
GUM: A Guided Undersampling Method to Preprocess Imbalanced
Datasets for Classification

Kisuk Sung1, W. Eric Brown2, Erick Moreno-Centeno3, and Yu Ding3

Abstract— In imbalanced datasets, where the majority class
has significantly more instances than the minority class, con-
ventional classification methods exhibit poor minority-class
detection performance because they tend to classify most
instances as majority instances. To address this problem, this
paper presents a general-purpose imbalanced-data preprocess-
ing method that combines two instance-selecting techniques to
obtain a clean and balanced set of training instances. The first
technique, ensemble outlier filtering, removes outlier instances
from both majority and minority classes. The second technique,
normalized-cut sampling, samples the majority class aiming to
preserve its distribution across the majority region. Our pro-
posed data preprocessing method uses these two techniques and
can be combined with any general classification methodology
on the sub-sampled data to construct a classification model.
Computational results show the proposed method outperforms
several widely used imbalanced-data classification methods.

I. INTRODUCTION

In an imbalanced dataset, the majority class has signif-
icantly more instances than the minority class. On such
datasets, conventional classification methods tend to perform
poorly because they are typically designed to minimize the
number of misclassified instances over all the training data.
In other words, conventional methods may have relatively
low misclassification rates when applied to imbalanced data,
even if they correctly classify very few of the minority in-
stances. This paper proposes a guided undersampling method
(GUM) for preprocessing imbalanced data to boost the
performance of subsequent classification. GUM first uses a
modified ensemble-based outlier-filtering technique based on
[1], which removes outliers from both minority and majority
classes, and then applies a new normalized-cut sampling
method, which uses normalized-cut clustering [2] to form
a majority-class sample aiming to preserve the distribution
across the majority region.

GUM is a new sampling method that outperforms al-
ternative methodologies. Specifically, this paper makes the
following contributions: (1) Our ensemble outlier-filtering
technique in GUM is specifically designed for imbalanced
data and thus achieves strong outlier detection performance
on both majority and minority classes. In particular, the
minority-class outlier identification and removal strategy in
GUM is a noteworthy contribution because few existing
approaches attempt to remove minority outliers. Moreover,

1Kisuk Sung* is with Samsung Life Insurance, Seoul, 06620, Korea
2W. Eric Brown* is with the Rawls College of Business, Texas Tech

University
3Erick Moreno-Centeno* and Yu Ding are with the Wm Michael

Barnes’64 Department of Industrial and Systems Engineering, Texas
A&M University, College Station, Texas, USA, emc@tamu.edu and
yuding@tamu.edu

our methodology utilizes the power of ensemble methods
to identify outliers; while other techniques identify minority
outliers using simple rulesets such as those incorporating
Tomek Links [3]. Despite the scarcity of approaches to
remove minority outliers, as Section III-A argues and Section
V demonstrates, removing minority outliers (in addition to
majority outliers) is important to obtain a high-performing
classification model. (2) The normalized-cut sampling in
GUM aims to obtain a subset of the majority instances
that preserves the distribution of majority instances across
the majority class region. To the best of our knowledge,
no previous undersampling-based classification method has
attempted to obtain such a “distribution-preserving” subset.

The remainder of the paper is organized as follows.
Section II presents a literature review of imbalanced-data
classification and widely used imbalanced-data preprocessing
approaches. Section III details the two instance-selecting
techniques that compose GUM. Section IV describes the
datasets and computational setup under which we test GUM.
Section V describes the numerical experiments and out-
comes. Finally, Section VI summarizes our undertaking.

II. LITERATURE REVIEW

Data preprocessing approaches to address data imbalance
can be categorized as sampling methods, synthetic-data gen-
eration methods, and outlier-removal methods.

