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Abstract— A hydropower generation plant is a complex
system and composed of numerous physical components. To
monitor the health of different components it is necessary to
detect anomalous behavior in time. Establishing a performance
guideline along with identification of the critical variables caus-
ing anomalous behavior can help the maintenance personnel to
detect any potential shift in the process timely. To establish any
guideline for future control, at first a mechanism is needed to
differentiate anomalous observations from the normal ones. In
our work we have employed three different approaches to detect
the anomalous observations and compared their performances
using a historical data set received from a hydropower plant.
The outliers detected are verified by the domain experts.
Making use of a decision tree and feature selection process,
we have identified some critical variables which are potentially
linked to the presence of the outliers. We further developed
a one-class classifier using the outlier cleaned dataset, which
defines the normal working condition, and therefore, violation
of the normal conditions could identify anomalous observations
in future operations.

I. INTRODUCTION

A hydropower generation plant can be divided into many
functional areas like generators, turbines, bearings etc, each
of which areas can in turn be subdivided into components.
Data are generated in real time from hundreds of sensors
across these functional areas and instrumented equipments.
Anomaly can come from various sources and can cause
different range of problems. For instance, an anomaly can be
overheating of bearing oil and metal components, vibrations
from bearings, or low generation of active or reactive power.
It is vital to identify anomaly as soon as it appears. But
doing so becomes extremely challenging as data generated
is of high dimensionality (i.e., too many variables).

In the literature, the anomaly detection problem is known
as the unsupervised learning problems, because one does not
have a training dataset with observations labeled as normal
observations or outliers. Consequently, a supervised learning
cannot be used to learn a rule to classify future observations.
Intuitively speaking, outliers or anomalies are points or
clusters of points which lie away from neighboring points
and clusters and they seem to be inconsistent with other
observations. A perfect definition of an outlier, however, does
not exist. All of the outlier detection methods developed
thus far are based on some assumptions, and no single
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unsupervised outlier detection method can perfectly classify
all different types of outliers in a dataset [1].

Existing outlier detection methods can be grouped into
four major schools of thoughts depending on their criteria of
identifying outliers. According to the time line of their incep-
tion to the body of knowledge, the four schools are: distance
and density based methods, subspace based methods, angle
based methods and ensemble based methods. Each of these
domains has their respective strengths and weaknesses. In
the distance based methods, a point is considered an outlier
if it lies further away from most of the points [2]. Instead of
considering distances from all the points it would be more
logical to consider the deviation from neighborhood points
and lead thus to methods based on the concept of k-nearest
neighbor (k-NN) [3]–[5]. One of the major downside of
these distance based methods is: if the dataset has multiple
clusters of varying density then they would not be able to
separate local outliers (i.e., outliers only with respect to a
single cluster) and normal data points successfully. Distance-
based methods tend to work effectively when the dataset has
clusters of similar density or no cluster at all.

In the density based methods [6]–[9], a point is considered
an outlier if the density around it is considerably lower
than the density around its neighbors. So these methods can
handle data with clustering tendency and can identify local
outliers. Both of distance and density based methods need the
pairwise distances to be calculated. When the data dimension
is too high, the proportional difference between the farthest
point distance and the closest point distance vanishes and
distances between any pair of data records become much
less differentiable [1]. Consequently, the distance and density
based methods does not work effectively in high dimensional
data spaces.

In data spaces of high dimension, we have to consider rel-
evant subspaces rather than considering the entire feature set.
For a particular observation, relevance means the subspace
in which it is different than other observations. As such,
the search for outliers must be accompanied by the search
for relevant subspaces. The disadvantages of the subspace
based method includes the lack of an appropriate way to
compare outliers identified in different subspaces, and the
large number of subspaces that need to be explored.

Angle based methods are similar to the distance based
methods but they were introduced with the consideration
that angles are a more stable measure in high dimensions
compared to distances [10]. One major limitation of this
method is the high computational time it requires to calculate
the angles.

