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Vibration Signal-Assisted
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The research reported in this article is concerned with the question of detecting and subse-
quently determining the endpoint in a long-stretch, ultraprecision surface polishing
process. While polishing endpoint detection has attracted much attention for several
decades in the chemical-mechanical planarization of semiconductor wafer polishing pro-
cesses, the uniqueness of the surface polishing process under our investigation calls for
novel solutions. To tackle the research challenges, we develop both an offline model and
an online detection method. The offline model is a functional regression that relates the
vibration signals to the surface roughness, whereas the online procedure is a change-
point detection method that detects the energy turning points in the vibration signals.
Our study reveals a number of insights. The offline functional regression model shows
clearly that the polishing process progresses in three states, including a saturation
phase, over which the polishing action could be substantially shortened. The online detec-
tion method signals in real-time when to break a polishing cycle and to institute a follow-up
inspection, rather than letting the machine engage in an overpolishing cycle for too long.
When implemented properly, both sets of insights and the corresponding methods could
lead to substantial savings in polishing time and energy and significantly improve the
throughput of such polishing processes without inadvertently affecting the quality of the
final polish. [DOI: 10.1115/1.4056809]
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1 Introduction
In early Aug. 2021, Lawrence Livermore National Laboratory

(LLNL) announced sensational news that their National Ignition
Facility (NIF) succeeded in the experiment of using a laser shot
to spark a fusion explosion from a peppercorn-size fuel capsule
[1] that resulted in an igniting implosion with over a megaJoule
fusion yield. That was the first controlled fusion experiment,
among the worldwide attempts for more than five decades, to
achieve a sufficiently high fusion heating power that overcame all
the cooling processes and created a positive thermodynamic feed-
back loop with rapidly increasing temperature [2]. More than one
year later, LLNL conducted another breakthrough experiment on
Dec. 5, 2022 [3]. This time, the fusion energy output is 1.5 times
greater than the input. This is the first time ever that scientists
were able to produce more energy than the immediate laser
energy input in a controlled fusion process. The success of these
experiments took a major step forward in demonstrating a route
of using a small amount of energy to engender limitless fusion
energy. Not surprisingly, this news quickly appeared on nearly all
major media outlets in the US.
One centerpiece in the NIF experiments is the fuel capsule, which

is a silicon ball (diameter of ∼2 mm) with a multilayer coating, and
the outermost is diamond coating; for its detailed design, please
refer to Ref. [4]. Stringent surface roughness is required for these
diamond shells to ensure efficiency and effectiveness in the ignition

experiments. Even minor irregularities reduce the efficiency and
suppress ignition [5]. The specific requirement is to have the shell
surface roughness down to the nanoscale, meaning that if measured
using the surface roughness metrics [6], like Ra (for one-
dimensional profiles) or Sa (for two-dimensional areas), their
values should be in tens of nanometers at most.
To achieve the nanoscale roughness of the shell surface, the

researchers in LLNL carry out the polishing processes in multiple
long-stretch polishing stages. For each polishing stage, they use a
specialized, proprietary machine to polish the shells for 24 h, then
pause the polishing and remove the shells to take surface roughness
measurements (using a Confocal microscope, model Keyence
VK-X1100). After the measurement-taking, some cleaning up
(like washing) of the shells and machine is undertaken. Then the
polishing action is resumed for another 24 h. The time-series vibra-
tion data are collected during the entirety of the polishing process.
This aforementioned process is repeated multiple times (seven and
eight times in the LLNL polishing experiments). The whole polish-
ing process could take more than a week to complete. Figure 1 illus-
trates the polishing and data acquisition process. For how to
calculate Sa based on the measured surface roughness data, one
may refer to Ref. [7].
Such long-stretch polishing processes are rooted in two primary

reasons: (a) the shell surfaces are very hard and also brittle
(diamond coating), and as a result, the material removal rate
cannot be too high; and (b) such surface polishing is rather different
from many existing polishing processes in the traditional manufac-
turing, including semiconductor manufacturing, and there is very
little knowledge available for advising how long one should
polish and when to stop. LLNL experimenters chose to err on the
side of overpolishing over underpolishing. While understandable
for the current setup, a research question confronting us is—can

1Corresponding author.
Manuscript received September 30, 2022; final manuscript received January 14,

2023; published online February 20, 2023. Assoc. Editor: Qiang Huang.
This work is in part a work of the U.S. Government. ASME disclaims all interest in

the U.S. Government’s contributions.

