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Abstract— This paper presents a robust calibration procedure
for a clustered wireless sensor network. The calibration problem
is often formulated as a parameter estimation problem using a
linear calibration model. For reducing or eliminating unwanted
influences of measurement corruptions or outliers on parameter
estimation, a robust regression estimator is a natural choice. In
order to solve a robust estimation problem more efficiently,
we utilize cluster structure in a network configuration and
decompose a large network into smaller subsystems that can be
solved much faster. To this end, we present two algorithms for
a robust calibration procedure. Two examples are presented to
illustrate how the proposed methods enable robust calibration
in a sensor network.

I. INTRODUCTION

Wireless technologies have changed the design and op-
eration of sensor networks. Equipped with micro-electro-
mechanical systems (MEMS), a wireless sensor node be-
comes small, mobile, and multi-functional. One of the most
significant changes caused by the wireless technologies is
the implementation of an ad-hoc networking, which refers to
those having a network topology that can change frequently
[1]. The frequent changes in the topology of an ad-hoc
network naturally call for a solution to the localization or
location tracking problem because knowing the positions
of individual sensors is often the pre-requisite to many
subsequent decision makings. Installing a global positioning
system (GPS) [2] could be a solution, but the heavy power
consumption and high equipment cost associated with a GPS
deem it impractical to install on every micro-sensor node. In
practice, GPS receivers may be used only on a small portion
of sensor nodes, known as anchor nodes, in a network
[3]. The location of a non-anchor node can be decided
and tracked relative to the anchor nodes; first, measure the
distances between itself and several anchor nodes, and then,
compute its location based on certain geometry principle
(e.g., hyperbolic trilateration, triangulation, and multilater-
ation).

One method of measuring the between-node distance is
to use two types of signals, a radio frequency (RF) one
and an acoustic one, which travel at different speeds. The
time difference of arrival (TDOA) between the two signals
is then used to calculate the between-node distance [4]. One
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problem associated with this distance measuring approach
is its inaccuracy. For example, RF signals are attenuated
by metal objects, and the speed of acoustic signals are
highly influenced by temperature and moisture [4]. The
experiments performed by Whitehouse and Culler [5] showed
that the error of a between-node distance measurement using
acoustic time of flight could be as large as 300% of the
true distance. To tackle this issue, Whitehouse and Culler [5]
recommended using a calibration procedure as follows. In an
off-line setting, the true distance between sensor nodes can
be measured by an independent and accurate means; then, a
mathematical model mapping the distance to the true distance
is established. The mapping model established adjusts the
distance measurements, during the service of sensor nodes,
to a more accurate estimation of the true distances.

Denote by du,v the measured distance between transmitter
u and receiver v, by yu,v the true distance, and by e the
random noise. Whitehouse and Culler [5] proposed a linear
calibration model such as

yu,v = αu + βv + γudu,v + δvdu,v + e, (1)

where αu and βv are the bias of a transmitter u and a receiver
v, and γu and δv are the gain of u and v, respectively.
Model (1) is only for a single pair of sensor nodes. For
a sensor network with a number of sensor nodes, we have
an aggregated version of Model (1) expressed in a matrix
format. Suppose we have n sensor nodes and each sensor
can work as both a transmitter and a receiver. Indexing
sensor nodes from 1 to n, the calibration parameters become
(α1, . . . , αn, . . . , δn). The number of the pairwise distances
among n sensors is n(n − 1)/2. Suppose m true distances
out of the n(n − 1)/2 pairwise distances are available and
p sensor nodes need to be calibrated. In a matrix form, the
calibration model for all sensor nodes becomes

y = Xθ + e, (2)

where the elements in y are the true distances but y is of
dimension 2m × 1 because each distance is used twice for
a sensor node serving as a transmitter and as a receiver, θ
is a p × 1 vector of unknown calibration parameters, X =
(xT

1 , . . . ,xT
2m)T is a 2m × p matrix having the measured

distances as some of its entries, and e is the vector of noises.
During a calibration phase when y and X are known, one
estimates the unknown parameters in θ; while during the in-
field service time, one will use the estimated parameter θ to
predict the between-node distances.