Ensemble based techniques were introduced more recently,
motivated in part by the frustration that no outlier detection
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techniques have been able to identify different types of
outliers, while in the other part by its success in supervised
learning such as bagging or boosting [11]. Researchers feel
the need to combine non-compatible techniques of different
types to improve the outlier detection accuracy. To ensemble,
one can either use different techniques one after another on
the dataset in randomly selected subspaces or one can use
one suitable technique on the dataset in randomly selected
subspaces for a number of iterations and then combine the re-
sult over different techniques/iterations for each observation.
Using ensemble based techniques, how to combine scores
from different outlier methods is still an issue elusive of the
data mining community [1].

In this paper we chose three outlier detection methods
based on distinct schools of thoughts, namely, Local Outlier
Factor (LOF) as a density based method, Feature Bagging
for Outlier Detection (FBOD) as an ensemble method, and
Subspace Outlier Degree(SOD) as a subspace method. We
employed these methods to identify the outliers in a dataset
received from a hydropower generation plant. The compar-
ative performances of these methods are analyzed and some
commonality among the results are found. We discuss our
finding concerning which variables have the most contribu-
tion to the selected outliers and for what range of values.
We have also trained a one-class support vector machine
(SVM) classifier based on the outlier-removed hydropower
plant dataset. The one-class SVM defines the boundary for
normalcy and can thus be used to check future observations
for their likelihood of being an outlier.

The rest of the paper unfolds as follows: Section II
analyzes the dataset received, how it was cleaned, and
summarizes the research question at the end. Section III
describes the outlier detection methods that we selected to
apply on our dataset. Section IV presents the results from
applying the selected methods to the hydropower dataset.
Analysis of the results follows in Section V. Finally, we
conclude the paper in Section VI.

II. PHYSICAL SYSTEM AND DATASET

The data was originated from raw data stored in the
Distributed Control System of a power generation plant. It
was received in time-stamped format (several months worth
of data) and divided into different functional areas (turbines,
generators, bearings etc.). The data was collected at 10
minute interval in each of the day. But it was not always
continuous and some days from each of these months were
missing. At first, we combined the data in one file across
all functional areas. There were 9,508 observations (rows in
a data table) and 222 variables (columns in the data table)
with no missing values. Variables are mainly temperatures,
vibrations, pressure, active power etc.

The first major step consisted of conducting basic pre-
processing and statistical analysis in order to clean the
data before applying any anomaly detection techniques. Two
months had some duplicate observations (most probably due
to the error in measuring sensors) and those were removed
from the analysis.

A more sophisticated anomaly is found based on the
monthly density curves. Month wise density curves of two
vibration variables are shown in Fig. 1, in which one can
observe that the November density curve has its peak far
different from other six months, raising the red flag for the
November data. We become more confident on our finding
after we have done a cluster analysis on the dataset. It
was then found that the observations from November form
a clearly separate cluster with less than five percent of
observations of the data set (Table I). In Fig. 2 we plotted
one of those variables against active power, in which we
can easily notice that the red cluster (composed of only
November data) is different from the other clusters. Later
we were informed by the data owner who double checked
their data collection process and found that there were some
mistakes in accumulating the November data. We were then
provided a slightly reduced set of corrected data for the
month of November. After all the preprocessing, the number
of total observations (rows in a data table) is now reduced
to 9,219 from 9508.