Journal of Manufacturing Science and Engineering JUNE 2023, Vol. 145 / 061007-1
Copyright © 2023 by ASME; reuse license CC-BY 4.0

mailto:jin0541@tamu.edu
mailto:satish@tamu.edu
mailto:hayes53@llnl.gov
mailto:yuding@tamu.edu


LLNL experimenters shorten the polishing process? For example, is
the 24 -h polishing stretch per stage necessary? Are there any oppor-
tunities for the polishing process to stop during the long stretch
between two pauses? When is a good point for the polishing
process to stop?
For polishing endpoint determination, there are two major

schools of thought. One is product-oriented, and the other is
process-oriented [7,8]. The product-oriented approach is to take
the surface measurements of the product under polishing and
compute its surface roughness metric like Sa or build surface rough-
ness characterization. Such procedures are done at the pauses after
each polishing stage, as described above. Also, please refer to Refs.
[7,8] and the literature cited therein for the latest development on
this front. The advantage of the product-oriented methods is their
accurate detection of the endpoint as they determine those directly
based on the surface condition. However, as the surface roughness
evaluations take place in an offline fashion and through intermittent
measurements, the endpoint decision can only be made at the end of
each stage. As such, they are incapable of deciding how long each
stage should last and when to stop during a stage.
The limitation of product-oriented approaches motivated

researchers to develop process-oriented approaches, also known
as sensor data-assisted approaches. The continuous sensing signal
enables the online monitoring of the polishing process and provides
the potential to allow detecting endpoints that may occur at any
time during the polishing process. Interestingly, there are more
process-oriented studies than product-oriented studies in the litera-
ture. We delay a detailed literature review on process-oriented
studies to Sec. 2.
This second school of thought is most relevant to the research

questions posed earlier. In the diamond shell polishing process, in
addition to the measurements of the product surface taken intermit-
tently between stages, an accelerometer is installed on the polishing
machine, collecting the vibration signals continuously at a 10 kHz
frequency. Our specific research aim then becomes whether it is
possible and, if so, how we can make use of the vibration signals
for detecting/suggesting the polishing endpoint. The “endpoint”
includes not only the final stop point but also other machine stop
points, such as changing polishing pads or adjusting spindle rotation
speeds or downforce.
After carefully reviewing the relevant literature (details in Sec. 2),

we conclude that the existing ideas and methods in the
process-oriented approaches do not address the research questions
posed earlier for the long-stretch ultraprecision polishing process.
The reasons can be understood as follows. The process-oriented
approaches can be further partitioned into two main categories:

one is through mechanistic modeling, which relies on some
process conditions to hint when to stop, and the second is to
build a data-driven model to let the in-process signals foretell
what the product surface roughness is going to be, should the pol-
ishing stop right now or shortly after. For the first approach cate-
gory, while the general concept is good, there is no existing
knowledge directly applicable to the specific polishing process we
have at hand. For the second category of methods to work, one
needs numerous training data to build a data-driven model. A
valid training data set requires the polishing stage to be short (a
few minutes) and have numerous stages. In contrast, that is the
luxury we do not have—we only have 7–8 stages, each lasting
for a whole day.
To tackle the research challenges for this ultraprecision polishing

process with long-stretch stages, we develop an offline model and
an online detection method. The offline model is a functional
regression that relates the vibration signals to the surface roughness,
whereas the online procedure is a change-point detection method
that detects the energy turning points in the vibration signals. Our
study reveals a number of insights that advance the knowledge fron-
tier for this important polishing process. We believe that our
research makes the following contribution to the literature:

• Our study is one of the first quantitative studies looking into
when to stop a diamond-coating shell polishing process, and
the modeling frameworks and the insights into the long-term
polishing effect are generalizable to other long-stretch, ultra-
precision polishing processes.

• Our offline functional regression model shows clearly that the
polishing process progresses in three phases, including a
saturation phase, over which the polishing action could be sub-
stantially shortened.

• The online detection method signals in real-time when to break
a polishing cycle and institute a follow-up inspection rather
than letting the machine engage in an overpolishing cycle
for too long.

Making proper use of the knowledge and methods produced by
our research could lead to substantial savings in polishing time
and energy and greatly improve the throughput of such polishing
processes without inadvertently affecting the quality of the final
polish.
The rest of the paper is organized as follows. Section 2 discusses

the relation of our work with the existing studies about endpoint
detection. Section 3 describes the feature extraction process
from vibration signals, which provides the input into offline model-
ing and online detection. Sections 4 and 5 present the offline model
and the online detection method, respectively. Section 6 concludes
the study and discusses future work.

