
  

 

     Abstract  Linear models have been successfully used to 

establish the connections between sensor measurements and 

system states in sensor networks. Finding the degree of 

redundancy for structured linear systems is proven to be NP-

hard. Previously bound-and-decompose, 0-1 mixed integer 

programming and hybrid algorithms embedding 0-1 mixed 

integer feasibility checking within a bound-and-decompose 

framework have all been proposed and compared in the 

literature. In this paper, we exploit the computational efficiency 

of linear programs to present a novel heuristic algorithm which 

solves a series of -norm minimization problems in a specific 

framework to find extremely good solutions to this problem in 

remarkably small runtime.  

I. INTRODUCTION 

     Sensor systems play an important role in studying 

physical phenomena which cannot be measured directly. In 

such systems, the sensor measurements are combined 

response of various source variables representing these 

physical phenomena. In a linear sensor system, a linear 

relationship of the form 

                                         ,                         (1) 

exists between the sensor measurements  and the 

system states , with the design matrix 

 defining this relationship and  

accounting for random noise. Equation (1) is, in fact, the 

observation equation used in a typical linear state-space 

model [1]. Linear sensor systems have broad applications in 

various fields of engineering like manufacturing, electric 

power systems, signal processing, and wireless 

communications.           

     The success of a sensor system depends on its ability to 

estimate the vector of unknown parameters  uniquely. The 

vector  is commonly estimated using the least square 

estimator, . For any linear sensor system, 

there exists a limit to the number of sensor failures it can 

tolerate, beyond which the sensor might lose its capability to 

identify the system states altogether. The robustness of the 

estimator depends heavily on this limit, termed as the degree 

of redundancy [3]. This redundancy in the sensor system 

thus safeguards the system against sensor failures or 

measurement anomalies thereby aiding successful estimation 
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of system states. The degree of redundancy is formally 

defined in the literature as 

,       (2) 

where  is the reduced matrix after deleting  rows from 

the  with  denoting the rank of . Based on (2), we 

can interpret the redundancy degree of a linear system as the 

minimum number of sensor failures which should happen 

before the identifiability of any source variable is 

compromised. We may assume  to have full column rank. 

     Linear sensor systems are commonly used in many 

applications in wireless sensor networks [14], array signal 

processing [13], manufacturing fault diagnostics [2], and 

sensor systems in electric power systems [4]. In complex 

multistage assembly processes, linear sensor systems are 

employed to measure the deviation of locator pins enabling 

automatic diagnosis of manufacturing process faults. The 

design matrix is determined by the process design 

information including product geometry, and tooling layout 

and the sensors measurements are given in terms of 

dimensional derivatives from normal. In array signal 

processing, the location of source variables is estimated 

using signals received by a given set of sensors organized in 

patterns. The design matrix is determined by the steering for 

the sensors towards the source variables. 

     The degree of redundancy for a linear sensor system with 

no inherent structure is directly obtained as , 

since any of the  row vectors of the design matrix  form a 

linearly independent set. But most practical systems have 

inherent structures due to the dependence relationship 

among the individual components or subsystems (clusters). 

For these systems, the design matrix  is usually heavily 

sparse, and hence the degree of redundancy is much smaller 

than . Finding the degree of redundancy for linear 

systems with structured design matrix is known to be NP-

hard [5] making this problem very hard to solve. Despite this 

challenge, the relevance of systems with structured model 

matrices in engineering systems makes this problem highly 

significant.    

     Since most sensor systems in practice are structured, we 

need to devise efficient methods to determine the degree of 

redundancy. Most of the algorithms developed so far 

addresses this problem using mixed integer programming 

and are ineffective, more so for systems with design 

matrices in large dimensions. In this work, we use 

techniques from compressed sensing and matroid theory to 

propose a heuristic linear programming algorithm to 

estimate the degree of redundancy. Our computational 

results show that this heuristic algorithm finds extremely 

reliable solutions to the degree of redundancy that are most 

likely optimal. Using our algorithm, we were able to obtain 
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an estimated value of the degree of redundancy even for 

those instances which were not solved by any of the existing 

approaches. Moreover, our algorithm was able to attain the 

optimal solution for all the instances that were previously 

solved optimally using the existing algorithms. For some of 

these instances, we have reported a runtime reduction of 

almost 16 times as compared to the previous best reported 

time. 

