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Abstract— With the increasing availability of streaming data,
industries nowadays are striving for an automated online
anomaly detection algorithm that can analyze data stream
and detect anomalous patterns in real time. Such an online
algorithm should detect anomalies on the fly, without storing
all, or a very long stretch of, the historical data. It should be
able to update its control mechanism for anomaly detection
upon receiving new data. Moreover, the algorithm must work
in an unsupervised way; i.e., in the absence of class labeling
information a priori. These fundamental requirements limit
the application of traditional anomaly detection approaches
in streaming scenarios. In this paper, we introduce an online
anomaly detection method, based on an offline method recently
developed. The prototypical offline method is one of the new ap-
proaches that specifically handle the issue of nonlinear manifold
embedding in data spaces and use a minimum spanning tree to
approximate and capture the manifold structures, leading to a
much enhanced detection ability. The primary objective of this
paper is to make the offline method applicable to streaming
data and address the aforementioned unique online issues. We
elaborate the steps of our proposed approach by applying it to
a hydropower generation plant and demonstrating how it can
contribute to automation in that context.

I. INTRODUCTION

Anomalies are data points or a cluster of data points which
behave differently than their neighboring points or clusters
and their characteristics do not match with the expected data
distribution that represents the majority. Anomaly detection
can be tricky, as anomalies can be global, segregable from
the majority of data points, or they can be local, thus making
it harder to isolate them unless compared with an appropriate
group of neighboring points. It could be the abnormal value
of a single attribute or a combination of values from multiple
attributes that warn us about the presence of anomalies.
Oftentimes, we do not have any prior information about the
expected data distribution and we need to depend only on
the structure of the dataset to isolate anomalies.

Detecting anomalies using unlabeled data streams pushes
us into the territory of unsupervised learning and doing so
is not an easy task. Consider the example of a hydropower
plant, the real life process having motivated our work in
the first place. It is operated with turbine systems that
are instrumented with dozens of sensors. Each turbine has
functional areas such as several bearing systems, a generator,
etc. Sensors collect various types of data in real time such as
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temperature of oil inside the bearing systems, vibrations in
each functional areas and many more. In total, each turbine
collects more than 200 attributes from its sensors. This high
dimensional data stream is then stored in a central control
system and is available for evaluation in near real time.
To protect the health of components it is vital to identify
anomalies as they appear. But considering the number of
attributes, identifying anomalies using visual plotting is not
practical. Furthermore, as data streams arrive in real time,
examining them one by one manually is not a feasible
approach either. Unsurprisingly, a pressing need is to have
an automatic online detection technique that can flag the
appearance of potential anomalies as data is arriving.

The technical challenges of an online anomaly detection
approach come in two folds. The high dimensional nature
of the data stream poses the first set of challenges, because
using Euclidean distances, which is the most widely used dis-
tance metric in existing anomaly detection algorithms, does
not perform well in those cases [1]. Due to the noise aggre-
gation in high dimensional data spaces, pairwise Euclidean
distances become less differentiating for similar cases, and as
a result, the Euclidean distance based discriminative methods
may not be able to distinguish among the relative position
of data points accurately. The higher dimensional space is
more likely to embed a complicated structure thus leading
to a nonlinear manifold. In the presence of such complicated
space structure, the direct use of Euclidean distance between
two points does not represent their intrinsic distance; please
refer to the illustrative example in [2, Fig. 3]. The current
solution is to use a geodesic distance instead of Euclidean
distance in the presence of manifold structure to reflect more
accurately the distance between the data points. The tricky
part is that it is not straightforward to measure the geodesic
distance when one does not know the underlying structure.

This first challenge has been more or less addressed in the
form of an offline anomaly detection method in our recent
publication [3]. By “offline,” we mean that the historical data
are available in either its entirety or a large sufficiency to the
analysis algorithm, and that the analysis algorithm conducts
one-time retrospective analysis. The solution approach in
[3] is to devise a new similarity measure based on the
concept of minimum spanning tree (MST). MST [4], [5]
has the capability of approximating the geodesic distance
in the presence of an embedded nonlinear manifold using
the knowledge of neighboring points only. To implement the
said similarity measure, one needs to convert the data points
into a connected dense graph where each node represents
an original data point and the edges between any two
nodes represent the Euclidean distance between them. Then
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individual local MSTs are built for each node in the graph
using its neighboring points. The approach in [3] is based
on the local MST distance measures and is referred to as
LoMST. Empirical testing shows that LoMST outperforms
a set of 13 competitive methods on 20 testing datasets of
diversified sources.