Given the linear model structure in (2), it comes as no
surprise that the least-squares (LS) estimation is the most
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popular method used for estimating θ; i.e.,

θ̂LS = (XT X)−1XT y. (3)

In fact, this is what Whitehouse and Culler [5] used in
their procedure. However, statistical research [6] has come
to the conclusion that the performance of an LS estimator is
sensitive to, and will deteriorate remarkably in the presence
of, model uncertainties and outliers. That is, when a distance
measurement du,v is accidentally corrupted, LS estimation
of the calibration parameters becomes far deviated from true
values.

Considering the critical role of the calibration parameters
in an ad-hoc network’s service, it is highly desirable to
improve its estimation accuracy and to make the calibration
process more robust with respect to environmental distur-
bances. For this reason, robust regression estimators [7]
attracted our attention.

Applying a robust estimator (a popular choice is the
least trimmed squares (LTS) estimator [8] due to its high
robustness) to the sensor network calibration is, however, not
a simple task. There are two major challenges, both related
to some unique features of wireless sensor networks. The
first is the scale of the system and the resulting computation
cost. A wireless sensor network could easily have hundreds
of sensor nodes, which results in a mathematical model
having hundreds even thousands of columns and rows in
the X matrix. The sheer scale of the sensor network causes
the application of an LTS estimator to be computationally
demanding.

The second challenge is related to the structure of a
wireless sensor network. Due to the limited power available
on individual sensor nodes, sensor nodes rarely communicate
with all other sensors in a network. Instead, the whole
network is usually grouped into a few clusters. A sensor
mainly communicates with the sensors that belong to the
same cluster. The between-cluster communications are lim-
ited to a few more powerful cluster heads or a few nodes
that are close to another cluster. The structure in the network
configuration typically causes the resulting X matrix to have
structures as well. The structure in the linear model must
be considered when devising a robust estimator (including
the LTS estimator); otherwise, the estimator may lose its
supposed robustness. Mili and Coakley [9] provided the
condition under which an LTS estimator can achieve the
highest robustness. In fact, Mili and Coakley’s condition is
actually a function of a previously defined degree of sensor
redundancy of a network (defined in [10]). Obtaining the
redundancy degree for a large network once again runs into
a computation issue. For a large sensor network, it is almost
impossible to compute the redundancy degree by using the
enumerative algorithm proposed in [10].

It turns out that the existence of a cluster structure in a
sensor network configuration actually provides the opportu-
nity to overcome the challenges faced by the application of a
robust estimator. Simply put, the existence of a cluster struc-
ture allows us to decompose the whole network into smaller
subsystems, of which the computation becomes much more

efficient. In fact, the decomposition algorithm presented
in [11] can compute the redundancy degree faster for a
structured linear model. Our first objective is to show how
the decomposition algorithm can be applied to a clustered
wireless sensor network.

During our investigation, we notice that for a large sensor
network, even the decomposition algorithm in [11] may fall
short of computing the degree of redundancy for the applica-
tion of an LTS estimator. Then, the strategy for a large scale
system is that, instead of computing the exact redundancy
degree, one may want to compute a lower bound. Research
in robust statistics tells us that using an overestimated
redundancy degree will cause a robust estimator to lose
its robustness, while using an underestimated redundancy
degree could still retain a certain level of robustness [9] .
Hence, our second objective is to compute a lower bound
of the redundancy degree by utilizing the cluster structure in
a network configuration. We will show that computing the
lower bound can be done much faster and the lower bound
provides considerable benefit in achieving robustness.