      Vibration Variable 1

      Vibration Variable 2

Fig. 1. Month wise Density curve for two selected variables (vibrations)

After the initial data pre-processing, we are ready to
determine anomalies that are harder to detect (than the
ones that are detectable via a simple clustering action). As
we have said earlier, the data records are of rather high
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TABLE I
CLUSTER ANALYSIS RESULT

Cluster Apr Jan July Mar Nov Oct Sep
1 0 0 0 0 552 0 0
2 0 0 1565 0 0 0 0
3 662 1535 8 23 0 1527 746
4 45 413 27 1747 0 555 102
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Fig. 2. Red cluster corresponding to November data

dimensions (i.e., 222). It is extremely difficult, if not alto-
gether impossible, to analyze the data graphically for visually
spotting anomalies. The data also form clusters of various
densities, indicating the possibility of existence of local
anomalies. To tackle the practical problems at hand, we need
to utilize anomaly detection techniques that can handle this
type of unsupervised, high dimensional data with clustering
tendency. After identifying those points we also want to
pinpoint the reasons and conditions which triggered these
anomalous observations for the sake of assisting engineering
decision making, and develop a classifier to use in the future
for flagging any observations that might be an outlier.

III. ALGORITHMS USED FOR IDENTIFYING THE
OUTLIERS

We choose three different outlier detection approaches
and apply them to the hydropower dataset. The reason
that we choose multiple methods from different schools of
thoughts is because that not any one of the existing methods
can address the challenging unsupervised outlier detection
problem effectively. We briefly discuss the working principle
of the chosen methods below.

A. Local Outlier Factor

Local outlier factor (LOF) is an algorithm for outlier
detection which was proposed in [6]. They introduced a new
idea called local density, which is evaluated by the distance

of an observation from its nearest neighbors. Points which
has a lower density than its neighbors (i.e., higher LOF score)
will be counted as outliers. A brief outline of the algorithm
is provided below
• Compute reachability distance (reach-dist) for each data

point q with respect to p using (1).

reach-dist(q, p) = max{k-distance(p), dist(q, p)},
(1)

where dist(q, p) is the Euclidean distance between q
and p and k-distance(p) is the distance from p to the
k-th nearest neighbor of p

• Compute local reachability density (lrd) of q as the
inverse of the average reachability distance based on
the k-nearest neighbors of q as in (2).

lrd(q) =
Cardinality{MinPts(q)}∑
p∈ MinPts(q) [reach-dist(q, p)]

, (2)

where MinPts(q) denotes the set of points in the k-
nearest neighbors of q.

• Compute LOF(q) as the ratio of the average local
reachability density of q’s k-nearest neighbors and that
of q, as in (3).

LOF (q) =
1

Cardinality{MinPts(q)}
∑

p∈ MinPts(q)

lrd(p)

lrd(q)
. (3)

The dataset we are dealing with forms clusters of different
density which is the ideal scenario of applying the LOF
algorithm. Several variants of the original LOF method were
introduced recently [7]–[9]. Though the original LOF algo-
rithm still works better than these methods in the majority of
the cases as experimented in [12]. Therefore we select LOF
to apply on our dataset. One major disadvantage of LOF is
still its inability to perform satisfactorily in high dimensions,
especially when the outliers are different from other points
only in one or very few of the dimensions.

B. Subspace Outlying Degree

To deal with high dimensional data problem, we may
need to consider a subset of the original features, an action
commonly known as dimension reduction. The potential
benefit of looking into a subspace is that data points dis-
tributed uniformly in the full dimensional space could deviate
significantly from others when examined in subspaces. This
is to say, the outlierness is amplified in a properly chosen
subspace. The danger of using the subspace approach is that
if not chosen properly, the difference between a potential
outlier and normal points may disappear altogether in another
subsapce.

A good number of subspace methods are recently intro-
duced [13]–[15]. We choose the Subspace Outlying Degree
(SOD) [14] to be applied to hydropower dataset, as the SOD
method seems not to rely on certain assumptions (such as
monotonicity), arguably restrictive yet commonly used in
other subspace approaches [13]. Steps of the SOD algorithm
are outlined below:
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• Compute the total variance (VAR) of the set of the
reference points as in (4):

V AR =

∑
p∈S

[
dist(p, µ)

2
]

Cardinality(S)
, (4)

where µ is the average position of the points in the
reference set.

