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Abstract— Linear models have been successfully used to
establish the connections between sensor measurements and
source variables in sensor networks. Sensor failures are a
leading concern during the estimation of these source variables
that cannot be measured directly. The reliability of a sensor
system is a probabilistic evaluation of the ability of a system
to withstand sensor failures. Finding the exact reliability of
a linear sensor system is proven to be a #P problem. Conse-
quently, for most practical systems, it is highly unlikely to obtain
exact solutions to this problem within a reasonable timeframe.
A viable alternative is to estimate the reliability using the
crude Monte Carlo method. However, this method is known to
be inefficient for highly reliable systems. An improved Monte
Carlo approach called the Recursive Variance Reduction (RVR)
method is commonly used in the literature to obtain better
reliable estimates. However, the accuracy of this method banks
heavily on the approach used in finding minimal cut sets of the
linear sensor system. In this paper, we introduce two enhanced
RVR methods in which mixed integer programming algorithms
are deployed to find minimal cut sets that significantly improve
the accuracy of the overall RVR technique. A case study over
a wide range of test instances is conducted to establish the
efficiency of the proposed methods.

I. INTRODUCTION

In many applications in science and technology, one
encounters the problem of predicting various physical phe-
nomena based on the measured information. In a linear
sensor system, the source variables x representing these
physical phenomena and the sensor measurements u that
assist in estimating these variables are linked by a set of
linear equations,

u = Ax + e, (1)

where u, e ∈ Rn, and x ∈ Rm. A is an n × m design
matrix (n ≥ m) that models the linear measurement process.
The matrix A is assumed to be of full column rank i.e.,
r(A) = m, where r(.) denotes the rank function. The last
term e is a random noise vector, which is assumed to be
normally distributed with mean 0 and covariance matrix σ2I .
The vector of unknown parameters x is commonly estimated
using the Least Square estimator, x̂LS = (ATA)−1ATu.
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Linear sensor systems are widely deployed in complex
multistage manufacturing systems to measure dimensional
deviations during the assembly process, enabling automatic
diagnosis of manufacturing process faults [1]. Figure 1
shows a typical multistation assembly process. At Station
1, two parts are assembled. The resulting sub-assembly
is transferred to Station 2 where it is further assembled
with two more parts. The final assembly is inspected for
quality at Station 3. Coordinate sensors are placed at all
the stations to measure the dimensional deviation of parts in
either the x or the z direction. The response u includes the
measurements obtained by these sensors. The design matrix
A is determined by process design information, product
geometry and tooling layout. Each part or finished sub-
assembly is positioned by a pair of locators, consisting of a
four-way locator and a two-way locator. The four-way locator
controls the motion of a part in both the x and z directions,
while the two-way locator controls the motion in only the z
direction. The source variables x are potential process faults
due to dimensional locating errors caused by locators.

An LS estimator is highly sensitive to system noise and
sensor failures. Though some sensor failures result only in
measurement precision degradation, others may be catas-
trophic providing no useful information. In any case, it
is highly important to estimate the reliability of a sensor
system against sensor failures. The reliability of a linear
sensor system is a probabilistic evaluation of the ability
of the system to tolerate sensor failures given the failure
probabilities of individual sensors. In the literature, the
reliability problem is studied for both modes of sensor
failures. In [2] and [3] reliability under the risk of sensor
precision degradation is investigated. In contrast, reliability
when considering catastrophic sensor failures is explored
in [4] and [5]. The research efforts in this paper deal with
catastrophic sensor failures. Each sensor is assumed to have
two states, either working or failed.

Let us define the reliability of a sensor system under
the case of catastrophic sensor failures. Given the working
probability of each sensor in a linear sensor system, and
assuming the failure of sensors are s-independent, the relia-
bility of a linear sensor system is defined as the probability
that r(A(−δ)) = m, and the number of sensors in A(−δ)
is greater than or equal to k. A(−δ) is the reduced matrix
of A after deleting the rows representing the failed sensors
indexed by δ, and k is the minimum required number of
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Fig. 1: A Three Station Assembly Process with Coordinate Sensors [1]

functioning sensors [5]. When either of these cases occurs,
we say the sensor system failed. By system failure, we mean
that the sensor system can no longer estimate the source
variables using classic LS estimators. We often fix k before
performing any estimation process to ensure the desired level
of statistical efficiency.