     The rest of the paper is organized as follows. Section II 

briefly introduces the existing algorithms in the literature to 

find the degree of redundancy. In Section III, we address this 

problem using concepts from matroid theory and then briefly 

explains the -minimization technique from compressed 

sensing that inspired our solution approach. In Section IV 

we formally introduce our algorithm 2-StageL1. We then 

present our computational studies in Section V and conclude 

with some remarks in Section VI.      

II. RELATED WORK  

     A straightforward approach to finding the degree of 

redundancy is by exhaustive rank testing [3], wherein the 

rank of each sub-matrix  is calculated, incrementing  

by one at each step until the rank drops. But this approach is 

very inefficient. As stated in the introduction, the system 

matrix  usually consists of various interconnected 

subsystems. In such cases, it is always possible to re-arrange 

the rows and columns of  using a transformation algorithm 

[3] to a bordered block diagonal (BBD) form like  

 

where the block  is a  matrix, and the border  is 

a  matrix for . We have 

and . The borders usually capture the 

individual subsystems while the block represents their 

interconnections. Utilizing this BBD structure of , Cho et 

al. presented a bound-and-decompose algorithm [5], in 

which the rank testing is done on reduced matrices obtained 

by removing certain chosen blocks. But this algorithm is 

effective only for problems where  has a border block 

diagonal form with reasonable block sizes and narrow 

border.  

     Kianfar et al. [6] proposed a 0-1 mixed integer program 

(MIP) to solve this problem. Their approach is based on the 

fact that the redundancy degree problem can be solved by 

finding the minimum number of rows that if deleted from , 

the remaining matrix has a nonzero null space (for more 

details, please refer to [6]). They show that the performance 

of this algorithm deteriorates as the size of the problem gets 

larger. Recently, Bansal et al. proposed a hybrid algorithm 

[11] to calculate the degree of redundancy, denoted by 

BDMIF, which uses a 0-1 mixed integer feasibility (MIF) 

checking algorithm embedded within a bound-and-

decompose framework. BDMIF makes it possible to 

simultaneously exploit both the decomposable structure of a 

BBD matrix  as well as the superiority of MIP over the 

exhaustive rank testing. Despite its distinct advantage over 

all the previous algorithms, finding the degree of redundancy 

still, continues to pose a challenge for larger and denser 

instances. The approach proposed in this paper is much more 

effective for harder problems (systems with big and dense 

blocks and thick borders) compared to previous approaches. 

III. REDUNDANCY DEGREE PROBLEM AS A GIRTH PROBLEM 

     In this paper, we utilize concepts from the matroid theory 
literature to solve the redundancy degree problem by finding 
the smallest circuit over a vector matroid. Matroid theory 
started from the algebraic theory of linear independence. Let 

 be an ordered pair consisting of a ground set  
and a collection  of independent subsets of . In order for 

 to be a matroid it should satisfy the independent 
augmentation axiom; i.e., if  and  are in  and , 
then there exists an element  of  such that . 
Vector matroids are matroids that are defined over a matrix. 
For the vector matroid  obtained from the 

 matrix ,  will be the set of column labels of  

with  being the set of subsets of  such that the subsets are 
linearly independent.  remains unchanged by elementary 
row operations. Any minimal linearly dependent set of 
columns of  defines a circuit of . For each matroid 

 on the set , there exists an associated dual matroid  

specified on the same set , defined usually using its basis. A 
basis of a matroid is any maximal independent set of 
columns in . If we denote the collection of bases of  by 

, then , where  is 
the collection of all basis of  [12]. The cocircuit of a 
vector matroid  is the minimal subset of columns that 
when removed from  reduces its rank. By the definition of 
duality, any circuits of  forms the cocircuits of 

. The terms girth and cogirth define the cardinality of 
the smallest circuit and the smallest cocircuit, respectively. 
For detailed understanding of matroid theory, please see [12].  
     The matrix  can be transformed into a reduced row 
echelon form (RREF)  using elementary row 

operations, where  is the  identity matrix and  is a 

 matrix. Since  remains unchanged by these 
row operations, so do its circuits and cocircuits. It is a well-
known result that the dual of a vector matroid over , is 

the vector matroid over , where  is the 

 identity matrix, assuming that both 
 and  have their columns labeled in the 

same order indexed by  [12]. This result 
allows us to find a dual matroid for any given vector matroid. 
     We can now redefine our redundancy degree problem 
using these matroid theory concepts. It is easy to see that the 
redundancy degree problem on  given by (2) is simply the 
cogirth problem on  and one less than the cogirth gives 
the optimal degree of redundancy. Now we can apply the 
duality concepts to find the cogirth of  by solving a 
girth problem over its dual matroid . More 

specifically, the definitions of circuit and cocircuit directly 
imply that a set  is the index set of a cocircuit of   if 

and only if it is the index set of a circuit of . 