Sampling methods balance the number of instances be-
tween the classes by oversampling minority instances and/or
undersampling majority instances. Oversampling increases
the number of minority instances by resampling the minority
instances with replication [4], [5]. Oversampling approaches
fail to address the fundamental issue (lack of minority
instances) because they simply append replicated instances
to the original dataset. Thus, the constructed classifier risks
over-fitting the repeated instances [6]. Undersampling de-
creases the number of majority instances by removing in-
stances from the majority class. For example, [6] randomly
undersampled the majority instances without replacement;
while [7] used weighted no-replacement undersampling with
greater weight on the majority class near the minority class.
Due to loss of majority class, undersampling techniques
might not construct an accurate classification model [4],
[8], [9]. Some researchers have used oversampling and
undersampling simultaneously [4], [5], [10]. To address the
aforesaid drawback of undersampling methods, some studies
undersample the majority class using clustering techniques
as a guide. For example, [11] aimed to obtain a majority class
sample consisting of more majority instances in the regions
where majority instances dominate minority instances. In

https://orcid.org/0000-0001-8493-983X
https://orcid.org/0000-0001-9079-5545
https://orcid.org/0000-0001-6258-5428

contrast, [12] designed an undersampling method where
majority instances near the class boundary are more likely
to be selected as sampled data. Despite the improved perfor-
mance, these cluster-based undersampling methods risk an
inaccurate classification model if the selected instances are
not sufficiently spread across the majority class region and
thus form a poor representative sample of the majority class.

Synthetic-data generation methods generate artificial
minority instances (i.e., minority instances different from
those in the original dataset). The synthetic minority over-
sampling technique (SMOTE) generates a synthetic data
instance for each minority instance between the selected mi-
nority instance and one of its minority-class neighbors [13].
Borderline SMOTE (BSMOTE) identifies minority instances
located near the class boundary and, for each such instance,
generates synthetic data instances using the SMOTE data-
generating process [14]. The absent data generator (ADG)
[15] relies on two criteria for creating synthetic minority
instances: (i) new data should be close to the boundary
between the majority and minority classes, and (ii) new data
should be sufficiently close to existing minority points.

Outlier-removal methods are also used in imbalanced-
data preprocessing. While the importance of outlier removal
is well known, to the best of our knowledge, there are
very few imbalanced-data-classification studies that iden-
tify/remove outliers from both the majority and minority
classes. Early outlier-filtering techniques used a single clas-
sifier to identify outlier instances. For example, in a seminal
paper, training instances that were not correctly classified by
a k-NN classifier were deemed as outliers [16]. Similarly,
[17] used a C4.5 classifier to identify and remove instances
whose class label differed from the class predicted on each
tree leaf. That said, some extreme methods remove all
minority data and resort to a one-class classification approach
[18]. The drawback of single-classifier methods is that they
implicitly assume that the classifier being used is the most
appropriate for the data. Because ensemble outlier-filtering
methods remove this assumption, they are more robust
than single-classifier methods [19]. Ensemble-based outlier-
filtering techniques use either different base classification
algorithms [19] or different subsets of the training set to
train multiple classifiers [1]. We note that general purpose
of anomaly detection methods (e.g., [20], [21]) can be used
for identifying the outliers. But the main purpose here differs
from anomaly detection.

One additional set of approaches that merit mentioning
are cost-sensitive methods. These techniques do not pre-
process the data but instead address the imbalance directly
by assigning asymmetric costs to misclassified majority and
minority instances. Specifically, the misclassification cost
of the minority class, Cminor is higher than that of the
majority class, Cmajor. A frequently used parameter within
cost-sensitive techniques is the so-called imbalance ratio
r := Cminor/Cmajor. For example, [22]–[24] used the
cost-sensitive approach within decision-tree classifiers and
[25]–[27] used it within support vector machines (SVM).
The main drawback of cost-sensitive techniques is that their

classification performance is sensitive to the cost ratio used
and finding the optimal cost ratio is challenging [5], [15].

III. PROPOSED GUIDED UNDERSAMPLING METHOD

GUM entails two algorithmic elements, detailed in the
subsequent subsections.

A. Ensemble Outlier-filtering Technique

As ensemble outlier-filtering techniques were not specif-
ically designed for imbalanced datasets, the base classifiers
in the ensemble perform poorly on minority instances. Thus
they misclassify most minority instances as majority in-
stances and mark them as outliers. The approach in [1] is a
step forward in addressing the data-imbalance problem. Still,
it has the shortcoming that there may be insufficient minority
instances in each subset when building the partition.