In [4], Yang and Chen proved that the exact reliability
evaluation under catastrophic sensor failure is a #P complete
problem. They also developed exact algorithms for finding
reliability for two special cases of linear sensor systems.
Most practical purposes require the deployment of large-
scale sensor systems; and for such systems, exact evaluation
of reliability is a highly elusive undertaking. For exam-
ple, the coordinate sensor system used in the multistation
assembly process usually consists of hundreds of sensors.
For these complex systems, a straightforward alternative is
to estimate the reliability by applying crude Monte Carlo
method. For systems that are highly reliable, the estimates
from the crude Monte Carlo method are often inefficient. An
improved Monte Carlo method called the Recursive Variance
Reduction (RVR) method is applied in [5] to give more
acceptable estimates of the reliability. The main idea of the
RVR method is to reduce the sample space by obtaining as
many combinations of sensor states that ensure system failure
or success before applying the crude Monte Carlo method.

The reduction in sample space is achieved in [5] by finding
the minimal cut sets (defined in Section II) of the linear
sensor system. The accuracy of the estimated reliability by
the RVR method depends on the efficacy of the approach
employed to find these minimal cut sets. Ideally, minimal cut
sets that can contribute to the highest reduction in the sample
space is preferred. We, based on our analysis, have observed
that the current approach used in [5] to finding the minimal
cut sets can be improved by utilizing the mathematical tool
called the matroid theory. In matroid theory, the minimal
subset of rows of A whose removal causes the reduced
matrix to be rank-deficient is called a cocircuit of the vector
matroid defined over the rows of A. These cocircuits can

indeed provide the minimal cut sets. Over the years, various
approaches have been studied to find the smallest cocircuit,
the value of which has vital importance in robust regression
analysis [1], [6], [7]. In [6], the smallest cocircuits are
obtained using mixed integer programming.

In this paper, we propose two algorithms to estimate
the reliability of a linear sensor system, namely RVRMIP
and RVRDMIP. In RVRMIP, we modify the mixed integer
programming approach in [6] and integrate this within the
RVR method to find minimal cut sets that are much more ef-
ficient in reducing the sample space. In the second algorithm
RVRDMIP, we take advantage of the the theory of matroids
to formulate an equivalent mixed integer program over the
dual of the vector matroid A to obtain minimal cut sets and
incorporate this within the RVR approach. We implement
and test these algorithms over a wide range of test instances
inspired by the multistation assembly process application.
Our test results discussed in Section IV illustrate the superior
performance of our algorithms when compared to the pre-
vious RVR algorithm. Using our algorithms, we were able
to substantially reduce the variance of the estimated system
reliability for all the test instances.

The rest of the paper is organized as follows: Section II
gives a brief review of the algorithms previously proposed
in the literature. In Section III, we introduce our approach to
finding the minimal cut sets and then present our algorithms
for reliability evaluation. We report our computational studies
in Section IV and conclude with some remarks in Section V.

II. RELATED WORK

Consider the linear sensor system S = (s1, s2, ..., sn)
having n sensors defined over A. Let vi be the random
variable that defines the state of the ith sensor. vi = 1 (sensor
si works) with probability pi and vi = 0 (sensor si fails)
with probability 1 − pi. Define V = (v1, v2, ..., vn) as the
component state vector. Assume φ to be the random variable
that defines the state of the system S, where φ = 1 if the
system works, else 0. Then the reliability of S, rs = E(φ),
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where E(.) denotes the expectation of a random variable.
To apply the crude Monte Carlo method, we generate N
s-independent samples of the component state vector V . In
each sample, the component vi of V takes a value 0 or 1
based on the corresponding failure or working probability of
sensor i. Let φj represent the system state for the sample j.
In any sample j, if the number of working sensors is less
than k, or r(A(−δ)) < m, φj is set to 0. Otherwise, it is
set to 1. Then, the system reliability can be estimated by an
unbiased estimator r̂c with a sample variance V̂c, where

r̂c =

N∑
j=1

φj/N, V̂c =
1

N − 1

N∑
j=1

(φj − r̂c)2. (2)

