,

where µ̂(t) = b(t)T θ̂µ and f̂(t) = b(t)T Θ̂f .

3.4. Model selection
Specification of B-splines

The number of knots and the positions of the knots are not crucial in many applications as long as
sufficiently many knots are placed densely, since the roughness penalty helps regularize the estimation and
prevent overfitting; see also Eilers and Marx (1996). A moderate number of equidistant knots over the data
range, typically 10-20 knots, is often sufficient.

Choice of penalty parameters, λµ and λf
For each fixed value of K, the 5-fold (within function) cross-validation is used to choose the two penalty

parameters. Observations from each curve are randomly divided into 5 groups of equal size. Each group is
set aside once as a validation set while other 4 groups are used as a training set to fit the model. The fitted
model is then applied to the validation set to compute the cross-validation sum of squared errors. The 5
such sums of squared errors are then summed up to obtain the overall 5-fold cross-validated sum of squared
errors.

One can use a commonly used search algorithm such as the Nelder-Mead simplex method (Nelder and
Mead, 1965) to minimize the 5-fold cross-validated sum of squared errors. For all examples of simulation and
application in the following sections, we employed a straightforward grid-search on a 12×12 grid in log-scale
for each penalty parameter. We found that our grid search performed competitively to the Nelder-Mead,
which usually required more function evaluations than the grid search. Moreover, the grid search method
does not need to specify initial values as the Nelder-Mead does, whose performance varies with the initial
values.

We found that the cross-validation criterion is not sensitive to the choice of λf . This is not surprising,
since as we discussed following (19), the corresponding penalty term is mainly used for numerical stability
of the algorithm and does not introduce regularization on function estimation.

Choice of the number of principal components, K̂

For a fixed K, let λ̂µ(K), λ̂f (K) denote the penalty parameters chosen by the 5-fold cross-validation and

let CVK(λ̂µ(K), λ̂f (K)) denote the corresponding cross-validation (CV) sum of squared errors. We choose
K by minimizing the CV sum of squared errors, i.e.,

K̂ = argminKCVK(λ̂µ(K), λ̂f (K)).

The performance of CV in selecting the significant K is illustrated in Section 4 using a simulation study.
Alternatively, K can be chosen by dropping the components whose scores have a relatively small variance

compared with the variance of the preceding component; this idea is similar to Cattell’s scree test (Cattell,
1966). Specifically, one can fit the model with a sufficient number of principal component functions, and
plot the variances of principal component scores in a decreasing order. From this plot, K can be chosen
where the variance curve makes an elbow toward less steep decline. We later describe how to perform this
procedure for a practical example in Section 5.
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4. Simulation Study

We compared our proposed integrated approach for joint estimation of monotone functions with the
two-step approach and Ramsay’s single curve method in a simulation study. We implemented Ramsay’s
method according to the algorithm given in Ramsay (1998). When applying the integrated approach and
Ramsay’s method, we used quadratic splines with 7 equally-spaced interior knots on [0, 1]; this corresponds
to q = 10. When applying the two-step approach, the number of grid points was set to be G = 1000.

4.1. Simulation setup

Without loss of generality, we assume that all curves have zero intercepts and equal slopes (i.e. β0 = 0
and β1 = 1). We generate M = 50 monotone curve trajectories from the functional model

yi(tij) =

∫ tj

0

exp

∫ s

0

wi(u) duds+ εij ,

for i ∈ {1, . . . , 50} and j ∈ {1, . . . , ni}, where ni is an integer uniformly sampled between 50 and 100 and
tij ’s are uniformly distributed in [0, 1]. The mean function is µ(t) = 5− 10t, and two principal component
functions (i.e. K = 2) are f1(t) =

√
2 sin(2πt) and f2(t) =

√
2 cos(2πt). Therefore, the relative curvature

functions are wi(t) = µ(t) + f1(t)α1i + f2(t)α2i. The principal component scores are generated according to(
α1i

α2i

)
∼ N

((
0
0

)
,

(
0.52 0

0 0.12

))
.