Thus the problem of finding  can now be redefined as 
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the problem of finding the girth of  Moreover, 

if  is the index set of the smallest circuit of , 

then , where  denotes the reduced 
matrix obtained by removing from  all rows .  
     The girth problem can be formulated as an -norm 
minimization problem, defined as,   

 s.t.  ,                          (3)                            

with  being the -norm, where the 

 called the support of  with 

. Solving -minimization problems is 

NP-hard in general. An alternative approach used in 

compressed sensing [9] is by replacing the -norm with an 

-norm. The -norm can be considered as a convex 

approximation of the -norm. This technique is applied to a 

signal reconstruction problems of the form  

 s.t.                               (4) 

where  is a  sensing matrix with  where one 

tries to find the sparsest  vector  as the reconstructed 

signal based on the measured data . The conditions under 

which this approach works were extensively studied in [8]-

[10]. Initially, the equality of the solutions for the two 

methods was established only for a limited set of sensing 

matrices. Subsequently, Donoho in [10] proved that under 

the conditions that the columns of  are normalized to the 

-norm and with a uniform measure placed on , the 

solution to (4) is unique and is equal to the solution to its 

corresponding -norm relaxation for large  and for all s 

except a negligible fraction, when the number of non-zeros 

in  reduces below a threshold.   

     The value of girth gives a condition to ascertain the 

uniqueness of the signal reconstruction process itself. 

Consider two -sparse vectors  and  such that , 

where . If the measurements  and  

are the same, then  and  should be the same or else the 

signal reconstruction is impossible solely based on the 

measurements . When ,  where 

. If the girth of  is more than , i.e., the null 

space of  does not contain any -sparse vectors other 

than the zero vector, then  implies the uniqueness 

of the vectors  and . To obtain the girth of , a problem 

similar to (3), i.e., , must be 

solved. This problem differs from the signal reconstruction 

problem in compressed sensing since the right-hand side 

vector is always zero and the set of constraints  make 

this problem non-convex even with the -norm relaxation. 

To estimate the solution of this problem, Donoho et al. in [8] 

proposed solving a sequence of -minimization problems 

instead, for  

                        (5) 

where  is the -norm. If  denote the 
optimal solution of the problem , then an upper bound on 

girth is obtained as . The constraint  makes 

the null vector infeasible to (5).  
     In our computational experience, we have noticed 

although this approach leads to relatively good solutions, 

there are quite a number of instances where the solution from 

this approach can be improved by the improved heuristic 

algorithm we propose in this paper. The improvement in 

solution is particularly significant for problems with denser 

blocks and thick borders.  

IV. A HEURISTIC ALGORITHM: 2-STAGEL1     

     In this section, we present our heuristic algorithm for the 

redundancy degree problem, referred to as 2-StageL1. The 

2-StageL1 algorithm is as follows: 

2-StageL1 Algorithm 

Given a  design matrix , use RREF to transform  

to  Let . We assume that the 

columns of , , and  are indexed in the order, . 

Set , where  is the th column of 

  

Let  define the minimization problem 

                     

                          

and  define the minimization problem  

                      

                           

        

           for  do 

                 Solve   and set the optimal solution to   

                 Set  and  

                 Let   

                    if  then  

                         and  

                    end if 

                    if  then  

                         and  

                    end if 

                for  do 

                      Solve   and set the optimal solution to       

 and get   

                           if  then  

                                and  

                           end if 

                end for 

           end for  

end function       

The degree of redundancy after Stage 1 is               

The estimated degree of redundancy  

Also , where  is the resultant 

reduced matrix once removing the columns indexed by .  
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     In 2-StageL1, we start off by finding the dual matroid 

 corresponding to the given vector matroid 

 and then normalizing its columns such that each 

column has an -norm equal to 1. Then we solve  -norm 

minimization problems s which are similar to the 

ones proposed in [10] but with the additional constraints 

. We call this Stage 1. For each of 

the solution to the optimization problem  in Stage 1, 

we get the support set, i.e., the indices at which the solution 

vector is non-zero. We then solve another set of linear 

programs  in Stage 2, with an additional 

constraint forcing each of the non-zero components of the 

Stage 1 solution to zero. We exclude the component  since 

this is already set to 1 in the first stage. One less than the -

norm of the sparsest one among all the optimal solutions to 

 and  is taken as the estimated degree of 

redundancy . The minimization problems  and 

 defined above can easily be reformulated as linear 

programs making this algorithm time-efficient. 