For a system which is highly reliable, the component
state vectors that correspond to system failure form just a
minuscule fraction of the overall sample space of component
state vectors. Hence, for large-scale systems, we need to use
an inordinately large sample size to attain any reasonable
estimate of reliability. In [5], the recursive variance reduction
method - an improved Monte Carlo method used commonly
in network reliability literature, is applied to overcome this
limitation. As discussed in the previous section, the under-
lying idea of the RVR method is to obtain as many sets
of component state vectors that guarantee a system failure
or success. Once these component states are obtained, the
sample space can be reduced, and then the crude Monte Carlo
method be applied. Consider the sample space Ω consisting
of all 2n possible component state vectors. Let the sets ΩW
(with probability pW ) and ΩF (with probability pF ) repre-
sent the sets of component state vectors that ensure system
functioning and system failure respectively. The sampling
space can now be reduced to ΩU = Ω− (ΩW ∪ΩF ). Then,
we can calculate the system reliability as

rs = pW E[φ|ΩW ] + pF E[φ|ΩF ] + pU E[φ|ΩU ] (3)
= pW + pU E[φ|ΩU ] (4)

The variance of the reliability estimate is decreased based
on

V ar(pW + pU E[φ|ΩU ]) = (r − pW )(1− r − pF ) (5)
≤ r(1− r) = V ar(φ). (6)

Accordingly, from (6) we can conclude that the RVR method
permits a more accurate estimate of the reliability. The larger
the values of pW and pF , the greater the reduction in variance
and higher the efficiency of the RVR method. This is not
surprising since larger values of pW and pF results in greater
reduction in sample space.

The reduction in the sample space is achieved in [5] by
finding the minimal cut sets of the linear sensor system.
Given the states of some sensors in a linear sensor system
fixed as either functional or failed, a minimal cut set is
defined as the minimal set of sensors among the remaining
ones whose simultaneous failure results in the system failure.
Consider a minimal cut set G = {si1 , si2 , ..., sih}, where sij
is the jth sensor in G. Then, by definition of minimal cut sets,
any component state vector V with vij set to 0 for j = 1, ..., h

results in system failure. The failure probability of G can be
calculated as Πh

j=1(1 − pij ). Undoubtedly, we wish to find
a minimal cut set with the largest failure probability.

We now review the approach by which the minimal cut
sets are obtained in [5]. Consider the case where none of the
sensors are fixed. First, the cocircuits of the matroid over the
rows of A are obtained using the following theorem (proved
in [5]). The set of sensors which correspond to the nonzero
elements in a nonzero column of the reduced column echelon
form of A is a cocircuit of A. In future, we refer to this
technique of finding the cocircuits as RCEFCO. As defined
earlier; the cocircuits are the minimal set of rows that when
removed from A reduces its rank. Therefore, a component
state vector with 0 entries for those sensors indexed by a
cocircuit will result in system failure. Let C be a cocircuit.
If |C| ≤ n − k + 1, then C is also a minimal cut set. This
is because the simultaneous failure of any proper subset of
sensors in C can neither produce a rank deficient matrix
A(−δ) nor can reduce the number of sensors that are not
fixed to less than k. Consequently, any proper subset of C
does not guarantee a system failure; this makes C a minimal
cut set. However, if |C| > n− k + 1, then each subset of C
with a cardinality of n− k + 1 is a minimal cut set.

Next, consider a system where some sensors are fixed
as working and some others as failed. In this case, we
first transform A to A′ as follows. For each sensor fixed
as failed, delete the corresponding rows from A. For each
sensor known to be working, the corresponding row (denoted
by e) in A is transformed to a unit vector by performing
elementary column operations. Then delete the column and
row containing the unique nonzero entry in e. We call this the
pivot operation. Following this, the cocircuits of the matroid
defined over the rows of A′ are obtained using RCEFCO.
Then as before we can obtain the minimal cut sets. However,
the value of k has to be reduced to k − q, where q denotes
the number of sensors fixed as functional; and the value n
has to be replaced with the current number of rows in A′.
Among all the minimal cut sets available, we choose the one
with the largest failure probability while executing RVR.