Our ensemble filtering addresses the aforesaid shortcom-
ing of the method in [1] with the following two simple
but critical modifications, which allow each training subset
in the ensemble to be balanced. First, our method sets the
number of classifiers in the ensemble to be (approximately)
equal to the imbalance ratio r and partitions the majority
class in r disjoint subsets. Second, each classifier in the
ensemble is trained using all minority instances and one
of the r majority-class partitions. Our modifications have
these advantages: they are computationally inexpensive, they
dampen the impact of class imbalance, and they leverage
the power of ensemble methods. Most importantly, our
improved technique demonstrates a strong outlier-detection
performance.

Given training data Dtrain = Dmaj ∪Dmin, with imbal-
ance ratio r = |Dmaj |/|Dmin|, our ensemble outlier-filtering
technique for imbalanced data works as follows (steps 3 and
4 are unchanged from the original method in [1]):

1) Partition Dmaj into r equally-sized subsets and build r
distinct training subsets; each composed of Dmin and
one of the partitions of Dmaj . Note that each training
subset is balanced.

2) Train r classifiers, each on a different training subset.
3) Predict the class of each instance in Dtrain using the

majority voting scheme.
4) Remove the outliers (instances whose predicted class

differs from their true class) from the training set.
In Step (2), one may choose any general-purpose classifier.

The objective of the outlier-filtering process is to construct
a classifier without bias from outliers. Note that our filtering
process removes outliers from both majority and minority
classes. Removing minority instances seems counter-intuitive
due to their scarcity. However, removing minority outliers
is critical to constructing an accurate classifier—perhaps
even more important than removing majority outliers, whose
adverse effects are dampened by the presence of all the other
numerous non-outlier majority instances.

We illustrate the impact of adequately removing minority
instances via the example in Fig. 1. Figure 1(a) plots the
original imbalanced data and the class boundary constructed
by a cost-sensitive SVM, whereas Fig. 1(b) shows the

Optimal Hyperplane

Minority Outlier

Majority Class Minority Class Support Vectors Size of Penalty of Slack
Variables (non-zero)

Optimal Hyperplane

(b) (a)

Fig. 1. Illustration of ensemble outlier-filtering procedure

minority-outlier filtered data and the similarly constructed
class boundary. Note that, due to the higher penalty used on
the misclassified minority instance, the single outlier biases
the boundary causing five majority instances to be misclassi-
fied. In contrast, Figure 1(b) shows that when removing the
minority outlier, the decision boundary correctly separates
the majority and minority classes.

B. Normalized-cut Sampling

As Section II argued, traditional undersampling methods
risk an inaccurate classification model due to the loss of
majority instances. Specifically, if the sampled majority
instances are not spread out over the majority class region,
the decision boundary could be incorrect near areas without
sampled instances. To address this problem, we propose
a new cluster-based undersampling method, normalized-cut
sampling, which undersamples the majority instances so
that the chosen instances aim to preserve the majority-class
distribution. Normalized-cut sampling first runs recursively
normalized-cut clustering [2] to group the majority instances
into a pre-specified number of approximately balanced clus-
ters. Then it forms the majority-class sample by including
the medoid (the instance with the smallest average distance
to all instances in the given cluster) of each cluster.

The n-dimensional data points are represented with an
undirected complete graph G = (V,E), where V is the set
of instances and E contains an edge between each pair of
instances. The edge weight between nodes i and j, wij , is a
measure of the similarity between instances i and j. Shi and
Malick [2] defined wij as:

wij = e−‖xi−xj‖2 , (1)

where xi and xj are n-dimensional data of instance i and j,
respectively. The clustering problem is formulated as a graph
partitioning problem that minimizes the following function:

Ncut(S, S̄) =
cut(S, S̄)

assoc(S, V)
+

cut(S, S̄)

assoc(S̄, V)
, (2)

where cut(S, S̄) is the sum of edge-weights between the
two partitions S and S̄ and assoc(S, V) is the sum of
edge-weights from nodes in S to all nodes in the graph G;
assoc(S̄, V) is similarly defined.