The remainder of the paper is organized as follows.
Section 2 provides introduction to the necessary concepts
regarding robust estimation. In Section 3, we show how the
decomposition algorithm is applied to a clustered sensor
network and how the lower bound of sensor redundancy
can be computed. Section 4 presents two examples of the
robust calibration procedure and compares the performances
of different approaches. Finally, we conclude the paper in
Section 5.

II. CALIBRATION USING ROBUST REGRESSION ON
LINEAR CALIBRATION MODEL

The popular LS estimator, which is given by (3), min-
imizes the sum of squared residual w2

i = (yi − xiθ̂LS)2

for i = 1, . . . , 2m. Suppose there exist corrupted dis-
tance measurements, which are deviated far from the true
distances; the corrupted distance measurements may have
substantial influence on the parameter estimation since the
residuals are “squared”. In other words, the LS estimator may
overemphasize the corrupted distance measurements and fail
to obtain an accurate estimation of the parameters. To re-
duce the influences of corrupted measurements, statisticians
proposed several estimators that minimize the sum of ρ(wi),
a symmetric function that has the global minimum at zero.
These estimators minimizing ρ(wi) are called M-estimators.

The M-estimators have certain limitation in its robustness.
If a corruption occurs at the so-called leverage point, the
corrupted data could still have considerable influence on the
M-estimators [6]. In order to achieve a higher level of ro-
bustness, Rousseeuw [7] proposed the LTS estimator, which
can eliminate the influence of some corrupted measurements.
The LTS estimator is given by

min
h∑

i=1

w2
(i), (4)

where h is called the trimming parameter, and w2
(1) ≤ w2

(2) ≤
. . . ≤ w2

(2m) are the squared residuals (yi − xiθ̂)2 for
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i = 1, . . . , 2m arranged in ascending order. Essentially, the
LTS estimator chooses a subset of measurements that are
likely not corrupted to fit the parameters, and the trimming
parameter h decides the size of the subset of measurements.

In order to evaluate the robustness of a robust estimator,
Donoho and Huber [12] introduced the concept of finite
sample breakdown point, which is defined in terms of the
data points Z and the estimator T (Z), where

• Z = {(x1, y1), . . . , (x2m, y2m)} (note that X =
(xT

1 , . . . ,xT
2m)T and y = (y1, . . . , y2m)T in model (2)),

and
• T (Z) denotes the estimator of θ; i.e., T (Z) = θ̂.

The breakdown point, which measures the robustness of the
estimator T for a given Z , is mathematically defined as

ε(T,Z) = min{ q

2m
: sup

Z′
||T (Z ′)− T (Z)|| < ∞},

where Z ′ is the set of data points, of which q data points in
Z are arbitrarily replaced. This mathematical definition says
that an estimator T is considered broken down when the
difference between the estimator based on a corrupted data
set Z ′ (i.e., T (Z ′)) and the estimator based on the correct
data set Z (i.e., T (Z)) can be infinite. In other words, q data
corruptions in Z ′ can have an arbitrarily large effect on T if
q/2m is greater than the breakdown point ε.

Researchers further proved that there exists an upper
bound of the breakdown point for the regression equivariant
estimators [7] [9]. Based on the theoretical results presented
in Mili and Coakley [9], the maximum attainable breakdown
point ε∗max can be expressed

ε∗max =
[η(X)/2] + 1

2m
, (5)

where [a] denotes the largest integer smaller than or equal
to a and η(X) is the minimum number of the row vectors in
X, whose removal from X makes the remaining matrix rank
deficient. This η(X) is also the degree of sensor redundancy
as defined in [10]. Note that ε∗max(Z) does not depend on
the estimator T . It is actually regarded as the maximum
value over all possible regression equivariant estimators for
a given Z . On the other hand, an estimator T that can attain
the maximum breakdown point ε∗max(Z) is called a high
breakdown point estimator.