In the RVR algorithm, we start by finding a minimal cut
set of A. Let G = {si1 , si2 , ..., sih} be the minimal cut set,
where |G| = h. Let Ω0 represents the set of component state
vectors in which all the sensors indexed by G are set to 0,
giving a set of states that result in system failure. Now, we
partition the remaining sample space Ω−Ω0 into h disjoint
sets denoted by Ωj , j = 1, ..., h. In Ωj , the first j − 1
elements indexed by G are set to 0, the jth element is set to
1, and the remaining elements are not fixed. It can be easily
verified that ∪hj=0Ωj = Ω. Now, for each of the sets Ωj , we
again find minimal cut sets and continue. We now have all
the pieces to put together the RVR algorithm proposed in [5].

RVR Algorithm [5]

Input: Given a sensor system defined by the matrix A having
n sensors S = (s1, s2, ..., sn) with working probabilities pi,
i = 1, ..., n. A sample size of N is chosen.
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The system reliability can be estimated by an unbiased
estimator r̂rvr with a sample variance V̂rvr calculated as

r̂rvr =
α

N
, V̂rvr =

1

N − 1

[
β − α2

N

]
, (7)

where α and β are obtained by recursively calling the
Procedure P (W,F , N) given below. W and F denote the
sets of sensors fixed as working and failed respectively and
are set to ∅ initially.

Procedure P (W,F , N): Calculate α and β
i. Set U = S − (W ∪ F). Let A1 be the submatrix of A

consisting of rows indexed by W ∪U and A2 those rows
indexed by W .
i.a) If N = 0, then α = β = 0; return.
i.b) If r(A2) = m and |W| ≥ k, then α = β = N ; return.
i.c) If r(A1) < m or |W ∪ U| < k, then α = β = 0;

return.
ii. Find a minimal cut set G = {si1 , si2 , ..., sih} of the linear

sensor system using the RCEFCO technique.
iii. Divide the current sample space into h+ 1 sets denoted

by Ωj , j = 0, 1, ..., h such that
Ω0 =

{
(v1, v2, ..., vn) | vij = 0, ∀j = 1, ..., h

}
and

Ωj =
{

(v1, v2, ..., vn) | vil = 0, ∀l = 1, ..., j − 1, vij = 1
}

,
j = 1, ..., h.

iv. Divide the total number of samples N into Nj samples
each, across Ωj , j = 1, ..., h, based on the multino-
mial distribution defined by M (N, p(Ω1), ..., p(Ωh)). The
probability of Ωj , p(Ωj) is calculated as

p(Ωj) =
pij .Π

j−1
l=1 (1− pil)
1−Q

, j = 1, ..., h, (8)

where pij is the working probability of sij and

Q = Πh
j=1(1− pij ). (9)

v. For j = 1, ..., h, setWj =W∪sij , and Fj = F ∪j−1l=1 sil .
Then, recursively call the procedure P (Wj ,Fj , Nj) to
calculate αj and βj .

vi. Compute α and β as

α = (1−Q)
h∑
j=1

αj , β = (1−Q)2
h∑
j=1

βj . (10)

In RVR algorithm, we recursively calculate the values of
αj and βj by calling the procedure P (Wj ,Fj , Nj). If a set
of component states guarantee system functioning, then in
step (1.b), α and β are set to the number of samples Nj . If
a set of component states is certain to cause system failure,
then in step (i.c), α and β are set to zero.

The approach RCEFCO is not the ideal one to find the
best possible cut sets. Consider a case when all the sensors
have the same working probability. Then, a minimal cut set
with the smallest cardinality will have the maximum failure
probability. However, the RVR algorithm quite often fails to
find this minimal cut set. We, in this paper, focus on systems
with same sensor probabilities; nonetheless, our approach
can be applied to general cases. To find minimal cut sets
with the smallest cardinality, we first need to get the smallest

cocircuits. Finding the smallest cocircuits of a vector matroid
is a well-studied problem in robust regression analysis.