Our normalized-cut sampling method is built on top of
Shi and Malick’s normalized cut [2]. Given training data

Dtrain = Dmaj ∪ Dmin, our normalized-cut sampling
undersamples the majority instances so that the number of
sampled majority instances is the same as the number of
minority instances, as follows:

1) Construct G1 = (V,E): Assign all majority instances
to the node-set V and all node-pairs in V to the edge
set E; assign edge-weights with Eq. (1).

2) For k = 1, . . . , |Dmin| − 1 do
a) Bipartition the graph Gk using normalized-cut

clustering [2].
b) Construct a new undirected complete graph Gk+1

including only the instances in the cluster with
the largest cardinality (among the k + 1 clusters
formed so far).

3) Form a subset comprising the medoid of each cluster
and return this subset as the new and balanced training
set.

Our normalized-cut sampling has two desirable properties.
First, the new training set is balanced. Second, the sampled
majority set tends to preserve the density distribution of the
majority class. The first property follows since the sampled
data comprises the medoid from each cluster and the number
of clusters equals the number of minority instances. The
second property follows since high-density regions will have
more clusters than low-density regions and clusters have
approximately the same cardinality. The reason behind why
high-density regions have more clusters than low-density
regions is because instances within a cluster are similar, i.e.,
close to each other, whereas instances in distinct clusters are
different, i.e., far from each other.

C. Implementation of GUM

While GUM can work with any general-purpose classifier,
here we use SVM as the base classifier. SVM has several
properties that make it a competitive choice as base classifier.
Specifically, SVM is a strong-performing method in its own
right, can be straightforwardly modified to include cost
sensitivity, and has paired well with other data preprocess-
ing techniques in the past. The procedure outlined below
describes how GUM is implemented and paired with SVM.

1) Given training data Dtrain = Dmaj ∪ Dmin with
imbalance ratio r =

|Dmaj |
|Dmin| , use our ensemble outlier-

filtering technique (with SVM as the classifier in our
filtering technique’s second step) to obtain the outlier-
filtered training data, D′train = D′maj ∪D′min.

2) Apply to D′train normalized-cut sampling, returning
D′′maj , which is the spread-out sample of D′maj .

3) Apply the SVM algorithm on the balanced data D′′maj∪
D′min to construct the classification model.

IV. EXPERIMENTAL DESIGN

This section describes the experimental setup under which
we analyze the performance of GUM on 11 datasets and
compare it against five commonly used imbalanced-data
classification approaches. To make a fair comparison and
because our purpose is to compare the data preprocessing

techniques rather than the base classifier, we used SVM
(using a radial basis function as the kernel function) as
the base classifier for all methods. For each dataset and
classification method, we used cross-validation with stratified
sampling to determine the kernel-width parameter, the cost
ratio between the margin penalty, and the total sum of the
slack variables. All methods, including ours, were imple-
mented in the LIBSVM tool package in MATLAB [28].

A. Methods in Comparison

GUM is compared against the following five classifica-
tion methods: the raw-data base classifier, cost-sensitivity,
random-undersampling, SMOTE, and BSMOTE. The imbal-
ance ratio of a given original dataset is denoted as r hereafter.

Raw-data SVM (Raw) is the traditional SVM [29] applied
directly to the raw data. Cost-sensitive (CS) SVM is a tradi-
tional SVM but setting its cost ratio, Cminor/Cmajor, equal
to r. Random-undersampling (Rand) randomly undersamples
the majority instances to obtain a balanced dataset and then
applies a traditional SVM on the sampled data. SMOTE and
BSMOTE were explained in the literature review section.
For both SMOTE and BSMOTE, sufficient synthesized data
is generated to achieve a balanced data set; this new balanced
data set is then used to train a traditional SVM classifier.

B. Performance Measure

We use the area under the curve (AUC) measure of the
receiver operating characteristic (ROC) plot [30]. AUC is a
well-established metric to evaluate models in the imbalanced-
data classification literature. Indeed, according to some re-
searchers, AUC (and related techniques) are more appropri-
ate than error rates to measure model success in the context
of imbalanced data and disparate error costs (see e.g., [13],
[14], [23], [30]).

The ROC curve is created by plotting each
(False alarm, Detection power) point for the test
data at various threshold settings, where false alarm is
the false positive rate and the detection power is the true
positive rate. After plotting the ROC curve, the AUC is
computed by measuring the area under the curve. A higher
AUC implies better performance.