For a better engineering interpretation, ε∗max is transformed
into an integer;

τmax(X) = 2m · ε∗max(Z)− 1 = [η(X)/2], (6)

and τmax(X) is labeled as the fault tolerance capability. The
τmax(X) benchmarks how many corrupted measurements
an estimator can tolerate before breaking down. Apparently,
τmax(X) is decided by the sensor network configuration that
is modeled by X.

A LTS estimator is a high breakdown point estimator and
attains the fault tolerance capability; thus, we choose to use
LTS estimation for the calibration problem. Construction of
an LTS estimator needs to consider the redundancy degree
η(X). In order to attain the maximum breakdown point (or

equivalently, the fault tolerance capability), Mili and Coakley
[9] stated that the trimming parameter h of an LTS estimator
should be in the range hL ≤ h ≤ hU , where hL =
[(4m−η(X))/2] and hU = [(4m−η(X)+1)/2]. Obtaining
η(X) is critical for properly using the LTS estimator and
determining its breakdown point. Incorrect η(X) could lead
to an improper choice of h and may cause a robust estimator
to lose its robustness. The next section discusses the method
to compute η(X) or a lower bound of it for calibrating a
clustered sensor network.

III. CALIBRATION REDUNDANCY AND ITS LOWER BOUND

The redundancy degree η(X) is also called calibration
redundancy in this paper. Mathematically, it was defined in
[10] as

η(X) = min{d−1 : there exists X(−d) s.t. r(X(−d)) < p}.

where r(·) represents the rank function of a matrix and
X(−d) is the reduced matrix after deleting d rows in X.
Deleting a row vector in X implies that we disregard the
distance measurement corresponding to the deleted row. To
that extent, the calibration redundancy η(X) indicates the
number of distance measurements that a sensor network
can disregard while still uniquely estimating the unknown
parameters θ.

The commonly used algorithm to compute this redundancy
degree is the enumerative rank testing algorithm [10], which
literally follows the definition of η(X) and tests the ranks
of all the reduced matrix X(−d). The computation of the
enumerative rank testing is proportional to

∑η(X)+1
d=1

(
2m
d

)
so that the computation time increases rapidly when η(X)
or 2m increases.

As mentioned in Section 1, a decomposition algorithm
developed in [11] can remarkably improve the computation
efficiency for evaluating the redundancy degree. In the rest
of this section, we first show how such a decomposition
algorithm can be applied to a clustered wireless sensor
network, and then we also devise a recursive procedure to
obtain a lower bound of the calibration redundancy for the
even larger systems of which the exact redundancy degree is
too expensive to compute.

A. Application of the decomposition algorithm

The basic idea of the decomposition algorithm in [11] is
as follows. The search for η(X) can be performed in two
stages if X can be transformed into a bordered block form
(BBF) such as 

A1

. . .
Ak

B1 . . . Bk

 . (7)

First, perform the rank testings of the original X matrix until
the number of the deleted rows d reaches a bound, and then,
perform the rank testings on the submatrices consisting of
Ai and Bi for i = 1, . . . , k, until the redundancy is found.
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Algorithm 1: Computing the calibration redundancy η of a matrix X.
Parameters: integer d ≥ 1.
Input: a calibration matrix X ∈ R2m×p, the border rows B of X,
and the row set and column set of blocks (R1, R2, . . . , Rk) and
(C1, C2, . . . , Ck).

Set d = 1;
Loop

While d ≤ 2|B| − 2
If there exist X(−d) such that r(X(−d)) < r(X)

η(X) = d− 1 and stop;
Set d = d + 1;

Loop
While d ≤ 2m− p + 1

If there exists X
(i)
(−d)

such that r(X
(i)
(−d)

) < r(X(i))

η(X) = d− 1 and stop;
Set d = d + 1;

A clustered sensor network can actually be modeled, quite
ideally, by a BBF matrix. The essence of a clustered network
is that there are abundant communication channels among the
sensor nodes within a cluster, while there are relatively fewer
communication channels between clusters. The between-
cluster communications are generally conducted by the sen-
sor nodes serving as the cluster heads or those closest to
their neighboring clusters. Using the terms of a BBF matrix,
the communication links between sensor nodes within the
same cluster are modeled as the blocks Ai, and the between-
cluster communication links correspond to the border rows
B, which is (B1, . . . ,Bk).