Kianfar et al. [6] proposed a 0-1 mixed integer pro-
gramming algorithm (denoted as MIP) to find the smallest
cocircuit. Their approach is based on the fact that the smallest
cocircuit problem can be solved by finding the minimum
number of rows that if deleted from A, the remaining matrix
has a nonzero null space (for more details, please refer
to [6]). The MIP formulation presented in [6] is as follows:

min
n∑
i=1

qi (11)

s.t. − qi ≤
m∑
j=1

aijxj ≤ qi, i = 1, ..., n (12)

−1 + 2zj ≤ xj ≤ 1, j = 1, ...,m;

m∑
j=1

zj = 1 (13)

xj ∈ R, qi, zj ∈ {0, 1}, i = 1, ..., n; j = 1, ...,m. (14)

In this formulation, qi is a binary variable that takes the value
1 if row i is chosen to be removed from the matrix A. The
vector x = (x1, x2..., xn) represents the nonzero member of
the null space of the reduced matrix obtained by removing
all rows with qi = 1 from A. If qi = 0, then we must
have aix = 0; but if qi = 1, we can have aix 6= 0. This
is captured in constraint (12). Constraints (13) guarantee a
nonzero x. Then the smallest cocircuit can be obtained as
the set of sensors for which qi = 1.

We can improve the RVR algorithm by replacing the
RCEFCO technique with this MIP formulation. One way to
find cocircuits for systems with fixed sensor states using MIP
is to replace A with A′ as in RCEFCO. But, we present a
more practical approach later. Our second scheme to improve
the RVR algorithm is to find the smallest cocircuits of A
by solving a circuit problem over the dual matroid of A. In
Section III, we explain these approaches in greater detail.

III. RELIABILITY EVALUATION USING MIXED INTEGER
PROGRAMMING

The MIP algorithm [6], as discussed in Section II, can
be used to find the minimal cut sets within the RVR
approach. When no sensors are fixed, we can solve the
MIP over A to find the smallest cocircuit, obtained as
C = {si : qi = 1, i = 1, ..., n}. These cocircuits can indeed
provide the minimal cut sets of the linear sensor system.
Now, consider a case with some sensors fixed as functional
or failed. We can remove the rows in A corresponding
to the failed sensors before MIP can be applied. As for
the sensors whose states are fixed as working, instead of
pivoting as in RCEFCO, we can set qi’s indexed by the
respective sensors to 0. By doing so, we avoid finding
cocircuits involving si’s; this is equivalent to fixing the
corresponding sensors as working. For the sensors fixed
as failed, the row removal can also be replaced by setting
qi’s to 1. But, it is more desirable to remove the rows
altogether as the size of the overall MIP gets reduced. Once
the cocircuits are obtained, we can find the minimal cut sets
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as in RCEFCO. Now we present our first algorithm RVRMIP.

RVRMIP Algorithm

Input: Given a sensor system defined by the matrix A having
n sensors with working probabilities pi, i = 1, ..., n. A
sample size of N is chosen.

The system reliability can be estimated by an unbiased
estimator r̂mip with a sample variance V̂mip calculated as

r̂mip =
α

N
, V̂mip =

1

N − 1

[
β − α2

N

]
, (15)

Procedure P (W,F , N): Calculate α and β
i. Set U = S − (W ∪ F). Get A1 and A2 as in RVR

algorithm.
i.a) If N = 0, then α = β = 0; return.
i.b) If r(A2) = m and |W| ≥ k, then α = β = N ; return.
i.c) If r(A1) < m or |W ∪ U| < k, then α = β = 0;

return.
ii. Remove all the rows in A corresponding to sensors in F .

Set the binary variable qi representing those sensors in W
to 0. Then find a minimal cut set G = {si1 , si2 , ..., sih}
of the linear sensor system using the MIP formulation.

iii. Divide the current sample space into sets Ωj , j =
0, 1, ..., h using the same strategy as in RVR algorithm.

iv. Divide N across each Ωj based on the multinomial dis-
tribution defined by M (N, p(Ω1), ..., p(Ωh)). The proba-
bility of Ωj , p(Ωj) is calculated following the same steps
as in RVR algorithm. Get Q = Πh

j=1(1− pij ).
v. For j = 1, ..., h, setWj =W∪sij , and Fj = F ∪j−1l=1 sil .