C. Datasets

All of the base datasets used in this study have the follow-
ing important characteristics: (1) they are open to the public
(all are from the UCI Repository [31]); (2) they are widely
used in previous imbalanced-data classification studies; and
(3) the AUC obtained from the raw-data SVM on the dataset
with an imbalance ratio of 5 was less than 0.95. This third
characteristic is important because it is very difficult to ac-
curately discriminate the methods’ performances on datasets
that are relatively easy even for the naive raw-data SVM.
Table I lists the 11 base datasets used in this study. Since
some of the base datasets are not particularly imbalanced
and all have different imbalance ratios, we generated our
test datasets as described next:

TABLE I
DATASET DESCRIPTION

Dataset Dim # of Inst. # of Maj. # of Min.
Australian 14 690 383 307
CMC 24 1473 1140 333
Ecoli 9 336 301 35
German 24 1000 700 300
Glass 9 214 197 17
Haberman 3 306 225 81
Heart 13 270 150 120
Liver 6 345 200 145
Pima 8 768 500 268
Vehicle 18 846 634 212
Yeast 9 1484 1055 429

1) In order to be able to measure the methods’ clas-
sification performances on datasets with comparable
imbalance ratios, we created four imbalanced datasets
(with imbalance ratios of 5, 10, 20, and 30, resp.) from
each base dataset. This gives a total of 44 datasets.

2) In addition, to minimize any effect from the random
sampling used to generate the 44 datasets, we repeated
the above procedure 10 times for each dataset-ratio
pair. Hereafter, these random datasets are referred
to as repetitions. Altogether we generated 440 total
repetitions (10 repetitions of each of the 44 datasets).

V. EXPERIMENTAL RESULTS

A. Performance Analysis of GUM

Table II lists the AUC obtained by each classification
method on each dataset. The AUC values reported in Table
II are the average AUC over the 10 repetitions, each ob-
tained via fivefold cross-validation with stratified sampling.
Values in bold-face denote the highest AUC for each dataset.
Notably, GUM attains the highest AUC on 30 out of the
44 datasets. Moreover, excluding the Liver and Glass base
datasets, GUM provides either the highest AUC or an AUC
close to the highest value.

To assess the statistical significance of the competitiveness
of different methods, we used the Friedman test, as revised
in [32] to compare multiple classification methods. The
Freidman test is a non-parametric statistical test for detecting
differences between rank data. The null hypothesis is that the
ranks of all classification methods are equivalent. If the null
hypothesis is rejected, we used the post-hoc test to determine
which classification method(s) have consistently a higher or
lower rank relative to others.

For each dataset (i.e., each row in Table II), we ranked the
classification methods in terms of the average of their ranks
(over the 44 datasets), hereafter referred to as the average
AUC rank; the lower value, the higher rank. Notably, GUM
has the lowest average AUC rank value (1.89) among all
classification methods. Figure 2 shows the Friedman test for
statistical significance with the Nemenyi post-hoc analysis.
The average AUC rank of each method is denoted with
a triangle. The critical difference range obtained by the
Nemenyi post-hoc analysis is depicted with the horizontal
line segments. In this analysis, two methods are deemed
significantly different when their critical difference ranges

TABLE II
AUC OF GUM AND ALTERNATIVE METHODS ON EACH DATASETS.

Dataset
Base Imbalance Raw CS Rand SMOTE BSMOTE GUMDataSet Ratio
Australian 5 0.911 0.904 0.908 0.880 0.886 0.915

10 0.889 0.893 0.898 0.848 0.870 0.915
20 0.735 0.839 0.885 0.813 0.838 0.909
30 0.682 0.815 0.889 0.808 0.809 0.901

CMC 5 0.630 0.700 0.701 0.631 0.642 0.711
10 0.577 0.670 0.690 0.589 0.604 0.699
20 0.570 0.622 0.660 0.594 0.585 0.691
30 0.568 0.595 0.662 0.605 0.592 0.673

Ecoli 5 0.937 0.947 0.931 0.889 0.908 0.937
10 0.924 0.943 0.938 0.871 0.896 0.939
20 0.785 0.930 0.934 0.849 0.879 0.939
30 0.700 0.915 0.918 0.792 0.873 0.929