• Compute the variance for each variable according to (5),
where µi is similarly defined:

vari =

∑
p∈S

[
dist(pi, µi)

2
]

Cardinality(S)
. (5)

• Create a subspace vector based on the following criteria
in (6), where d is the dimension of the original data
space and α is a constant, suggested to be 0.8 in [14].

vi =

{
1, if vari < α · V AR

d ,

0, otherwise.
(6)

• When vi is one, the corresponding variable is selected
to construct the subspace; otherwise, the corresponding
variable is skipped over.

• Finally, equation (7) calculates the SOD score as the
weighted distance between an observation q and the
subspace hyperplane created by the reference points of
q, denoted by H(S). The weight, denoted by ‖v‖, is the
number of dimensions used to construct the subspace.
If q deviates a lot from the reference set (shown as a
higher SOD score), it is more likely to be an outlier.
Reference set members are selected from the set of
nearest neighbors which shares the most neighborhood
similarity with q.

SOD(q) =
dist(q,H(S))

||v||
. (7)

C. Feature Bagging for Outlier Detection

The subspace approaches handle the high dimensionality
but one of the key limitations is that if the subspace is
wrongly selected, the resulting subspace could make the
outlier detection harder or even not possible anymore. One
approach to avoid being trapped in the wrong subspace is
an ensemble based approach, known as feature bagging for
outlier detection (FBOD) [16], where at each iteration a
subset of the feature space will be drawn randomly from
a uniform distribution to determine the outlier scores for
observations. After the completion of a pre-selected number
of iterations, cumulative scores from these iterations will
be counted as the outlier score for observations. In each
iteration, a single outlier detection technique or multiple
techniques can be utilized. In this work we use LOF as the
only method and repeat it over iterations. We have already
argued that any density and distance based method including
the traditional LOF algorithm may suffer from the curse of
dimensionality as it considers the entire feature space. By
using LOF within FBOD is in a sense the combination of
density and subspace based methods, which hopefully allows
us to take full advantage of both.

IV. EXPERIMENTAL SETTINGS & RESULTS

For applying LOF method we need to select the value
of k, which is the cardinality of MinPts. According to the
suggestion of [6], we first set a lower bound and an upper
bound for k. Then, we determine the outlier scores for every
observation for all k values in between the bounds. For each
observation, we choose the maximum of these scores as its
final outlier score. The lower bound of k is chosen according
to the suggestion in [6], which is 10, while the upper bound
of k should be selected greater than the size of a hypothetical
cluster of outliers that could form together. This can be done
by observing the longest running streak of clustered events
in a dataset. After consulting with the domain expert and
data owner, this upper bound is set at 20. The first column
of Table II contains the 30 top time stamps which have been
identified as possible outliers from the LOF scores.

To apply the SOD method, we need to select the value of
k at first and then based on that, the number of reference
points. To maintain the comparability with LOF we choose
k = 15, which is the average of the lower and upper bound
of k used in the LOF method. Concerning a suitable number
of reference points, it should be smaller than k but too small
a value may render instability in computing the SOD scores.
We explore a few options and finally settle on 10. Below
10, the SOD scores are not stable. It means that from the
set of 15 nearest neighbors of any observation we have to
select 10 of them as reference points which share the most
similar neighbors if compared to the current observation’s
neighborhood. The second column of Table II contains the
30 top time stamps which have been identified as possible
outliers from the SOD score.

In the FBOD method, we use LOF as our outlier detection
technique and we run the algorithm for 50 iterations. In each
iteration, a subset of the feature space has been selected.
Finally, for each observation outlier scores are accumulated
from each iteration. The third column of Table II contains the
30 top time stamps which have been identified as possible
outliers from the FBOD score.