We simulate the errors εij from two types of distributions, σ ×N (0, 1) or σ × t(4), with three noise levels,
σ ∈ {0.01, 0.05, 0.1}. Here, t(4) denotes the t distribution with 4 degrees of freedom.

Figure 4 shows the mean function µ and how the principal components functions affect the relative
curvature functions as well as the response curves in our simulation. It can be seen that f1 represents the
variation at the boundary, and also provides how much the curvature changes before and after an inflection
point for each curve. On the other hand, f2 represents the variation at the center of the range, so any
response curves with relatively large variation in the middle might have large values of scores α2i.

4.2. Assessment criteria

We assess the estimators of w and m using the mean integrated squared error (MISE), integrated squared
bias (I-sq-bias), and integrated variance (I-var). For the ith curve, let ŵli(t) denote the estimate of wi(t) at
the lth simulation run, 1 ≤ l ≤ L. These assessment criteria for wi are defined as

MISE(wi) =
1

L

L∑
l=1

∫ τ1

τ0

{ŵli(t)− wi(t)}2 dt,

I-sq-bias(wi) =

∫ τ1

τ0

{ ¯̂wi(t)− wi(t)}2 dt,

I-var(wi) =
1

L

L∑
l=1

∫ τ1

τ0

{ŵli(t)− ¯̂wi(t)}2 dt,

where ¯̂wi(t) = (1/L)
∑L
l=1 ŵ

l
i(t) is the average over L simulation runs, where integrations can be evaluated

as a Riemann sum. The criteria used for mi are defined similarly. For the integrated approach, since the
ŵi has a basis expansion using an orthonormal basis, the evaluation of the integrals for assessing estimation
quality of wi can be simplified using the equality

∫
{b(t)Tθ}2 dt = θTi θi where b(t) is an orthnomal basis.

9
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Figure 4: Illustrations of the relative curvature function w (top) and the corresponding monotone response curve m (bottom)
in the simulation study. The mean and principal component functions are µ(t) = 5 − 10 t, f1(t) =

√
2 sin(2πt), and f2(t) =√

2 cos(2πt). In (c) and (d), α1 = 1 and α2 = 2 are chosen to clearly schematize the curves.
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Table 1: Summary of a simulation study for the choice of the number of principal component functions K where the data were
simulated with K = 2.

σ = 0.01 σ = 0.05 σ = 0.1
optimal K 1 2 3 1 2 3 1 2 3
occurrence 0% 100% 0% 0% 99% 1% 0% 94% 6%

To assess the overall quality for estimating M curves, we take average to arrive at the following metrics

MISE =
1

M

M∑
i=1

MISE(wi),

Bias2 =
1

M

M∑
i=1

I-sq-bias(wi),

SD2 =
1

M

M∑
i=1

I-var(wi),

which are used to compare different methods in our simulation study. Note that the summation of Bias2

and SD2 equals MISE. Evaluation criteria for mi’s can be defined similarly.

4.3. Result summary

For the integrated approach, we estimated parameters for each simulation run with K = 1, 2, and 3. The
cross-validation (CV) errors are then compared to choose the optimal K on each simulation. The results
based on L = 500 simulation runs are summarized in Table 1. The data-generating number of principal
functions, K = 2, was selected 100% times when σ = 0.01, 99% when σ = 0.05 and 94% when σ = 0.1. As
the noise level increases, the chance that K = 3 is selected increases, because it gets harder for the method
to distinguish noise and signals.

Table 2 summarizes the bias, standard deviation (SD; square root of integrated variance), and MISE of m̂
and ŵ estimated from the three approaches over L = 500 runs for two types of error distributions (σ×N (0, 1)
and σ × t(4)) and three noise levels (σ = 0.01, 0.05, and 0.10). We have the following observations.

• For estimating the monotone function m, our integrated method clearly outperforms the other two
methods in terms of absolute bias, SD, and MISE, at all noise levels. For both Ramsay’s method and
our integrated method, the SD dominates the absolute bias, while for the two-step method, SD and
the absolute bias have similar magnitude. This indicates that the two-step method actually introduces
more bias in estimating m.