Having (partially) addressed the first challenge, our at-
tention now turns to the second set of challenges, arising
from the streaming nature of the data. Traditional anomaly
detection algorithms detect anomalies through the compar-
ison of candidate data points with all observations in the
historical data set. However, the same cannot be done when
data are arriving in the streaming form, i.e., the data appear
as a single stream or in small batches. In streaming data,
an algorithm can only see the current batch and has limited
information about the past, because the algorithm cannot,
or does not want to, store all the previous data. Instead the
algorithm only “memorizes” a handful of the most recent
historical data, in order to avoid large storage requirements
or for other practical considerations. The offline LoMST [3]
indeed needs the knowledge of the nearest neighbors based
on the whole dataset. To reach a verdict about a current data
points, the offline method uses the information of all the past
and current data points; all these actions need to be avoided,
should the algorithm be made online compatible to handle
streaming data.

Instead of storing all past data points, a streaming algo-
rithm should presumably devise and make use of an indicator
variable that can summarize the common characteristics of
the past observations. The algorithm should embody a provi-
sion to continually update this indicator to reflect information
received via the arrival of new data, as well as update the
decision threshold that will be used for deciding in real time
whether an observation is an anomaly or not. All these are
precisely the goals of our research undertaking reported in
this paper, namely that we propose an online version of the
LoMST, referred to as online LoMST (O-LoMST), which
has the aforementioned online capabilities.

The rest of the paper unfolds as follows: In Section II,
we briefly summarize the related works in anomaly de-
tection. Section III describes our proposed online anomaly
detection approach in detail. In Section IV, we describe the
hydropower plant and the data generation mechanism, and
give a brief overview of the dataset. Section V presents the
results of the proposed method applied to the hydropower
dataset. Through a comparison with the offline LoMST, we
demonstrate that the O-LoMST method accomplishes the on-
line objective, without inadvertently sacrificing its detection
capability. Finally, we conclude the paper in Section VI.

II. LITERATURE REVIEW

Anomaly detection is a broad field. A great number of
works have already been done in this field. However, very
few of them can analyze high dimensional data streams
and thus cannot be applied in an online manner in their
current forms. These offline anomaly detection algorithms
can be categorized into four major groups, namely distance

and density based methods, clustering based methods, sub-
space methods and ensemble based methods. Distance based
methods considers a point as an anomaly if it lies too far
away from majority of the data points or its neighbors [6]–
[8]. Density based methods [9]–[11] consider the varying
clustering tendency of data points and label a data point as
an anomaly if the density around it is considerably lower
than the density around its neighbors. The clustering based
approaches [12] identify clusters at first and then label those
points as anomalies which do not belong to the regular
clusters or form a small and sparse cluster away from the
regular clusters. Ensemble methods [13] combine multiple
models of the same or different nature and then invoke
a committee to reconcile the outcomes of the individual
methods into a final detection.

All of these approaches use Euclidean distance to distin-
guish anomalies from normal data points and as a result,
underperform when the data embeds a manifold structure.
Researchers linked the substandard performance of these
approaches to high dimensionality and propose that the
investigation of anomalies should be carried out in relevant
subspaces rather than the original space. Subspace methods
[14], [15] undoubtedly made progress, but finding out the
right subspaces to explore is still a difficult problem to solve.