     The intuition behind this approach relies on the highly 

non-linear structure of the set of all k-sparse vectors in a 

given Euclidian space. Consider the n-dimensional Euclidian 

space  and let  be the unit vectors that form a 

basis for this space. The set of all k-sparse vectors in  is 

given by . This set consists of a 

union of  linear subspaces, where each subspace is 

spanned by a unique choice of  out of these  unit vectors. 

This union operation makes the set  highly non-linear. By 

forcing nonzero components of a solution vector from Stage 

1 to zero, we are searching for solutions with perhaps a 

larger -norm, but hopefully a smaller -norm, either 

within the same subspace or other subspaces within the 

union. Our computational experiments showed that by 

introducing this second stage, we are now able to find exact 

optimal solutions to many instances of the girth problem 

with known solutions which were otherwise not solved 

optimally by Stage 1.   

V. COMPUTATIONAL EXPERIMENTS 

     In this section, we present the results of our 

computational experiments and then compare and contrast 

the performance of our algorithm 2-StageL1 against the 

integer programming based algorithms MIP and BDMIF. 

From now on we will refer MIP and BDMIF as exact 

algorithms since they find the optimal solutions to our 

problem. We have implemented all the algorithms in C++, 

and the optimization problems were solved using CPLEX 

12.6.1 solver [7]. The computations were carried out using 

randomly generated instances of design matrices grouped 

into 7 categories, with each category having five instances of 

equal dimensions. All the instances have BBD with the 

instances in the same category having a similar structure. 

We have set a time limit of 10 hours on the runtime of each 

instance. 

   Tables I, II and II summarizes the results of our 

computational experiments. Each row of these tables 

corresponds to an instance category. The size, number of 

border rows and the number of blocks of each category is 

shown in Table I. The last column in this table shows the 

optimal average value of the degree of redundancy of the 

five instances in each category. These values were obtained 

from one of the exact algorithms. For instance categories 

that were not solved by any of the exact algorithms, the best 

upper and lower bounds attained are listed. The upper 

bounds were obtained from the best integer solution found 

after 10 hours. Table II summarizes the performance of the 

2-StageL1 algorithm. We have reported the average 

runtimes over all the five instances in each category along 

with the estimated average value of the degree of 

redundancy after Stage 1 and Stage 2. The final column in 

this table gives the standard deviation (run time SD) of the 

runtimes over each category. In Table III, we have included 

the performance of the exact algorithms MIP and BDMIF. 

The average runtime along with the runtime standard 

deviation over each category is reported against the 

corresponding 

category indicates that the corresponding algorithm failed to 

find the degree of redundancy for all the instances in that 

category after 10 hours of runtime. 

                                        TABLE I 

CHARACTERISTICS OF INSTANCE CATEGORIES AND    

AVERAGE  OF INSTANCES IN EACH CATEGORY 

No. # border rows # blocks Average 

1 66 × 27 3 9 7

2 154 × 72 2 2 5

3 222 × 55 2 11 14

4 1009 × 252 1 42 17

5 2018 × 504 2 84 18

6 501 × 384 9 4

7 650 × 350 10 6

Model Matrix 

 
 

     Category 1 instances are the smallest with size , 

while category 5 instances are the largest with size 

. The two large instance categories, i.e., 4 and 5, have a 

large number of small blocks with comparatively smaller 

borders. On the other hand, instance categories 6 and 7 have 

only a few blocks which are much larger and denser than the 

instances in other categories along with larger borders. All 

instances except those in category 6 and 7 were completely 

solved within 10 hours by at least one of the exact 

algorithms. Therefore, the exact value of  for all 

instances in each of categories 1 through 5 were obtained, 

and the average value is reported in Table I. But our 

heuristic algorithm 2-StageL1, as expected, was able to 

solve all the instance categories well within the specified 

time limit. More importantly, the estimates of  from 2-

StageL1 are also optimal for all the instances in categories 1 

through 5. However, due to the unavailability of the exact 

values of  for the instances in the last two categories, 

we cannot confirm whether the estimates from 2-StageL1 for 

these instances are optimal. 