• For estimating the relative curvature function w, our integrated method is also a clear winner in terms
of absolute bias, SD, and MISE. Its improvement over the other two methods is substantial. For all
three methods, the SD dominates the absolute bias in magnitude and it contributes as the major part
of the MISE. The two-step method has slightly higher bias but lower SD than Ramsay’s method; this
is expected, because the two-step method applies a principal components reduction to the ŵ’s obtained
by the Ramsay’s method. The principal components reduction naturally reduces variance with the
cost of introducing bias.

• For each type of error distributions, as the noise level increases, the SDs and MISEs increase for all
methods, while there is no clear pattern for the bias.

• The comparison results when the error distribution is a scale multiple of t distribution are similar
to those when the error distribution is a normal distribution. The main difference between the case
of t distributed errors and the corresponding case of normally distributed errors is that the MISE
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Table 2: Summary of simulation results for the estimates of monotone curves (m̂) and relative curvatures (ŵ) for σ = 0.01, 0.05,
and 0.10 using the Ramsay, the two-step, and the integrated approaches. Error distributions are a scale multiple of either
N (0, 1), the standard normal distribution, or t(4), the t distribution with 4 degrees of freedom. |Bias| is the absolute value
of the bias, SD is the standard deviation, and MISE is the mean integrated squared error; the summary statistics for m̂ were
multiplied by 100 for making clear the difference in numbers.

Error distribution Ramsay Two-step Integrated
σ m̂ ŵ m̂ ŵ m̂ ŵ

0.01
|Bias| 0.10 2.01 2.58 2.03 0.03 0.50

SD 0.36 4.51 1.54 4.36 0.16 0.63√
MISE 0.37 4.94 3.01 4.81 0.16 0.81

σ ×N (0, 1) 0.05
|Bias| 0.28 1.67 3.17 1.85 0.06 0.34

SD 1.31 11.99 3.20 10.46 0.81 2.15√
MISE 1.34 12.11 4.51 10.62 0.81 2.18

0.1
|Bias| 0.66 1.92 6.78 2.13 0.08 0.38

SD 2.46 17.02 10.73 14.06 1.65 5.19√
MISE 2.54 17.13 10.75 14.22 1.65 5.21

0.01
|Bias| 0.09 1.85 2.64 1.88 0.03 0.41

SD 0.45 5.40 1.51 5.24 0.23 0.83√
MISE 0.46 5.71 3.04 5.57 0.23 0.92

σ × t(4) 0.05
|Bias| 0.40 1.59 3.28 1.85 0.07 0.32

SD 1.78 13.79 4.53 11.73 1.19 3.09√
MISE 1.82 13.89 5.60 11.88 1.19 3.11

0.1
|Bias| 0.94 2.24 6.98 2.35 0.15 0.80

SD 3.27 19.44 77.79 16.68 2.43 8.08√
MISE 3.40 19.57 78.10 16.75 2.43 8.12

has increased for all methods. This is expected since a t-distribution has heavier tails than a normal
distribution with the same scale parameter.

5. Application: Wind Power Curve Data

We fitted the power curves that originally motivated our study as introduced in Section 1, using the
Ramsay’s, the two-step, and the integrated approaches. In the dataset, wind power productions and wind
speeds were recorded every 10-minute for about one and a half years. We assumed that one week records
create one curve; hence, the total number of curves is M = 74. We only considered the range of wind
speeds, from 4 to 12 m/s, in which most wind curves are strictly increasing as shown in Figure 1. We
used G = 100 grid points for the two-step approach, and used quadratic splines with 7 equally-spaced
interior knots for Ramsay’s approach and the integrated approach, corresponding to q = 10 basis functions.
Ramsay’s approach was used in the first step of the two-step approach.