A number of online anomaly detection algorithms have
also been proposed recently. The first variety includes those
which are partially online, [16], [17] meaning that they have
an initial offline phase to learn about the regular (normal)
clusters and their characteristics, and then detect anomalies
online using the knowledge from the offline phase. The
online part is self adaptive and the control mechanism (e.g.,
cluster center) gets periodically updated according to the
changes observed in incoming data. The second variety
includes the online version of the subspace algorithms [18],
[19] which have been introduced to deal with the difficulties
associated with high dimensional data stream. There are
also online algorithms [20], [21] that use statistical tests to
detect anomalies in real time. All these online methods have
the same limitations as their offline counterparts, which is
that they do not have the provision to deal with data with
inherent nonlinear manifold structure. That is why we believe
that converting the offline LoMST still warrants the research
effort. The resulting online method is to be explained in the
sequel.

III. O-LOMST: AN ONLINE LOCAL MST BASED
ANOMALY DETECTION ALGORITHM

Let us start off by recapping the concept of MST. Consider
an undirected graph G = (V,E), where V represents the
collection of nodes and E represents the collection of edges
connecting these nodes pairwise. For each edge e ∈ E, a
weight is associated with it. A minimum spanning tree is a
subset of the edges in E that connects all the nodes together,
without forming a cycle and with the minimum possible
total edge weight. For more clear understanding, consider
the example in Fig. 1, left panel, where there are 5 nodes
and 8 edges connecting them in total. Each of the edges
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has a unique edge length associated with it. If we want to
connect all the nodes using the given edges without forming
a cycle, there could be many such combinations with only
one having the minimum total edge length, which is shown
in the right panel. The edges in a thick black line represent
the selected 4 edges from the 8 total edges. The resulting
graph consists of the black edges only in the right panel is
the MST for the initial connected graph.

Fig. 1. Formation of a MST: the left panel is the initial graph, and the
thick black edges form the minimum spanning tree in the right panel.

To construct the minimum spanning tree, at first we need
to convert our attribute matrix into a graph object where
each node represents a single data point and the connected
edge between any two nodes represent the Euclidean distance
between them. The MST is created out of this complete graph
and is a sparse version of the original dense graph object.
The distance between a pair of immediately connected nodes
is still Euclidean, but the distance between a general pair of
nodes is not. Rather, it is the summation of many small-step,
localized Euclidean distances hopping from one data point
to another, which converges to the geodesic distance as more
data points are included.

To construct the regular, offline version of MST, one uses
all the data points, which is not possible in the presence of
the streaming data. In streaming scenarios, data points arrive
either as a single entity or in small batches. Meanwhile, we
do not want to store all the previous data points in memory
while building and updating the MST, in order to be more
efficient and save storage space.

To solve this problem, we use a local version of the
regular MST in a streaming fashion. By “local MST,” we
mean that instead of using all the data points, the MST is
to be constructed using the nearby points only. To facilitate
the subsequent presentation, let us define some notations
first. Denote each streaming batch by the index, j, and their
size as Bj . Denote by tj the data point that is currently
under evaluation. To reduce the search space for neighbors,
we choose to use a fixed-size candidate set of neighbors.
It consists of the data points which are in close temporal
vicinity to the time stamp under consideration, decided by an
user controlled parameter, c. Given a c, the closest available c
data points with respect to tj form the candidate set. Certain
care needs to be taken to locate the c closest neighbors.
Although the neighbors are generally in the ±c/2 range

around tj , a temporal truncation can make the data spread
asymmetrically before and after tj . For example, suppose
that we are evaluating the 50th time stamp from a batch that
runs the time stamp index from 1 to 100 and c = 30. Then
the time stamps ranging from 51–65 and 35–49 form the
candidate set. But if the batch size is 60, meaning that the
time stamp index runs from 1 to 60, then the time stamps
51–60 and 30–49 would form the candidate set instead.

Given a candidate set, Qtj , a neighborhood search is then
conducted to find the k nearest neighbors of tj , such that,
‖tj − x1‖2<‖tj − x2‖2<· · ·<‖tj − xk‖2<· · ·<‖tj − xc‖2,
where x1, . . . , xk, . . . , xc ∈ Qtj . We refer to the k nearest
neighbors (NN), i.e., from x1 to xk, as the temporal k-NN
of tj and store them in Ntj , i.e., Ntj = {x1, x2, . . . , xk}.