In order to denote the blocks and the border rows, we use
the set of row labels and column labels. Denote by X[I, J ]
the submatrix of X with the row set I and the column set J ,
i.e, X[I, J]=(xij |i ∈ I, j ∈ J); also let R = Row(X) and
C = Col(X). Denote by B the set of row labels associated
with the border rows. The notation X[R−B,C] represents
the rest of the original X matrix after removing its border
rows so that X[R − B,C] is in a block form. Let k be the
number of blocks in the BBF of the calibration matrix X.
Denote by R1, . . . , Rk the row sets of the blocks of X[R−
B,C], and by C1, . . . , Ck the column sets of the blocks of
X[R−B,C]; i.e., X[R1, C1], . . . ,X[Rk, Ck] are the blocks
of X[R−B,C]. The ith cluster matrix, denoted by X(i), is
defined as X[Ri ∪B,Ci] for i = 1, . . . , k.

The decomposition algorithm for computing η(X) pro-
posed in [11] can be rewritten using the cluster matrices
X(1),X(2), . . . ,X(k). Theorem 4 in [11] that enables the
decomposition of X into submatrices is presented below as
Theorem 1 using the notations defined in this paper (the
proof is omitted). The decomposition algorithm is summa-
rized as Algorithm 1.

Theorem 1: If η(X) ≥ 2|B| − 2, then

η(X) = min
i∈{1,...,k}

η(X(i)).

Once a linear calibration model is established, one can
follow the procedure established in [11] to decompose the
calibration matrix into blocks and borders so that Algorithm
1 can be applied. For details about finding blocks and

Algorithm 2: Computing the lower bound of η(X)
Parameters: a matrix Z and integers a, d, i, l1, l2 ≥ 1
Input: a calibration matrix X ∈ R2m×p and a constant K.
Function: Lowerbound(Z, d) {

If |B| ≥ |C| or |B| = min(Z(1),Z(2))
Run the enumerative algorithm from d, and return η(Z);

Else if
( |R|
2|B|−2

)
≥ K

Set l1 = Lowerbound(Z(1), d);
Set l2 = Lowerbound(Z(2), d);
Return min{l1, l2,

max{l1 − |B|, 0}+ max{l2 − |B|, 0}+ 1};
Else

Loop
While d ≤ 2|B| − 2

If there exist Z(−d) such that r(Z(−d)) < r(Z)
Return d− 1;

Set d = d + 1;
Return min{Lowerbound(Z(1), d), Lowerbound(Z(2), d)};

}

Run Lowerbound(X, 1)

border rows in X, please refer to hypergraph based algorithm
presented in [11].

B. Lower bound of the calibration redundancy

Algorithm 1 works very efficiently for a matrix having
a small |B| and small-sized blocks but is not so efficient
when the size of X or |B| is large. The problem is that the
first loop of Algorithm 1 may take too much computation
time since it tests the ranks of the original matrix. Under
that circumstance, computing the exact degree of calibration
redundancy may become unaffordable.

It turns out a lower bound of the calibration redundancy
is valuable for robust estimation. Using an underestimated
redundancy degree to construct an LTS estimator can achieve
certain degree of robustness though it may not reach the
highest attainable robustness level. It is definitely better than
using an ordinary LS estimator or arbitrarily choosing a
redundancy degree for deciding the trimming parameters h
of an LTS estimator.

Searching for a lower bound of the calibration redundancy
is usually much easier than for the exact redundancy degree.
Algorithm 2 presented in the latter part of this section can
compute a lower bound of the calibration redundancy for
a large-sized X, a large |B|, or both. The computation
benefit of Algorithm 2 comes from that it tests merely the
ranks of cluster matrices and avoids testing the original
matrix altogether. Algorithm 2 is based on Theorem 2, which
suggests a lower bound of η(X).