For the integrated approach, the tuning parameters λµ and λf were determined using the 5-fold cross
validation as described in Section 3.4, and chosen in the grid ranges of log10(λµ) = −8, . . . ,−1 and

log10(λf ) = 1, . . . , 6. The number of significant principal component functions was selected as K̂ = 2

using the 5-fold cross-validation. The scree plot shown in Figure 5 also suggests the choice of K̂ = 2. The
minimum 5-fold CV sum of squared errors for the integrated approach were 3107.13, 3057.36, 3136.85, and
3073.42 for K = 1, 2, 3, 4, respectively. These can be compared with the 5-fold CV sum of squared errors
of 3817.44 of the Ramsay’s approach. Note that the same partition of the data were used when calculating
the 5-fold CV errors for all methods.
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Figure 5: Distribution and variance of principal component scores. Two principal component functions (K = 2) are sufficient
to explain the overall variation of data.
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Figure 6: (a) The fitted mean relative curvature curve µ(t) and (b) the corresponding monotone curve when β0 and β1 are
fixed at the average of all individual curves, using the two-step approach (dashed lines) and the integrated approach (solid
lines).
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Figure 7: The estimated first two principal component functions using the two-step approach (dashed lines) and the integrated
approach (solid lines).

Figure 6 illustrates the fitted mean function of relative curvatures, µ(t), and its corresponding monotone
curve, m(t), in (a) and (b), respectively, using the two-step and integrated approaches. From µ(t) estimated
by the integrated approach, we observe a change of curvature at around 7 m/s of wind speed. The change
of sign of m′′(t) from positive to negative indicates that the power curve changes from a convex increasing
function to a concave increasing function. The estimated curves by the two-step approach show similar
patterns, but the curvature is close to zero after 7 m/s of wind speed.

Figure 7 shows the estimated first two principal component functions by the integrated approach and
the two-step approach. The first principal component function by the integrated approach explains the
contrast of curvature of the power curve between the boundaries and the middle of the wind speed range.
The magnitude of scores on this component describes how much the power curve accelerates at the low
or high ends of the range. The second principal component function obtained by the integrated approach
explains the contrast of curvature before and after the inflection point at around 7 m/s of wind speed.
As comparison, the principal component functions obtained by the two-step approach are much harder to
interpret. The first principle component function is close to zero in the middle of the wind speed range,
while the second principle component function is close to zero in the range of 6–12 m/s of wind speed. In
fact the principle component functions obtained by the two-step approach have very large values around
the boundaries (not shown in the figure), which suggests that these principle component functions may
have captured the uninteresting boundary effects of the first step nonparametric curve fitting, instead of our
interest in variation of power curves.
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Appendix A. Creation of Orthonormal Basis Functions

We follow the computation of creating orthonormal basis function from Zhou et al. (2008). They provided
details about the transformation from arbitrary basis functions to orthonormal. Here we explain briefly their
techniques.

Let b̃(t) = {b̃1(t), . . . , b̃q(t)}T be an initially chosen general B-splines; this is not necessarily orthonor-

mal. A transformation matrix T such that b(t) = T b̃(t) can be constructed as follows. Write b̃ =
{b̃(t1), . . . , b̃(tg)}T for the equally-spaced and sufficiently dense grid, (t1, . . . , tg). Apply the QR decom-

position to b̃ = QR, where Q has orthonormal columns and R is an upper triangular matrix. Then,
T = (g/L)1/2R−T , where L = tg − t1, will be a desirable transformation matrix since

L

g
bT b =

L

g
T b̃

T
b̃T T =

L

g
TRTQTQRT T = I.

See Figure 8 that illustrates an example of the transformation.

Appendix B. Fisher Scoring Algorithm for the Integrated Approach

This section specifies the algorithm of minimizing the penalized likelihood (19) for the estimation of
unknown parameters, described in the model (15).
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Figure 8: Illustration of B-spline functions where q = 10 with an order 5; (Left) B-splines; (Right) orthonormalized B-splines

We want to point out that the integrated approach treats principal component scores as fixed effects,
which satisfy the following conditions

M∑
i=1

αik = 0, ∀k,
M∑
i=1

α2
i1 > . . . >

M∑
i=1

α2
iK ,

for identifiable individual-level characteristics among the scores. By doing so, we can avoid highly compli-
cated computations caused by two integrals and an exponential between those integrals. It is impossible to
derive a closed form of conditional distributions of α unlike the two-step approach, which has a linear form
as in (13). Guo et al. (2015) also carried out the parameter estimation by considering random effects as
fixed effects.