Then, recursively call the procedure P (Wj ,Fj , Nj) to
calculate αj and βj .

vi. Compute α and β as

α = (1−Q)

h∑
j=1

αj , β = (1−Q)2
h∑
j=1

βj . (16)

The RVRMIP algorithm replaces the inefficient RCEFCO

method with the MIP approach. When all the probabilities
pi are the same, this algorithm finds the minimal cut set
with the largest failure probability. Even if this is not the
case, the smallest cocircuits obtained will provide minimal
cut sets with very large failure probabilities.

RVRDMIP uses matroid theory duality to find minimal
cut sets by solving a circuit problem over the dual of A.
A matroid M = (E,F) is an ordered pair consisting of
a ground set E and a collection F of independent subsets
of E. In order for M to be a matroid it should satisfy the
independent augmentation axiom; i.e., if I1 and I2 are in F
and |I1| < |I2|, then there exists an element e ∈ I2−I1 such
that I1 ∪ e ∈ F . A minimal dependent set in a matroid is
called its circuit. For every matroid, there is an associated
dual matroid such that the circuits of the matroid are also the
cocircuits of its dual. Vector matroids are matroids defined
over a matrix, and by convention the columns form the
ground set E. For more details, please refer to [8].

Since we are interested in the dependence relationship
among the rows of A, we consider the matroid M [AT ]
defined over the columns of AT . Now, we can find the dual
matroid of M [AT ] as: Get the reduced row echelon form of
AT denoted by [Im|D], where Im is the m × m identity
matrix. Then, the dual of M [AT ] is the matroid defined over
the columns of [−DT |In−m], denoted by M∗[−DT |In−m].
By duality, the cocircuits of M [AT ] are also the circuits of
M∗[−DT |In−m]. Due to this association, one can find the
circuits over the (n−m)× n matrix H = [−DT |In−m] to
obtain the minimal cut sets of the linear system defined over
A. This is the basis of the RVRDMIP algorithm.

First, let us formulate the smallest circuit problem as a
mixed integer problem. We call this DMIP, where “D” stands
for the dual. The DMIP formulation is as follows:

min
n∑
i=1

qi (17)

s.t.
n∑
i=1

hjiyi = 0, j = 1, ..., n−m (18)

−qi + 2zi ≤ yi ≤ qi, i = 1, ..., n;

n∑
i=1

zi = 1 (19)

yi ∈ R, qi,zi ∈ {0, 1}, i = 1, ..., n. (20)

In DMIP, we find a nonzero y = (y1, ..., yn) in the null space
of H that has the smallest l0-norm. Then, the smallest circuit
C over H can be obtained as C = {si : qi = 1, i = 1, ..., n}.
Since C is also the smallest cocircuit over A, we can now
find the minimal cut sets of A as before. If some of the
sensor states are fixed, then the DMIP approach has to be
modified to address these cases. As we know, the rows in
A corresponding to failed sensors is removed, and rows
representing working sensors is pivoted before applying
RCEFCO. We represented this reduced matrix by A′. The
pivoting operation is called a contraction in matroid theory.
The contraction is the dual of deletion. So the equivalent
dual matroid for A′ can be obtained by performing the
dual operations. Specifically, for sensors set as failed, the
corresponding rows in HT are pivoted (or equivalently
pivot over the columns of H); and for sensors set as
working, the corresponding rows in HT are deleted, to
get the dual matroid of A′. These fixed sensors cases can
also be equivalently addressed by setting qi = 0 for those
sensors set as working, and qi = 1 for those that are failed.
However, in the RVRDMIP Algorithm, for sensors fixed as
working, we remove the corresponding column from H ,
and for the sensors set as failed, we set qi = 1.

RVRDMIP Algorithm

Input: Given a sensor system defined by the matrix A. Get
the dual matrix H = [−DT |In−m]. A sample size is N .