After identifying the neighbors, we use those neighbor
points along with tj to build a dense graph object, i.e., fully
connected graph. To create the MST from this dense graph,
there are many different approaches. We choose to use Prim’s
algorithm [22] due to its effectiveness in the case of the
fully connected graph. The algorithm selects a total of k
edges from a collection of

(
k+1
2

)
edges stored in Etj =

{etj ,x1
, · · · , etj ,xk

, ex1,x2
, · · · , ex1,xk

, · · · , exk−1,xk
}, such

that sum of the length of the selected edges are minimum.
Here etj ,xk

denotes the edge between two data points, tj
and xk; other similar notations follow this convention. The
selected edges by the Prim’s algorithm are the edges in the
resulting MST, connecting tj and its neighbors. The total
length of this MST is stored in Wtj . This above step is then
repeated for the remaining data points in batch j.

After a local MST is constructed for all time stamps in
batch j, the connectedness of time stamp tj is then compared
with that of its neighbors, as expressed in (1), and the
difference is denoted by Ltj , such as

Ltj = Wtj −WNrtj
, (1)

where WNrtj
is the average of the total tree length associated

with data points, other than tj , in Ntj . This comparison
score, Ltj , is to be used for the final anomaly evaluation.

The mean and standard deviation (SD) of all the com-
parison scores in a particular batch will be calculated,
respectively, using (2) and (3), as:

μj =
1

Bj

Bj∑
tj=1

Ltj . (2)

σj =

√√√√ 1

Bj

Bj∑
tj=1

(Ltj − μj)2. (3)

These batch-specific mean and SD scores will be used to
update the overall mean and SD from earlier batches, using
the formula in (4) and (5), respectively, upon receiving new
observations. Here μold and σold is the mean and SD value
that are available to us prior to seeing the observations in
the j-th batch.
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μnew =
1∑j

i=1 Bi

[
Bj · μj +

j−1∑
i=1

Bi · μold

]
, (4)

σ2
new =

1∑j
i=1 Bi

[
Bj · σ2

j +

j−1∑
i=1

Bi · σ2
old

]

+

∑j−1
i=1 Bi ·Bj

(
∑j

i=1 Bi)2
· (μold − μj)

2.

(5)

To reflect any major change in the data generation process,
(e.g., seasonal changes, maintenance operations, installation
of new equipment etc.), we choose to divide the detection
process into blocks and restart the mean and SD update
process at the beginning of each block. The duration of each
block can be selected by the domain expert based on the
process under consideration. To decide on whether a time
stamp is an anomaly or not, we use μnew±3σnew, the typical
3-sigma control limits, as the threshold. If Ltj is greater than
the threshold, the corresponding tj is marked as an anomaly.
After a batch of streaming points are evaluated, the mean and
SD scores will be updated and the same procedure will be
repeated on the next available batch. Once all the batches
from a block is completed, the detection process will restart
again from the next block.

For a clear understanding, the algorithm steps are summa-
rized in Algorithm 1.

IV. HYDROPOWER DATASET

To test our proposed streaming algorithm, we used a
dataset generated from a hydropower plant. A typical hy-
dropower plant is divided into several functional areas such
as turbines, generators, bearing etc. Each area has many sub
components and they are all equipped with smart sensors.
These sensors across different functional areas continuously
record the status of the machines and send them to the central
control system. The time stamps are typically reported in 10
minutes of interval in each day. The common practice is that
whenever a plant personnel suspects a possible malfunction,
he/she extracts the data for a particular functional area and
analyzes it manually to find the anomalies.

We received a total of seven months worth of data
from five functional areas in a hydropower plant. First, we
combine them into one .csv file for the ease of analysis.
Initially there were 9,508 observations (rows in a data table)
and 222 variables (columns in the data table). Variables
include different temperatures, pressures, vibrations, power
generated, ambient temperature etc. We did some basic data
cleaning steps on the combined data file and find some
obvious errors in the data collection process; please refer to
our earlier report [23] for details. After getting rid of some
of the time stamps in the preprocessing step, the number
of observations came down to approximately 9,200. The
initial analysis also gave us an indication about the clustering
tendency in the data and the presence of local anomalies.
The reduced dataset remains high dimensional and has 222
attributes.