Denote Hi = Hi(θµ,Θf ,αi). The non-linear maximum likelihood equations for θµ,θf1 , . . . ,θfK and
α1, . . . ,αM are obtained by taking a partial differentiation to the criterion (19) for each parameter

0 =
∂F

∂θµ
= −2

M∑
i=1

β1i
∂Hi

∂θµ
ri/σ

2 + 2λµθµ,

0 =
∂F

∂θfk
= −2

M∑
i=1

β1i
∂Hi

∂θfk
ri/σ

2 + 2λfθf , ∀k ∈ {1, . . . ,K}

0 =
∂F

∂αi
= −2β1i

∂Hi

∂αi
ri/σ

2, ∀i ∈ {1, . . . ,M}

where ri := Y i − β0i1ni − β1iHi is an ni × 1 vector of residuals. The columns of the partial derivative
matrices ∂Hi/∂θµ(q × ni), ∂Hi/∂θfk(q × ni) and ∂Hi/∂αi(K × ni) are respectively the following vectors
evaluated at t1, . . . , tni ,

∂hi(t)

∂θµ
=

∫ t

τ0

exp

∫ s

τ0

b(u){b(u)Tθµ + b(u)TΘfαi} duds,

∂hi(t)

∂θfk
=

∫ t

τ0

exp

∫ s

τ0

αikb(u){b(u)Tθµ + b(u)TΘfαi}duds = αik
∂hi(t)

∂θµ
,

∂hi(t)

∂αi
=

∫ t

τ0

exp

∫ s

τ0

ΘT
f b(u){b(u)Tθµ + b(u)TΘfαi} duds = ΘT

f

∂hi(t)

∂θµ
.
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One only needs to calculate the integrals once because the latter two terms ∂Hi/∂θfk and ∂Hi/∂αi are
expressed as a product of certain coefficients and ∂Hi/∂θµ.

The iterative procedure of Fisher scoring algorithm (Longford, 1987) below can be used to find the
solution of the above equations:

1. Initialize β0
0i, β

0
1i,θ

0
µ,Θ

0
f ,α

0
i .

2. Update θlµ as

θlµ ← θl−1µ +
[ M∑
i=1

(βl1i)
2 ∂Hi

∂θµ

∂Hi

∂θµ

T

+ λµIq

]−1[ M∑
i=1

β1i
∂Hi

∂θµ
ri − λµθµ

]
.

3. Update θlfk for ∀k ∈ {1, . . . ,K} as

θlfk ← θl−1fk
+
[ M∑
i=1

(βl1i)
2 ∂Hi

∂θfk

∂Hi

∂θfk

T

+ λfIq

]−1[ M∑
i=1

β1i
∂Hi

∂θfk
ri − λfθf

]
,

and re-update by orthonormalized ones through QR decomposing Θl
f = {θlf1 , . . . ,θ

l
fk
}T .

4. Update αli for ∀i ∈ {1, . . . ,M} as

αli ← αl−1i +
[
(βl1i)

2 ∂Hi

∂αi

∂Hi

∂αi

T ]−1[
β1i

∂Hi

∂αi
ri

]
,

and rearrange such that
∑M
i=1 αik = 0 for ∀k and

∑
α2
i1 > . . . >

∑
α2
iK .

5. Update βl0i and βl1i by estimates of a linear regression as

Y i ∼ β0i + β1iHi(θ
l
µ,Θ

l
f ,α

l
i),

for ∀i ∈ {1, . . . ,M}.
6. Iterate step 2 to 5 until all converge.