German 5 0.734 0.696 0.764 0.670 0.678 0.770
10 0.695 0.669 0.751 0.666 0.689 0.757
20 0.679 0.626 0.700 0.672 0.685 0.731
30 0.633 0.587 0.656 0.659 0.661 0.716

Glass 5 0.780 0.820 0.677 0.809 0.779 0.712
10 0.720 0.815 0.676 0.819 0.765 0.704
20 0.578 0.710 0.650 0.713 0.676 0.650
30 0.572 0.682 0.603 0.705 0.633 0.616

Haberman 5 0.602 0.668 0.645 0.630 0.624 0.684
10 0.588 0.628 0.603 0.592 0.611 0.640
20 0.620 0.591 0.589 0.565 0.604 0.619
30 0.572 0.586 0.573 0.553 0.600 0.576

Heart 5 0.883 0.815 0.893 0.852 0.855 0.900
10 0.843 0.800 0.882 0.852 0.862 0.898
20 0.813 0.777 0.859 0.824 0.831 0.880
30 0.734 0.750 0.856 0.835 0.829 0.884

Liver 5 0.674 0.655 0.611 0.663 0.651 0.634
10 0.641 0.623 0.561 0.623 0.643 0.599
20 0.588 0.589 0.568 0.616 0.611 0.557
30 0.542 0.571 0.560 0.600 0.591 0.552

Pima 5 0.786 0.786 0.828 0.724 0.729 0.828
10 0.682 0.758 0.798 0.709 0.720 0.812
20 0.660 0.726 0.797 0.705 0.714 0.809
30 0.636 0.675 0.784 0.682 0.695 0.799

Vehicle 5 0.858 0.808 0.796 0.776 0.778 0.836
10 0.791 0.781 0.754 0.747 0.758 0.788
20 0.653 0.699 0.697 0.718 0.713 0.742
30 0.641 0.656 0.666 0.720 0.717 0.728

Yeast 5 0.706 0.756 0.782 0.671 0.679 0.785
10 0.641 0.738 0.770 0.660 0.669 0.779
20 0.621 0.702 0.759 0.642 0.660 0.772
30 0.597 0.674 0.733 0.625 0.651 0.768

do not overlap. The Friedman statistic χ2
F is 57.68, and thus

the null hypothesis is rejected with p-value 3.67 × 10−11.
Moreover, the post-hoc Nemenyi analysis (see Fig. 2) asserts
that the average AUC rank of GUM is significantly higher
than that of all tested methods (lower value / higher rank).
This analysis suggests that GUM substantially outperforms
the other five imbalanced-data methods when using SVM as
the base classifier.

B. Minority Overlap Index

From Table II, it is evident that GUM failed to outperform
most methods on two datasets: the Liver and Glass base
datasets. While it is not surprising that no method consis-
tently outperforms all others, it is helpful to understand the
circumstances under which a method works well. For this
reason, this section introduces the concept of minority over-
lap index, which quantifies the proportion of the minority-
class region that falls within the majority-class region. We
further argue that GUM’s performance lags in datasets where
the minority overlap index is exceptionally high.

To measure the minority overlap index empirically, we
use the following procedure: (1) Identify the class boundary
(and thus the region) of each class using a one-class SVM

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

GUM

BSMOTE

SMOTE

Rand

CS

Raw

1.89

3.73

4.27

3.14

3.39

4.59

Fig. 2. Post-hoc analysis on the ranks of GUM and alternative methods.

classifier. In this study, we used the one-class classifier in
[33] with parameter ν = 0.5. (2) Calculate the empirical
minority overlap index by counting the number of minority
instances inside the intersection of the majority and minority
classification regions and dividing this number by the num-
ber of minority instances inside the minority class region.
Effectively, this calculation empirically evaluates the ratio of
the volumes of the area where the regions overlap and the
minority region.