Algorithm 1: O-LoMST algorithm for anomaly de-
tection

Input : Block size, Z, streaming batch size, Bj in a
block, number of candidate for neighbor
selection, c, number of temporal neighbors,
k

Output: List of anomalous time stamps from batch
j, denoted as aj

1 for each block of size Z do
2 Initialize μ and σ;
3 for each streaming batch j do
4 for each time stamp t ∈ batch j do
5 Form a set of candidate temporal

neighbors, Qtj ;
6 Determine the k nearest neighbors and

save them in Ntj ;
7 Construct a local MST using time stamp

tj and its neighbors in Ntj ;
8 Calculate the total length of the resulting

MST, Wtj ;
9 Calculate the mean, WNtj

, of the total
length of the local MSTs associated with
all neighbors in Ntj ;

10 Calculate the LoMST score for tj as Ltj

= Wtj − WNtj
;

11 end
12 Calculate the mean, μj , and SD, σj , of the

LoMST scores;
13 Update the overall mean, μ, and SD, σ;
14 List the time stamps as anomalies if Ltj ≥ μ

+ 3σ and store them in aj ;
15 Store the recent c/2 time stamps of batch j

and discard others;
16 end
17 end

V. EXPERIMENTAL SETTINGS & ANALYSIS OF
RESULTS

In order to evaluate the performance of the proposed ap-
proach for streaming data, we pass the time stamps from the
hydropower dataset in small batches to mimic the streaming
scenario. We choose a fixed batch size, B = 100 and a
block size, Z = 7000, meaning that in total there are 92
batches divided into 2 blocks to cover all of the time stamps.
Selecting a suitable value for the neighborhood parameter, k,
is not an easy task. This value is dependent on the size of
the clusters present in the system. Ideally, we should select
a value which is larger than a potential anomalous cluster
but smaller than the regular cluster. After consulting with
the our data provider and the domain expert, we have tried
three different options, i.e., k = 15, 20, 25. For the temporal
neighborhood size, c, we settle on the set of 50 candidate
time stamps, i.e., c = 50, which is a half of the batch size.

After choosing these algorithmic parameters, we have
applied our online detection method to all 92 batches and
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detected a total number of 207 anomalous data points. The
anomaly detection procedure regarding a particular batch
is shown in Fig. 2. After each streaming batch, analysts
can carefully evaluate the anomalies detected, pinpoint the
root cause of these anomalies and take proper actions if
necessary. Once we know the anomalies, we can follow up by
employing a supervised classification technique that connects
the anomalous outcomes with a specific combination of
variable conditions and then establishing a set of rules for
future anomaly detection; an example of such is given in [3].
We suggest the practitioners to stop the entire process if they
detect too many anomalies, e.g., more than 60% in a batch.
Because too many anomalies signal a major change in the
process. Consequently operators should carefully examine
the process for any major malfunction.

Fig. 2. Anomaly detection in a streaming batch

To save space, we report the top 100 anomalies, according
to their LoMST scores (the bigger the score, the more likely
it is an anomalous). We choose the top 100 anomalies so
that we can compare them with the results of other anomaly
detection methods from our earlier works [3], [23], including
the offline version of LoMST, local outlier factor (LOF) [9],
and subspace Outlying Degree (SOD) [14]. The detection
outcomes by using, respectively, the aforementioned four
approaches are summarized in Table I. Due to the space
limitation, we skip some rows in the table. We observe that
findings from the online LoMST are very similar to those
by the offline LoMST, which substantiates the success of
the online LoMST approach. The findings of other three
approaches are taken from our earlier work [3]. As this is
an unsupervised problem, we do not have the luxury to have
a training set containing a mix of normal and anomalous
values. The only way to verify the sanity of the outcome
is to ask the domain expert and the operator of the system
to double check. They can analyze the detected anomalies
one by one, inspect the particular components in the plant,
and feedback to us with their understandings. We consider