2 Relation to the Literature
As aforementioned in Sec. 1, there are two schools of thought on

polishing endpoint detection: product- and process-oriented
methods. For the product-oriented approaches, please refer to the
latest literature review in Ref. [8]. This section aims to provide a lit-
erature analysis of the process-oriented methods.
The process-oriented polishing endpoint detection has been

studied extensively in the chemical-mechanical planarization
(CMP) of semiconductor wafer polishing processes [9]. The polish-
ing object in our research is not a semiconductor wafer but the pur-
poses, i.e., polishing endpoint detection, in our research and
semiconductor CMP bear similarity. For this reason, we review
the CMP endpoint detection methods that are relevant to the solu-
tion to our problem.
There are two categories of CMP polishing processes due to their

different polishing objectives: the back-end-of-line (BEOL) and
front-end-of-line (FEOL) polishing. The endpoint detection
methods are so divided into two categories as shown in Fig. 2
and Secs. 2.1 and 2.2 provide further analysis and discussion,

Fig. 1 The illustration of the polishing and data acquisition
process. For the data acquisition, both the sensor data in time
domain and the Sa values of the surface sample locations are
acquired.
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respectively. Under the branch of FEOL, the methods are further
categorized into mechanistic modeling and data-driven modeling
methods.

2.1 BEOL Methods. Numerous methods [10–17] rely on dif-
ferent sensor data to determine the polishing endpoint in the
so-called BEOL polishing. The BEOL polishing processes
concern wafers consisting of multiple layers of different materials.
The endpoint of BEOL is used to prevent overpolishing a layer
where the desired material is lost or underpolishing where the
desired material is not exposed for the next layer. Chris and
Sandhu [10] monitor the transition from one film to another
during the planarization of multi-layered stacked film by the
varying speed of the reflected acoustic signals from the different
film materials. Salugsugan [12] detects the change in the audio
signals generated by rubbing contact between a polishing pad and
a soft surface versus a hard material after the soft layer is
removed. Kojima et al. [17] monitor the trend of vibration signals
collected during Cu-CMP processes and detect the polishing end-
point at the exposure of an inter-level dielectric layer.
These methods are not suited to the FEOL polishing in CMP that

matches the polishing objective in our research [18]. The wafers in
FEOL consist of a single material (e.g., silicon). The endpoint of
FEOL is determined based on the finish or uniformity of the
wafer or the condition of the CMP tool (e.g., pad wear, slurry
pH) to achieve a certain quality or productivity criterion.

2.2 FEOL Methods. The literature on process-oriented
methods in FEOL endpoint detection is therefore reviewed in
detail. These process-oriented methods can be further categorized
into two branches: models based on the mechanistic theory of the
polishing processes and models driven by the data that interpret
the connection or relationship between the process conditions and
product surface roughness.

2.2.1 Mechanistic Modeling Methods. The mechanistic model-
ing framework models the relationship between the product prop-
erty and the process conditions based on the physical principles
of the polishing processes [19–21]. For instance, Rao et al. [19]
modeled the process machine interaction (PMI) in the CMP

processes to relate the vibration signals with several product condi-
tions, such as the polishing pad asperities, bulk-pad structural
dynamics, and machine kinetics. They built a set of deterministic
differential equations based on the first principles of flat surface pol-
ishing processes. Botcha et al. [21] extended a three
degrees-of-freedom lumped mass model to establish the relation-
ship between the high frequency signatures of vibration signals
and the surface roughness in a cylindrical plunge grinding process.
The main limitation of mechanistic models is that one has to

develop a new model when any key parameter is different, such
as product geometry, pad asperity level, underlying materials, and
polishing machine kinematics. No known mechanistic model in
the literature is applicable to our nanoscale ultraprecision shell pol-
ishing process.

2.2.2 Data-Driven Modeling Approaches. The other category
of process-oriented models, arguably easier to extend, is based on
machine learning models (or data science models, data-driven
models), either unsupervised learning or supervised learning. Under
this branch, relatively fewer works use the idea of following the mag-
nitude change of certain process signals when the surface uniformity
desired has not been achieved. That is an unsupervised learning
mehtod of the feature input only to find a pattern of the input when
a certain output is desired. Hetherington et al. [22] use the vibration
signal to monitor a continuous layer dielectric wafer surface from
475 μm to 20 μm within 160 s. They claimed that the attenuation
in the vibration intensity is related to roughness reduction. In princi-
ple, the polishing endpoint is detected when vibration intensity
reaches the minimum level or goes below a certain threshold. In
reality, even if the decreasing trend could be established, deciding
the threshold for stopping is not trivial. A bigger challenge of using
this idea is that Hetherington et al.’s claim is not valid for nanoscale
surface polishing. We will present data to support our findings in later
sections. While it is intuitive that surface roughness affects the kinetic
energy of polishing and hence the use of vibration signals, we found
that the vibration signal trending on the nanoscale surfaces is much
more complicated. As a result, there is a need for new ideas and detec-
tion methods.
Researchers have come to realize the limitations of using the