Once the algorithm converges, an estimate of σ2 is

σ̂2 =
1

N

M∑
i=1

||Y i − β̂0i1ni − β̂1iHi(θ̂µ, Θ̂f , α̂i)||2,

where β̂0i, β̂1i, θ̂µ, Θ̂f , α̂i denote the converged estimates of the above iterative algorithm.

Appendix C. Computational Singularity of the Cross-product Matrix in the Fisher Scoring
Algorithm

The partial differentials in the equations form the majority part of the cross-product matrix of gradient
vectors used in the Fisher scoring algorithm. We here address the importance of penalization not just for
smoothing but also for computational stability.

Consider the partial differential of hi(t) with respect to θµ, that is

∂hi(t)

∂θµ
=

∫
B(t) exp{b(t)Tθµ + b(t)Tθfαi}dt =

∫
B(t) exp{W (t)} dt,

where B(t) =
∫
b(t) dt is a q-vector of integrated basis functions, and W (t) =

∫
w(t) dt = B(t)Tθµ +

B(t)Tθfαi is an integrated function of relative curvature w. Then, ∂hi(t)/∂θµ is a vector of functions coming
from integral of exponential (> 0), multiplied by integrated basis function,B(t). Since theB(t) looks like the
left panel of Figure 9, the function elements have therefore different shapes to each other; some increase fast
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Figure 10: An example of w(t), its integrated form, and the exponential of the integrated.

and some are always near zero. For this reason, when these functions are evaluated at observed points, the
cross-product matrix of gradient vectors, (∂Hi/∂θµ)(∂Hi/∂θµ)T , will be computationally singular because
of relatively near zero values at its diagonal.

To help understanding, we illustrate the form of functions derived at each computation step. Suppose
there is a curve of w(t), which is a straight line, as illustrated in Figure 10. Accordingly, the form of partial
differential of h(t) can be drawn by multiplying B(t) (the left panel of Figure 9) and W (t) (the center
panel of Figure 10); see the center and right panel of Figure 9. As aforementioned, functions of ∂hi(t)/∂θµ
have different forms, therefore the evaluated cross product matrix has values, for this example, as shown in
Table 3.

To summarize, the penalty parameters λµ and λf play a role for computational stability for the algorithm.
If there is an issue with non-existence of inverse matrix due to computationally singularity, setting λ’s at
suitable values will be a key technique to make the algorithm converge.
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Table 3: An example of a cross product matrix corresponding to b in Figure 8 and w in Figure 10 to illustrate the necessity of
ridge regularization. Relatively too small values at the lower right corner of the diagonal causes numerical singularity.

bspl5.1 bspl5.2 bspl5.3 bspl5.4 bspl5.5 bspl5.6 bspl5.7 bspl5.8 bspl5.9 bspl5.10

bspl5.1 123813.68 154995.62 148755.14 117527.56 68236.01 26109.53 3875.89 522.57 -54.09 36.31
bspl5.2 154995.62 194311.94 187005.93 148283.47 86438.78 33183.68 4943.97 663.89 -67.48 45.55
bspl5.3 148755.14 187005.93 181096.78 144939.39 85369.10 33047.57 4969.21 660.28 -63.89 43.82
bspl5.4 117527.56 148283.47 144939.39 118140.88 71347.62 28169.83 4324.97 561.59 -48.24 34.47
bspl5.5 68236.01 86438.78 85369.10 71347.62 45340.78 18968.78 3025.46 397.59 -35.91 25.25
bspl5.6 26109.53 33183.68 33047.57 28169.83 18968.78 9039.44 1698.93 187.24 -2.23 5.50
bspl5.7 3875.89 4943.97 4969.21 4324.97 3025.46 1698.93 558.72 47.87 7.38 -2.06
bspl5.8 522.57 663.89 660.28 561.59 397.59 187.24 47.87 39.03 -9.00 4.30
bspl5.9 -54.09 -67.48 -63.89 -48.24 -35.91 -2.23 7.38 -9.00 6.41 -2.85
bspl5.10 36.31 45.55 43.82 34.47 25.25 5.50 -2.06 4.30 -2.85 1.37
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