Calculate r̂dmip and V̂dmip as

r̂dmip =
α

N
, V̂dmip =

1

N − 1

[
β − α2

N

]
, (21)
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Procedure P (W,F , N): Calculate α and β
Follow the same steps as in RVRMIP, but replace MIP in
step (ii) with DMIP over H .
Before applying DMIP, remove all the columns in H
corresponding to sensors in W . Set the binary variable
qi representing those sensors in F to 1.

The size of the matrices H and A, as well as the
respective formulations, will have an impact on the runtime
of the algorithms RVRMIP and RVRDMIP. Though both these
approaches find the smallest cocircuits (smallest circuits over
H in case of RVRDMIP), the estimated values of reliability
and variance may slightly differ. One reason for this is the
algorithms choosing different cocircuits (or circuits) when
there are multiple smallest ones available. However, our
analysis indicates that the runtimes, the reliability estimates,
and the sample variance for these two algorithms are highly
comparable. More importantly, these values are significantly
superior when compared to RVR. In the next section, we
detail our computational analysis.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of our computational
experiments conducted to compare the performance of our
algorithms (RVRMIP and RVRDMIP) with each other and
with the previously proposed RVR algorithm discussed in
Section II. We performed our computations on a testbed con-
sisting of 5 categories of randomly generated instances. Each
category consists of five individual instances of identical size.
All the instances are based on the multi-station assembly
examples reported in [9]. We implemented all the algorithms
in C++ and used CPLEX 12.6.1 as integer programming
solver wherever needed. All the algorithms were run on a
PC which has an Intel CoreTM i7-3667U 2.50GHz processor
and 4 GD of RAM. We choose two different sample sizes
100,000 and 1,000,000. The reliability of each sensor, i.e.,
the working probability of each sensor is set as 0.95. The
value of k is fixed at m+ 1.

Tables I and II summarize the results of our computational
experiments. Each row in these tables corresponds to an
instance category. For each algorithm, we report the average
runtime (t), the average percentage reliability estimate (r̂),
and the average variance of estimated system reliability (V̂ )
against the corresponding algorithm and for each instance
category. All the runtimes are reported in minutes. In Table
1, the values reported are for the sample size of 100,000
and, in Table 2, those reported are for the sample size of
1,000,000. The subscripts rvr, mip, and dmip under t, r̂, and
V̂ identifies the corresponding algorithms RVR, RVRMIP,
and RVRDMIP. To compare the overall performance of our
algorithms relative to RVR, we introduced the factor Γ. The
values Γmip and Γdmip in the tables are calculated as:

Γmip = (tmip × V̂mip)/(trvr × V̂rvr) and (22)

Γdmip = (tdmip × V̂dmip)/(trvr × V̂rvr). (23)

A value of Γ < 1 signifies the superior performance of
the respective algorithm compared to RVR; the smaller the

value, the better the performance. We also compute another
parameter Nreq, reported in both the tables under the RVR
algorithm, which gives an approximate number of samples
required by this algorithm to attain an estimated variance
comparable to the average value of the variance estimate
reported for RVRMIP and RVRDMIP.

An analysis of the values for the runtime and the variance
estimate indicates that both of our algorithms, RVRMIP and
RVRDMIP, are superior to the RVR algorithm. The perfor-
mance of all the algorithms improves a large sample size is
used, as is expected of any Monte Carlo based algorithms.
Evidently, a comparison of the values in Tables I and II points
to this fact. The runtimes for our algorithms are slightly
larger than the values reported for RVR for the smaller
instances 26× 12 and 66× 27. For instances in the category
157× 72, these values are almost comparable. However, for
the other two larger instances, our algorithms outperform
RVR in terms of the runtime for both the sample sizes.
But the critical performance parameter V̂ is significantly
smaller for our algorithms, remarkably so for the case with
a sample size of 1,000,000. This smaller value points to a
more definitive estimate of reliability. Moreover, the value of
reliability obtained using our algorithms is slightly smaller
than the ones obtained by RVR. This decrease is to be
expected, as our algorithms search through a broader set of
component states as compared to RVR for a given sample
size due to the availability of superior minimal cut sets. Also,
notice that the values or reliability obtained for the sample
size of 1,000,000 is smaller than the ones with a sample
size of 100,000. This is because we explore more minimal
cut sets when a larger sample size is used.