0 0.2 0.4 0.6 0.8 1

Empirical Minority Overlap Index

0

1

2

3

4

5

6

R
a
n
k
 o

f
G

U
M

Australian
CMC

Ecoli

German

Glass

Haberman

Heart

Liver

Pima
Vehicle

Yeast

Fig. 3. Average AUC ranks of GUM vs. the empirical minority overlap
index for each of the 11 base datasets. GUM shows limited performance in
the datasets where the minority overlap index is above a certain threshold.

For each dataset, Figure 3 graphs the rank of GUM
(averaged over the 4 imbalance ratios) versus the empirical
minority overlap index. Notably, GUM is either the best or
the second-best method in all but the liver and glass datasets.
These two datasets have extremely high minority overlap
indices (0.93 and 1, respectively), while all other datasets
have indices less than 0.9. This analysis suggests that GUM
performs poorly only when the empirical minority overlap
index is very high (≥ 0.9); in which case GUM should
be applied with caution. Otherwise, when the empirical
minority overlap index is below 0.9, GUM performs highly
competitively.

VI. CONCLUSIONS

This work presents GUM, a new data-preprocessing
method for imbalanced-data classification. The performance
of GUM highlights the importance of two findings regarding
imbalanced-data classification. First, outlier detection and re-
moval from both classes are crucial for handling imbalanced
data. In particular, the strong performance of GUM suggests
that the relative novelty of our ensemble outlier-filtering
method removing minority outliers is noteworthy. Second,
researchers understand the importance of selecting represen-
tative subsets of data when undersampling the majority class.
However, the issue of how best to attain this goal remains
under debate. Our normalized-cut sampling method, which
aims to select a majority class subsample that preserves the
majority distribution, is intuitive and performs strongly.

There is a particular setting where GUM does not perform
as well as its competitors. Specifically, GUM’s performance
lags when a substantial portion of the minority instances
fall within the majority class region (i.e., the herein defined
minority overlap index is high). Using this index, practition-
ers can apply GUM when its strength can be leveraged to
maximum effect. We plan to investigate this performance
lag in future research. Regardless, given the strong per-
formance of GUM across the datasets herein discussed,
this method should be strongly considered when addressing
binary imbalanced-data classification problems in the future.

VII. DISCLAIMER

This paper is based partially on the Ph.D. dissertation of
the first author at Texas A&M University, entitled “New Data
Mining Techniques for Social and Healthcare Sciences.”

REFERENCES

[1] S. Verbaeten and A. Van Assche, “Ensemble methods for noise
elimination in classification problems,” in Multiple Classifier Systems.
Springer Berlin Heidelberg, 2003, vol. 2709, pp. 317–325.

[2] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 8, pp. 888–905, 2000.

[3] I. Tomek, “Two modifications of CNN,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 7(2), pp. 679–772, 1976.

[4] A. Estabrooks, T. Jo, and N. Japkowicz, “A multiple resampling
method for learning from imbalanced data sets,” Computational In-
telligence, vol. 20, no. 1, pp. 18–36, 2004.

[5] E. Byon, A. K. Shrivastava, and Y. Ding, “A classification procedure
for highly imbalanced class sizes,” IIE Transactions, vol. 42, no. 4,
pp. 288–303, 2010.

[6] D. Mease, A. J. Wyner, and A. Buja, “Boosted classification trees and
class probability/quantile estimation,” Journal of Machine Learning
Research, vol. 8, pp. 409–439, 2007.

[7] N. Japkowicz, “The class imbalance problem: Significance and strate-
gies,” in Proceedings of the 2000 International Conference on Artifi-
cial Intelligence (ICAI), 2000, pp. 111–117.

[8] M. Kubat and S. Matwin, “Addressing the curse of imbalanced
training sets: One-sided selection,” in Proceedings of the Fourteenth
International Conference on Machine Learning, vol. 97, 1997, pp.
179–186.

[9] X. Peng, X. Jin, S. Duan, and C. Sankavaram, “Active learning
assisted semi-supervised learning for fault detection and diagnostics
with imbalanced dataset,” IISE Transactions, online published, 2022.

[10] G. Weiss and F. Provost, “The effect of class distribution on classifier
learning: An empirical study,” ML-TR-44, Department of Computer
Science, Rutgers University, New Jersey, Tech. Rep., 2001.