TABLE I
SUMMARY OF THE TOP 100 ANOMALIES RETURNED BY THE FOUR

APPROACHES.
O-LoMST LoMST LOF SOD
4/16/2015 23:10 4/16/2015 16:00 4/16/2015 16:00 7/4/2015 0:00
7/4/2015 4:20 4/16/2015 23:10 4/16/2015 23:10 7/4/2015 4:20
7/4/2015 4:30 7/4/2015 4:40 9/13/2015 7:00 7/4/2015 4:30
7/4/2015 4:40 7/4/2015 4:50 9/13/2015 19:30 7/4/2015 4:40
9/13/2015 19:00 7/4/2015 5:00 9/13/2015 19:40 7/4/2015 5:30
9/13/2015 21:40 7/4/2015 5:20 9/14/2015 0:40 7/4/2015 5:40
9/14/2015 0:40 7/4/2015 5:30 9/14/2015 1:00 7/4/2015 5:50
9/14/2015 1:00 7/4/2015 6:20 9/14/2015 1:10 7/4/2015 6:20
9/14/2015 1:10 7/4/2015 9:10 9/14/2015 2:00 7/4/2015 6:30
9/14/2015 1:50 7/4/2015 9:30 9/14/2015 2:10 7/4/2015 6:50
9/14/2015 8:00 7/4/2015 9:40 9/14/2015 8:00 7/4/2015 7:00
9/14/2015 8:10 7/4/2015 9:50 9/14/2015 8:10 7/4/2015 7:50
9/14/2015 8:20 7/4/2015 10:10 9/14/2015 8:20 7/4/2015 8:20
9/14/2015 8:30 7/4/2015 10:20 9/14/2015 8:30 7/4/2015 8:30
9/14/2015 8:40 7/4/2015 10:30 9/14/2015 8:40 9/13/2015 7:00
9/14/2015 8:50 7/4/2015 10:40 9/16/2015 10:50 9/13/2015 21:40
9/14/2015 9:00 7/4/2015 10:50 9/17/2015 11:30 9/14/2015 1:00
9/14/2015 9:10 7/4/2015 11:10 10/3/2015 14:40 9/14/2015 1:10
9/14/2015 9:20 7/4/2015 11:20 10/4/2015 3:10 9/14/2015 1:50
.................. .................. .................. ..................
9/15/2015 20:50 7/4/2015 13:50 10/13/2015 5:45 9/14/2015 8:00
9/16/2015 10:30 9/13/2015 7:00 10/13/2015 6:35 9/14/2015 8:10
9/16/2015 10:50 9/13/2015 19:10 10/13/2015 8:15 9/14/2015 13:05
9/16/2015 11:00 9/14/2015 1:00 10/14/2015 7:55 9/16/2015 10:50
9/17/2015 11:30 9/14/2015 1:10 10/14/2015 8:15 9/16/2015 11:00
10/3/2015 14:40 9/14/2015 8:00 10/14/2015 23:15 10/3/2015 14:40
10/4/2015 3:10 9/14/2015 8:10 10/14/2015 23:35 10/4/2015 3:10
10/4/2015 3:40 9/14/2015 13:20 11/2/2015 9:56 10/4/2015 4:20
10/4/2015 4:10 9/14/2015 13:50 1/2/2016 9:10 10/4/2015 4:30
10/4/2015 4:20 9/14/2015 14:10 1/2/2016 9:20 10/13/2015 5:45
10/4/2015 4:30 9/16/2015 10:50 1/2/2016 9:30 10/13/2015 6:35
10/4/2015 9:00 10/13/2015 8:15 1/2/2016 21:40 10/13/2015 8:25
.................. .................. .................. ..................
10/13/2015 5:25 10/14/2015 7:25 1/9/2016 6:50 10/14/2015 7:25
10/13/2015 5:35 10/14/2015 7:35 1/9/2016 18:00 11/2/2015 9:56
10/13/2015 5:45 1/2/2016 9:10 1/9/2016 18:10 1/2/2016 1:30
10/14/2015 7:25 1/2/2016 9:20 1/9/2016 18:20 1/2/2016 9:10
10/14/2015 7:35 1/2/2016 9:30 1/9/2016 18:30 1/2/2016 9:20
10/14/2015 7:55 1/9/2016 6:50 1/9/2016 18:40 1/2/2016 21:40
.................. .................. .................. ..................
1/9/2016 18:00 1/9/2016 18:40 1/11/2016 11:30 1/9/2016 6:50
1/9/2016 18:10 1/11/2016 1:30 1/11/2016 11:40 1/9/2016 18:30
1/9/2016 18:20 1/11/2016 11:50 1/11/2016 11:50 1/11/2016 1:30
1/9/2016 18:30 1/11/2016 12:00 1/11/2016 12:00 1/11/2016 11:30
1/9/2016 18:40 1/11/2016 13:00 1/11/2016 13:00 1/11/2016 12:00
1/11/2016 13:40 1/11/2016 13:50 1/11/2016 13:50 1/11/2016 13:50
1/11/2016 13:50 1/12/2016 11:20 1/11/2016 14:40 1/11/2016 14:40
1/11/2016 14:40 1/12/2016 11:30 1/12/2016 11:20 1/12/2016 11:20
1/12/2016 11:20 1/12/2016 11:40 1/12/2016 11:30 1/12/2016 11:30
.................. .................. .................. ..................