     The estimate of  reported under Stage 1 in Table II 

gives the solution obtained for the naive -minimization 

427

Authorized licensed use limited to: Texas A M University. Downloaded on October 13,2022 at 15:58:38 UTC from IEEE Xplore.  Restrictions apply. 



  

approach by Donoho et al. in [8]. A comparison of Stage 1 

solution with that of the Stage 2 solution (final estimated 

solution) of 2-StageL1 indicates the effectiveness of Stage 2 

in finding improved estimates. For four of the seven instance 

categories, Stage 2 was able to find a better  solution than 

the one obtained by Stage 1 and comparing the optimal 

solutions found by the exact algorithms in Table I, Stage 2 

solutions are indeed all optimal for categories 1 to 5 and 

perhaps for 6 and 7 as well, while the solutions from Stage 1 

are definitely not optimal for categories 1, 2, 6 and 7. With 

the help of this additional Stage 2 in our algorithm, we were 

able to significantly improve the time efficiency of finding 

the optimal degree of redundancy compared to exact 

approaches.  

TABLE II 

RUNTIMES OF 2-STAGEL1 

Stage 1 Stage 2

1 7.4 7 7.491 sec. 0.31 sec.

2 6 5 8.787 sec. 0.23 sec.

3 14 14 14.225 sec. 0.53 sec.

4 17 17 2.684 min. 0.26 min.

5 18 18 7.716 min. 0.28 min.

6 35 33 3.983 min. 0.64 min.

7 36 34 5.027 min. 0.52 min.

      Average         average     

 runtime
runtime SDNo.

 

TABLE III 

RUNTIMES OF MIP AND BDMIF 

average

run time
runtime SD

average

runtime
runtime SD

1 18.49 sec. 4.23 sec. 46.82 sec. 3.44 sec.

2 2.96 sec. 3.59 sec. 21.73 sec. 4.65 sec.

3 47.95 sec. 4.17 sec. 2.05 min. 0.08 min.

4 > 10 hrs. 21.17 min. 4.59 min.

5 > 10 hrs. 1.66 hrs. 0.04 hrs.

6 > 10 hrs. > 10 hrs.

7 > 10 hrs. > 10 hrs.

MIP BDMIF

No.

     BDMIF performs significantly better than MIP for large 

instances, though for smaller instances MIP has a slight 

advantage over BDMIF. 2-StageL1 reports far superior 

runtimes as compared to both these exact algorithms. None 

of the instances in categories 6 or 7 were solved by any of 

the exact algorithms. These instances have much thicker 

blocks with a large border. But 2-StageL1 solves category 6 

instances within an average runtime of around 4 minutes and 

category 7 instances within an average runtime of around 5 

minutes giving the estimates 33 and 34 respectively for the 

degree of redundancy. Hence 2-StageL1 is a highly reliable 

alternative approach for finding the degree of redundancy 

for such instances. Stage 2 estimates were two less (the most 

improvement we have observed among categories) than the 

Stage 1 estimates for all these instances, highlighting the 

significance of Stage 2. The runtime of 2-StageL1 does not 

depend much on the structure of the design matrix but rather 

on the number of linear programs solved in each case. In 

fact, all the instances that we have tested were solved by 2-

StageL1 within a few minutes.                                                              

 VI.    CONCLUDING REMARKS 

     We started this paper by establishing the equivalence 

between redundancy degree problem and the girth problem 

in matroid theory. Exploring our options to solve the latter 

problem took us to -minimization approach, a successful 

technique applied to similar problems in compressed 

sensing. Building on this idea, we proposed a new heuristic 

algorithm that finds extremely good near-optimal solutions 

to the degree of redundancy. This algorithm gives highly 

reliable estimates to the degree of redundancy in remarkably 

faster time than all the exact algorithms. The -

minimization technique thus takes us a step closer to the 

long-held goal of finding the degree of redundancy of 

instances with large blocks and borders, but the challenge of 

solving such instances to optimality remains. 
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