Theorem 2: Let l(X) = max{η(X(1)) − |B|, 0} +
max{η(X(2))− |B|, 0}+ 1. If k = 2,

η(X) ≥ min{η(X(1)), η(X(2)), l(X)},

Theorem 2 is direct result of Lemma 2 in [11], which is
proven in a general form (called matroid, which includes
matrix as a special case). Executing Algorithm 2 needs
a constant K, which decides the condition of that which
corollary to invoke. This constant K sets a threshold of
computation load for Algorithm 2. Using a small K may
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reduce the computation time, but may result in a poor lower
bound that is far from the actual η(X). On the contrary, using
a large K could lose the computation benefit of Algorithm 2
even though the lower bound found may be close to the actual
η(X). To that extent, K should be chosen appropriately
meeting the computing requirement of a problem. We select
K to be one million for a computer with 3.6GHz Pentium
CPU and 4G memory in examples in Section 4.

C. Robust estimation using the lower bound

According to [9], the LTS estimator attains the maximum
breakdown point when the trimming parameter h is appropri-
ately chosen to be between hL and hU . When only the lower
bound ν(X) of the calibration redundancy is available, the
exact range for the optimal h cannot be computed. Instead,
we can compute h′U the new range based on ν(X) such that

h′U = [(4m− ν(X) + 1)/2]. (8)

If we choose h to be h′U , then h is greater than or equal to
hU . Then, the breakdown point of an LTS estimator becomes
[9]

ε∗(TLTS(h′
U ),Z) =

[(ν(X))/2] + 1
2m

. (9)

where TLTS(h′
U ) is an LTS estimator whose trimming param-

eter is chosen to be h′U . Note that the larger the h, the worse
off the breakdown point. In other words, the consequence
of using the lower bound is that the resulting LTS estimator
will reach a robustness level lower than the optimally devised
LTS estimator.

From (6) and (9), the fault tolerance capability using h′U
is

τ(TLTS(h′
U ),X) = [ν(X)/2] (10)

IV. EXAMPLES

This section presents two examples of wireless sensor
network with different scales and complexities. Figure 1
shows the graph representation of a wireless sensor network,
where one can easily observe two clusters and the between-
cluster communication is through the pair {(9, 12)}.

From Figure 1, we count m = 72 edges in the graph so
that the size of y is 2m = 154. This means the calibration
matrix X is a 154 × 72 matrix (18 out of 20 sensors are
needed to be calibrated). We choose to omit X here to save
space.

In order to use the algorithms presented in this paper, we
need to identify the BBF of X first. Because of the simple
network configuration here, one can actually tell which set of
edges is the minimum cut and correspond to border rows by
simply observing the graph. The minimum cut is {(9, 12)}
so the border rows B are associated with d9,12 and d12,9

(|B| = 2).
Since

( |R|
2|B|−2

)
=

(
154
2

)
is less than K, the constant used

in Algorithm 2 (recall we set K = 106), Algorithm 2 tests
the rank of X(−d) for d = 1 to 2|B| − 2(= 2) and finds
that η(X) ≥ 2|B| − 2. Then, we can apply Theorem 1
so that η(X) should be the smaller one of the calibration
redundancies of the two cluster matrices. The computation

0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

9

12

C1

C2

Fig. 1. Graph represnetation of ad-hoc sensor network example

of η(X) by the decomposition algorithm took less than two
hours on the same computer as mentioned earlier, going
through about three millions rank-testings. The number of
rank-testing operations is only about 1% of that in the best
case scenario for the enumerative algorithm.