ourselves extremely lucky here as the domain experts confirm
the reasonableness of the detection outcomes, which was also
so reported in our earlier work.

If we look very closely to the anomalous time stamps,
we observe that anomalies from all four approaches have
similar patterns and they can be conveniently grouped into
some particular days. Even if the individual time stamps are
not exactly the same, they fall into the same group. We have
listed these anomaly prone days in Table II, and we note that
they are very similar irrespective of the detection methods
used. If we compare the performance of online and regular
LoMST approach, we can observe that, out of 11 anomaly
prone days, they share 9 of them. Despite the online features
employed by O-LoMST, for instance, using only the current
batch combined with summary statistics from prior batches,
the online algorithm does not seems to sacrifice the detection
performance too much. Comparing LoMST with LOF and
SOD, the online LoMST in fact outperforms offline LOF
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TABLE II
MOST ANOMALY PRONE DAYS ACCORDING TO THE FOUR METHODS

O-LoMST LoMST LOF SOD
April 16th April 16th April 16th July 4th
July 4th July 4th September 13th September 13th
September 13th September 13th September 14th September 14th
September 14th September 14th October 3rd October 3rd
October 3rd October 4th October 4th October 4th
October 4th October 13th October 13th October 13th
October 13th October 14th October 14th October 14th
October 14th January 2nd January 2nd January 2nd
November 1st January 9th January 9th January 9th
January 9th January 11th January 11th January 11th
January 11th January 12th January 12th January 12th

and SOD in terms of overall detection performance.
Finally, we would like to note that in the above compar-

isons, we only report the results under the parameter choice
of k = 15. We indeed generated results using k = 20 and
k = 25 but have not found any significant differences in the
results. To save space, we omit the presentation of results
under the other two choices of k.

VI. SUMMARY

The massive amount of data generated nowadays from
the interconnected network of sensors and machines calls
for real time processing due to storage limitations as well
as the need to take immediate actions when warranted.
Anomaly detection plays a vital role in many industries as
accurate and timely detection of anomalies can save us from
potential losses. Traditional anomaly detection algorithms
are predominantly offline and require an online conversion
to meet the real-time decision making needs. Our proposed
online anomaly detection method is based on an offline MST-
based detection method. But the online version entertains
a number of advantages, such as it uses only the current
batch of small number of observations, it summarizes in-
formation into the mean and standard deviation scores, it
has a provision to continually update the mean and standard
deviation scores to keep up with the underlying process,
and it updates the decision threshold, upon receiving the
new batch of observations, for deciding in real time whether
an observation is an anomaly or not. When the online
detection method is applied to a set of seven months of
data from a hydropower plant, it detected 9 out of 11 failure
prone days that were detected by using the offline detection
method. This demonstrates the feasibility and effectiveness of
online detection for handling streaming data. We believe this
effort is among the important first steps moving from offline
computation and detection towards the online paradigm.
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