The runtimes, the reliability and the variance estimates
for our algorithms are highly comparable, as noted in the
previous section. For example, for all the instances tested,
the values for the estimated reliability from RVRMIP and
RVRDMIP differ by less than 0.02% for both sample sizes.
The overall test performance captured by Γ is the smallest
for the category 154 × 72; this is also the most reliable
one among the test categories. The largest Γ values are
recorded for the least reliable instance categories, 316× 144
and 485× 360. However, even for these instances the value
of Γ obtained is smaller than 0.29 for the sample size
of 100,000 and is smaller than 0.14 for the sample size
1,000,000. The value of Nreq, another performance metric,
shows that the number of samples required by RVR to reach
an estimated variance comparable to that of our algorithms
is also significantly higher. For the instances in the category
154 × 72, on average we needed around 326,000 samples
for RVR to attain an estimated variance comparable to the
one obtained for our algorithms when a sample size of
1000,000 is used. Meanwhile, in order for RVR to match
the value of estimated variances obtained by our algorithms
using 1,000,000 samples, we needed more than 1,400,000
samples for all the instances in the first three categories.
These numbers are yet another indicator of the efficiency of
our algorithms in finding solid estimates for the reliability.
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TABLE I: Performance Comparison of Various Algorithms for N = 100000

n×m
RVR RVRMIP RVRDMIP

trvr r̂rvr V̂rvr Nreq tmip r̂mip V̂mip Γmip tdmip r̂dmip V̂dmip Γdmip

26 × 12 0.73 99.122 3.517E-03 264000 1.18 99.108 4.653E-04 0.214 1.21 99.103 4.617E-04 0.217

66 × 27 2.33 99.156 2.411E-03 276000 2.52 99.127 3.542E-04 0.160 2.54 99.122 3.553E-04 0.161

154 × 72 2.90 99.518 1.143E-03 326000 3.01 99.472 1.210E-04 0.110 2.99 99.462 1.183E-04 0.107

316 × 144 5.92 97.321 3.031E-02 186000 5.353 97.136 8.727E-03 0.261 5.64 97.128 8.885E-03 0.279

485 × 360 6.514 97.242 2.963E-02 164000 6.042 97.102 9.041E-03 0.283 5.79 97.066 9.020E-03 0.271

TABLE II: Performance Comparison of Various Algorithms for N = 1000000

n×m
RVR RVRMIP RVRDMIP

trvr r̂rvr V̂rvr Nreq tmip r̂mip V̂mip Γmip tdmip r̂dmip V̂dmip Γdmip

26 × 12 1.45 99.104 1.632E-04 1411000 2.09 99.093 8.285E-06 0.073 2.11 99.091 8.555E-06 0.076

66 × 27 4.91 99.132 8.562E-05 1554000 5.34 99.102 5.338E-06 0.068 5.23 99.098 4.587E-06 0.057

154 × 72 7.09 99.452 3.421E-05 1721000 6.19 99.431 1.543E-06 0.039 6.07 99.430 1.708E-06 0.043

316 × 144 15.88 97.288 2.021E-03 1207000 15.13 97.106 2.531E-04 0.119 14.93 97.094 2.877E-04 0.134

485 × 360 17.74 97.170 2.120E-03 1193000 15.16 96.904 3.004E-04 0.121 14.77 96.923 2.742E-04 0.108

V. CONCLUDING REMARKS

The problem of estimating the reliability of a linear sensor
system is considered. To obtain a dependable estimate of the
system reliability, we proposed mixed integer programming
techniques to improve the existing recursive variance reduc-
tion algorithm. The key to a successful recursive reduction
method is to find minimal cut sets that can yield the greatest
reduction in the sample space of the crude Monte Carlo
method. We introduced two advanced recursive variance
reduction algorithms, RVRMIP and RVRDMIP, both of which
can provide highly accurate estimates for reliability. The
RVRMIP algorithm solves a mixed integer program over the
matrix that designs the linear system thereby finding the
minimal cut sets of smallest cardinality. The RVRDMIP al-
gorithm gets these minimal cut sets by solving an equivalent
dual problem. The more reliable the linear sensor system,
the better the performance of our algorithms.
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