To illustrate the robustness of the LTS estimator, we
simulate M = 100 instances of the calibration process using
the above sensor network and compare the mean of squared
errors (MSE) of the parameter estimation with an ordinary
LS estimator. We assume that a distance measurement in
y is contaminated by a small measurement device error,
normally distributed with zero mean and a standard deviation
of .002, and a distance measurement in X is contaminated
by a relatively large measurement error with zero mean and a
standard deviation of .01. We simulate the corrupted distance
measurements due to sensor or communication failures by
adding a substantial deviation (up to 100%) to some of the
measurements in X. Table I summarizes the MSE’s and
the computation time of the LTS estimators and the LS
estimator. With the presence of data corruptions, the LTS
estimator is more robust than the LS estimator, as indicated
by its relatively flat MSE value, whereas the MSE values
of the LS estimator escalate rapidly. The former’s MSE is
about one-fifth of the latter’s. Regarding computation, an LTS
estimation is obviously much more expensive than an LS
estimation.

The second example concerns a network twice larger
(comprising n = 40 sensors) than that in the first example.
The graph representation is shown in Figure 2, where m =
159 edges can be observed. There are four micro-calibrated
anchor nodes in this network so that p = 144 parameters
are associated with the remaining 36 ordinary sensors. The
calibration matrix X is thus of 318×144. The size of this ma-
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Number of data corruptions LS LTS
0 0.0681 0.0814
1 0.4277 0.0764
2 0.5067 0.0804

Average time for one iteration (in second) 0.06 13.13

TABLE I
MSE AND COMPUTATION TIME OF THE EXAMPLE IN FIGURE 1
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Fig. 2. Graph representation of the second ad-hoc sensor network example

trix makes it almost impossible to use the enumerative rank
testing algorithm for computing the calibration redundancy.
It is equally difficult to use Algorithm 1 to compute the exact
calibration redundancy in this case. For a system of this size,
it is safer to start with Algorithm 2, which decomposes the
original matrix recursively. By applying Algorithm 2, one
can get a lower bound of η(X) as ν(X) = 2.

Given this lower bound ν(X), the trimming parameter
in LTS estimation is h∗ = 317 according to (8). Using
this h∗ to construct an LTS estimator leads to a robust
calibration estimate with the fault tolerance capability of
τ(TLTS(h∗),X) = 1. The simulation results of the second
example, performed under the same setup of the previous
example, are summarized in Table II. The MSE of the
LTS estimator is considerably lower than that of the LS
estimator when there is one sensor fault or one corrupted
measurement but not so much better when the number of data
corruptions becomes two. This numerical result is consistent
with the theoretical analysis of the fault tolerance capa-
bility associated with this LTS estimator (which indicates
τ(TLTS(h∗),X) = 1). The actual redundancy could be higher
but without knowing the exact redundancy degree it is safer
to use the lower bound value that leads to certain robustness
at a suboptimal level.

Number of data corruptions LS LTS
0 0.1066 0.1215
1 0.9569 0.1247
2 1.3928 0.8348

Average time for one iteration (in second) 0.18 28.02

TABLE II
MSE AND COMPUTATION TIME OF THE EXAMPLE IN FIGURE 2

V. CONCLUSION

This paper discusses the computation aspect of using a
robust regression estimator such as the LTS estimator for
a robust calibration of an ad-hoc wireless sensor network.
When an LTS estimator is used, one can gain certain robust-
ness against outliers, measurement corruptions, and/or viola-
tion of model assumptions. The down side is the expensive
computation for a large scale network. This paper presents
two decomposition algorithms that can remarkably reduce
the computation demand for the calibration redundancy.

Robust fusion of sensor data is an interesting extension of
the analysis in this paper. For example, we may be able to
reduce false alarm rates of a wireless surveillance system by
trimming some suspicious surveillance observations.

The low fault tolerance capability observed in the ex-
amples raises another research issue: maximizing the fault
tolerance capability of a sensor network. However, it is
more computationally demanding than evaluating the fault
tolerance capability. That is where our continual research
efforts are going.
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