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1 Appendix: Type II Error.
Recall that after discretizing the continuum of comparisons, takingHµup

1 in Equation (14) as an instance, we
obtain |Du| tests that constitute a multiple testing, where |Du| denotes the cardinality of the setDu. Westfall
and Young (1993) (in Chapter 6) state “in multiple testing situations, power is not so easily defined.” They
list four definitions of the power of multiple testing. Using the notation of our hypothesis statement in
Equation (14), the four definitions of power listed by Westfall and Young (1993) are following:

1. the probability of correctly rejecting at least one Hµup
0 (s), for s ∈ Du,

2. the probability of correctly rejecting all Hµup
0 (s), for s ∈ Du,

3. the probability of correctly rejecting exactly one Hµup
0 (s), for s ∈ Du, and

4. for a specific s ∈ Du, the probability of correctly rejecting Hµup
0 (s).

Westfall and Young (1993) analyzed the power in Definition 1 and confirmed the permutation test leads
to a superior performance. As we follow the same permutation test strategy as suggested by Westfall and
Young (1993), we will not repeat the analysis of power under Definition 1. Instead, we analyze the power
in Definition 2, also because Definition 2 suits our hypothesis statement better. We do so using a simulation
experiment; otherwise, the ground truth is unknown and the probability of correctly rejecting cannot be
discerned. The power of a test is directly related to its type-II error, i.e., power = 1− type-II error.

We simulate two groups of N functions to estimate the type II error of the mean test for upper tail and
lower tail, while controlling the type I error to be under the nominal level, i.e., α = 0.03. The two groups of
functions to be tested are simulated from a Gaussian process, with one group of functions digressing from
the other group by a small perturbation. To quantify the small perturbation between two groups of functions,
we use a L2-distance percentage defined as:

L2% =
‖µ1 − µ2‖L2

‖µ1‖L2

× 100%, (1)
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Figure 1: The two groups of nine functions, f1j(x) and f2j(x), simulated from one run, and the mean
functions, f̄1(x) and f̄2(x).

where µi is the mean function of the functions of group i.
To generate the two groups of N functions, we randomly sample one set of input points, x ∈ [0, 1],

as the pointwise test requires that two groups of functions have to be evaluated at the same input points.
The two groups of functions are generated from the model described as: fij(x) = z(x) + εij , i ∈ {1, 2},
j ∈ {1, · · · , N}; z(x) ∼ GP (0, k(x, x′)); εij ∼ N(0, σ2ε ) and σε = 0.5. The covariance function k(x, x′)
is a squared exponential kernel function with the form: k(x, x′) = σ2f exp(−0.5[(x − x′)/θ]2). We set
σf = 5 and θ = 0.2. To make the second group of functions that deviates from the first group, we add a
perturbation δ(x) to f2j(x), j ∈ {1, · · · , N}. The perturbation function δ(x) is created as:

δ(x) =


−1

3 sin
(
π
(
x−0.2
0.8−0.2

))
, x ≤ 0.25,

0, 0.25 < x < 0.75,
1
3 sin

(
π
(
x−0.2
0.8−0.2

))
, x ≥ 0.75.

(2)

Thus, f1j(x) = z(x) + ε1j and f2j(x) = z(x) + δ(x) + ε2j , j = 1, · · · , N . We generate N = 6, 9, 12, 15
functions for each of the two groups by sampling εij . Run our proposed hypothesis test for the mean tails
and repeat the process for 1, 000 runs. The functions f1j(x) and f2j(x) generated for one run and their mean
functions f̄1(x) and f̄2(x) are shown in Figure 1.

The average L2 distance percentage over between two groups of functions over 1, 000 runs is 3.52%.
The type II error (β) of the hypothesis test on the simulation data, with the type I error controlled under
0.03, varies with the number of curves, N . Table 1 shows the estimated out-of-control average run length
(ARL), that is defined as 1/(1− β) and the average L2 distance percentage corresponding to each N .

The type II error decreases as the number of curves of each group increases and so the average run length
decreases, while the distance between two groups of curves stays more or less the same. That is consistent
with the commonsense of a large sample size increasing the power of a hypothesis test. The out-of-control
ARL results say that the HT-based method reacts to signal the small shift from group 1 to group 2 with a
one to two sample delay on average. The small ARL values indicate effective detection.

In order to further reduce the type-II error or the out-of-control ARL, one needs to increase the sample
size. However, in practice it is rather cumbersome and, sometimes, infeasible to take many samples. As
in our polishing experiment, we are only able to image nine to 15 locations on the spherical surface of
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Table 1: Estimated type II errors for the simulated N curves, with type I error under control.

Number of curves, N Average L2 distance percentage
Out-of-control average run length

Mean test for upper tail Mean test for lower tail
6 3.61% 1.29 1.62
9 3.54% 1.18 1.37
12 3.49% 1.18 1.30
15 3.43% 1.10 1.21

peppercorn-sized bead. The sample sizes in Table 1 are included with this practical constraint in mind.
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