V. ANALYSIS OF RESULTS

The performance of the three methods are reasonably
consistent as 22 out of top 30 time stamps returned by these
methods as probable outliers are common (represented by
dark blue color in Table II). This similarity extends to 33 if
top 50 time stamps are considered and 55 if top 100 time
stamps are considered (events beyond top 30 are not shown
here to save space).

Another important insight is if we look closely at the
results of our applied methods in Table II, we find that
there are certain time chunks in a particular day (e.g.
September 14, January 11, 12 etc.) which are more prone to
outlier according to these methods. In some cases, specially
when we move out from the range of top 30 time stamps,
there are slight differences in the time stamps returned by
individual methods but they were very close (within 10-
50 mins range). The most possible explanation behind this
phenomena is outliers appeared in a small cluster. We have
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TABLE II
SUMMARY OF THE TOP 30 ANOMALIES RETURNED BY THE THREE

METHODS. BLUE COLOR EVENTS ARE COMMON IN ALL COLUMNS.

LOF SOD FBOD
1/12/2016 11:30 9/14/2015 8:00 1/12/2016 11:30
9/14/2015 13:00 1/12/2016 11:30 9/14/2015 8:00
9/14/2015 13:10 9/13/2015 19:00 9/13/2015 19:00
1/12/2016 11:20 7/4/2015 8:30 1/9/2016 18:50
1/9/2016 18:50 7/4/2015 8:20 9/14/2015 13:00
1/2/2016 21:10 9/14/2015 1:50 9/14/2015 2:00
9/14/2015 8:00 7/4/2015 5:40 1/2/2016 21:10
1/2/2016 21:20 1/11/2016 12:00 9/14/2015 13:10
1/9/2016 18:30 9/14/2015 13:00 1/12/2016 11:20
9/14/2015 8:10 10/3/2015 14:40 1/11/2016 14:40
9/13/2015 19:00 7/4/2015 5:50 1/2/2016 21:20
9/14/2015 2:00 10/13/2015 8:15 9/14/2015 1:50
1/11/2016 14:40 9/14/2015 13:10 1/9/2016 18:30
1/11/2016 13:50 11/2/2015 9:56 9/14/2015 8:10
1/11/2016 12:00 7/4/2015 6:30 9/16/2015 10:50
1/11/2016 13:00 7/4/2015 4:30 1/9/2016 18:40
9/16/2015 10:50 1/2/2016 21:20 1/11/2016 12:00
9/17/2015 11:30 9/14/2015 2:00 10/3/2015 14:40
10/3/2015 14:40 9/14/2015 8:10 1/2/2016 21:30
1/2/2016 21:40 7/4/2015 4:20 1/9/2016 18:00
4/16/2015 23:10 1/11/2016 13:30 4/16/2015 23:10
10/4/2015 3:10 1/2/2016 21:40 4/16/2015 16:00
10/13/2015 8:15 7/4/2015 4:40 1/2/2016 21:40
10/14/2015 23:35 9/16/2015 10:50 11/2/2015 9:56
10/14/2015 23:15 1/2/2016 13:30 3/7/2016 9:40
1/2/2016 21:30 1/11/2016 14:40 10/4/2015 3:10
4/16/2015 16:00 1/2/2016 21:10 3/11/2016 12:30
11/2/2015 9:56 1/12/2016 11:20 10/13/2015 8:25
1/11/2016 13:30 1/9/2016 18:50 10/13/2015 8:15
9/14/2015 1:50 1/11/2016 13:00 1/11/2016 13:30

already discussed that the working mechanisms of LOF
method and SOD method are completely different, whereas
FBOD method lies somewhat in the middle. But in spite
of their differences, they have returned similar results if
we consider the top 30 time stamps. The significance is
that using the multiple methods provide a strong cross
validation among one another; otherwise, it is difficult to
assess the validity of detection in an unsupervised learning
circumstance.