[11] S.-J. Yen and Y.-S. Lee, “Cluster-based under-sampling approaches
for imbalanced data distributions,” Expert Systems with Applications,
vol. 36, no. 3, pp. 5718–5727, 2009.

[12] D. Wang and M. Shi, “Density weighted region growing method for
imbalanced data SVM classification in under-sampling approaches,”
Journal of Information and Computational Science, vol. 11, pp. 6673–
6680, 2014.

[13] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[14] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-SMOTE: A new
over-sampling method in imbalanced data sets learning,” in Advances
in Intelligent Computing. Springer, 2005, pp. 878–887.

[15] A. Pourhabib, B. K. Mallick, and Y. Ding, “Absent data generating
classifier for imbalanced class sizes,” Journal of Machine Learning
Research, vol. 16, pp. 2695–2724, 2015.

[16] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” IEEE Transactions on Systems, Man and Cybernetics,
vol. SMC-2, no. 3, pp. 408–421, 1972.

[17] G. H. John, “Robust decision trees: Removing outliers from
databases,” in Knowledge Discovery and Data Mining. AAAI Press,
1995, pp. 174–179.

[18] C. Park, J. Z. Huang, and Y. Ding, “A computable plug-in estimator
of minimum volume sets for novelty detection,” Operations Research,
vol. 58, pp. 1469–1480, 2010.

[19] C. E. Brodley and M. A. Friedl, “Identifying mislabeled training data,”
Journal of Artificial Intelligence Research, vol. 11, pp. 131–167, 1999.

[20] I. Ahmed, X. B. Hu, M. P. Acharya, and Y. Ding, “Neighborhood
structure assisted non-negative matrix factorization and its application
in unsupervised point-wise anomaly detection,” Journal of Machine
Learning Research, vol. 22(34), pp. 1–32, 2021.

[21] I. Ahmed, T. Galoppo, X. Hu, and Y. Ding, “Graph regularized
autoencoder and its application in unsupervised anomaly detection,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
online published, 2021.

[22] P. Domingos, “Metacost: A general method for making classifiers cost-
sensitive,” in Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1999,
pp. 155–164.

[23] M. A. Maloof, “Learning when data sets are imbalanced and when
costs are unequal and unknown,” in International Conference on Ma-
chine Learning (ICML)-2003 Workshop on Learning from Imbalanced
Data Sets II, vol. 2, 2003.

[24] C. X. Ling, Q. Yang, J. Wang, and S. Zhang, “Decision trees
with minimal costs,” in Proceedings of the Twenty-first International
Conference on Machine learning. ACM, 2004, p. 69.

[25] Y. Lin, Y. Lee, and G. Wahba, “Support vector machines for classifi-
cation in nonstandard situations,” Machine Learning, vol. 46, no. 1-3,
pp. 191–202, 2002.

[26] F. R. Bach, D. Heckerman, and E. Horvitz, “Considering cost asym-
metry in learning classifiers,” Journal of Machine Learning Research,
vol. 7, pp. 1713–1741, 2006.

[27] H. Masnadi-Shirazi and N. Vasconcelos, “Risk minimization, probabil-
ity elicitation, and cost-sensitive SVMs.” in International Conference
on Machine Learning (ICML), 2010, pp. 759–766.

[28] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.
ntu.edu.tw/∼cjlin/libsvm.

[29] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn-
ing, vol. 20, no. 3, pp. 273–297, 1995.

[30] A. P. Bradley, “The use of the area under the ROC curve in the eval-
uation of machine learning algorithms,” Pattern Recognition, vol. 30,
no. 7, pp. 1145–1159, 1997.

[31] M. Lichman, “UCI Machine Learning Repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[32] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[33] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribu-
tion,” Neural Computation, vol. 13, no. 7, pp. 1443–1471, 2001.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://archive.ics.uci.edu/ml

	Introduction
	Literature Review
	Proposed Guided Undersampling Method
	Ensemble Outlier-filtering Technique
	Normalized-cut Sampling
	Implementation of GUM

	Experimental Design
	Methods in Comparison
	Performance Measure
	Datasets

	Experimental Results
	Performance Analysis of GUM
	Minority Overlap Index

	Conclusions
	Disclaimer
	References