The third observation is that the SOD method returns
some of the time stamps from the 4th of July as outliers
whereas the other two methods do not return any of the
4th of July time stamps as outliers. We know that, with the
SOD method, it is possible to locate an outlier in a subspace
consists of even only one variable, which is not possible in
other two methods. So it is possible that those time stamps
from the 4th of July showed significant deviation in any
small dimensional subspace and thus not found by the other
two methods. This presents an interesting question promoting
the practitioners to look further into this specific cluster and
decide if the variables in that small subspace are mis-handled
(say, measurement errors) or if they are genuine outliers.

To find out which variables have more contribution to
these outliers, we decide to select all the common events
from the top 100 outliers identified by all three methods
and deem them the true outliers. We chose the cut-off value
as 100 after discussing with the domain expert. We find
the number of common outliers out of this 100 to be 55.
Assign the 55 events a response value of 1, and all other
data records in the dataset a response value of 0 (meaning
normal condition). As such, we convert the original un-
classed data into a two-class dataset on which we build
a classification and regression tree (CART) [17] using the
R package rpart with their default parameter values; the
resulting tree is shown in Fig. 3.

From this decision tree we can see that the variable air
pressure and delta oil temp - air temp of bearing F4 can
correctly classify 24 of these 55 common outliers based
on the right combination of their conditions. One such
condition is when the air pressure is greater than 945 mbar
and the difference between the oil temperature and the air
temperature of bearing F4 becomes less than 10.582 degree
Celsius, the generator almost surely behaves strangely, as the
condition leads to nine anomalous observations consistently.
This knowledge is useful for practitioners to do quick fault
diagnosis and alarm management during operation.

Fig. 3. Decision tree based on the top 55 anomalies found common from
all three methods.

Another analysis that resulted in an important finding was
to consider all the 100 anomalies found in the LOF model
and apply a decision tree model. We found the threshold
values for two important variables in the turbine system
which include the oil temperature and harmonics values for
bearing F4 as shown in Fig. 4. This was an important finding
because during the preventive maintenance operation of the
analyzed turbine, it was confirmed that bearing F4 needed
repair to avoid future damage or costly interruption of the
turbine operation to make the corrective action.

We have also tried to find out the important features
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Fig. 4. Decision tree based on the 100 anomalies found from LOF method.

corresponding to the classification of outliers and normal
observations using Random Forest based feature selection
method [18]. We have used the R package randomForest
with their default parameter values. According to our result,
the significant features include delta oil temp - air temp
bearing F4, delta oil temp - air temp bearing F3, delta oil
temp - air temp bearing F2, air pressure, oil temperature of
bearing F2 and F4, metal temperature of bearing F2, delta
metal temp - air temp bearing F2 and harmonics of bearing
F4. These variables need to be monitored closely during the
operation of the plant.

Furthermore, We trained a one-class SVM on the cleaner
subset of the data after removing the 55 common outliers
identified out of 100 in all three methods. For this, we used
the R package e1071 for training a SVM with radial basis
kernel function. In this setting, we need to specify the values
of one-class classification parameter, ν, and kernel function
parameter, γ, which are selected based on a 10-fold cross
validation as ν = 0.001 and γ = 0.01. This resulting one-
class SVM, when is applied to the whole dataset with the
55 outlier put back in, is able to separate all the presumed
normal condition data and the 55 outliers successfully.

VI. SUMMARY

A real life dataset received from a hydropower generation
plant. After pre-processing, three anomaly detection methods
are used to detect the anomalous observations which resulted
in similar anomalies. The validity of the anomalies detected
by the models is confirmed by the domain experts and
maintenance operators. Although not yet observable in the
physical system, the anomalies were observed during the
preventive maintenance operation of the turbine. Root causes
and threshold values for key attributes that contribute to
the anomalies are determined in the form of decision tree.
Critical variables leading to the anomalous observations are
identified. This learned knowledge helps practitioners to

monitor and diagnose the power plant during its operations.
A one-class SVM classifier is trained and can be used to flag
anomalies in future observations.
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