process condition data alone. The more recent research aims to

Fig. 2 A summary of the process-oriented approaches for polishing endpoint detection
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build a relationship between process conditions and product surface
roughness through a supervised learning process. The idea is that
with such models, one can anticipate a product’s roughness,
given the in-process measurements, and therefore decide when to
stop the polishing action. For instance, Bukkapatnam et al. [23]
attempted to use linear and nonlinear regression models to relate
process parameters and vibration signals to the process condition
(i.e., material removal rate (MRR)). Kong et al. [24] used nonlinear
sequential Bayesian models to predict the process state (i.e., vibra-
tion) and then used a nonlinear regression (e.g., neural network)
model to relate the process state with the process condition. Simi-
larly, García et al. [25] and Segreto et al. [26] used the feature
extracted from vibration signals by wavelet packet decomposition
to predict Ra. García and López [27] fit the vibration-surface rough-
ness relationship with a polynomial regression predictive model.
While the machine learning process-product modeling

approaches sound reasonable and attractive, their success depends
on their model’s capability to predict the surface roughness in the
next stage of operation. For such models to have a good enough
prediction for any time in the future, the polishing process needs
to have relatively short intervals between product surface measure-
ments and many enough stages with sufficient variation. Consider
the process in Ref. [26]; there are 5580 training stages of different
lengths in the polishing process. By contrast, each stage of our
long-stretch nanoscale polishing process lasts 24 h, and there are
usually just seven or eight training stages altogether. For this
type of long-stretch polishing process with so few stages, the result-
ing machine learning model (such as a neural network) will not be

accurate enough to guide the in-process polishing process and
inform its endpoint.
In this paper, our research undertaking is related to two sets of

ideas reviewed above, but in both cases, we have to conduct new
research. Under an unsupervised setting using the process input
alone, our work makes use of the kinetic energy of vibration
signals, but our data show that we have to do something different
from following a simple monotonic trend in vibration intensity.
Under a supervised setting where the process-product data-driven
model can be established, we build a statistical model, but consid-
ering the limitation in our data, our model serves a different purpose
(estimation of surface roughness and process understanding) than
making an in-process prediction.

3 Feature Extraction
The inputs to subsequent modeling and analysis are features in

frequency and time domains extracted from the vibration signals.
The raw vibration signal reflects the vibration magnitude in the
time domain, whereas the time-frequency analysis is desired in
this work to understand the temporal variation of frequency as the
surface polishing progresses.
The wavelet transform [28,29] provides the ability for the time-

frequency analysis. We employ the discrete wavelet transform,
specifically the wavelet packet decomposition (WPD), for the multi-
resolution discrete-time signal decomposition. WPD decomposes
the signal into a combination of low-frequency coefficients (i.e.,
approximate coefficients) and high-frequency coefficients (i.e.,

Fig. 3 Vibration signals over the seven polishing stages (x-axis) are decomposed into 16 frequency bands using wavelet
packet decomposition. Each subfigure depicts the energy magnitude (y-axis) for one of the 16 frequency bands.

061007-4 / Vol. 145, JUNE 2023 Transactions of the ASME



detail coefficients) by passing the original signal through a set of
scaled and shifted wavelets. The same decomposition on both
approximate and detail coefficients can continue to the next level
until the preset level l is achieved. For the l levels decomposition,
WPD produces 2l sets of coefficients corresponding to signal in 2l

disjoint frequency bands, respectively.
García and López [27] provide a guideline on how to choose the

mother wavelet and level of decomposition, which should result in
the largest adjusted determination coefficient and smallest mean
percentage error. Following their selection guideline, we use the
biorthogonal 4.4 mother wavelet and decompose the raw signal in
the time domain into 16 frequency bands (i.e., l= 4). Figure 3
exhibits the change of the spectrum energy of each frequency
band over seven polishing stages.
Instead of dealing with the 16 frequency bands, we employ

the principal component analysis (PCA) method [30] to derive the
single functional feature that possesses the largest variance in the
signals. PCA is applied to the discretized spectra of the 16 fre-
quency bands. In discretization, the energy of the continuous spec-
trum is aggregated into the average energy of a certain polishing
period. The discretization on the spectra of 16 frequency bands
yields a matrix of dimension |7T| × 16, where |T| is the number of
data points in the time domain after aggregation per stage and
|7T| is the number of data points for the whole process. In our

analysis, we use |T|= 600 and will provide more justification for
such a choice in Sec. 4.4.
Figure 4(a) displays the scree plot of the principal component

analysis using the vibration data of Experiment #1. The same
insights are extended to the second experiment as well. The first
PC dominates over the rest, whereas the second PC, while
several folds smaller than the first PC, is noticeably larger than
the third PC and onwards. The third PC and others have small
eigenvalues of similar magnitude and can be safely assumed to
be noise.
We use PC1 as the feature input fed into the subsequent model-

ing and analysis. Figure 4(b) shows the change of energy magni-
tude (scaled to [0, 1]) of PC1 over the polishing process, and
Fig. 4(c) displays the scores of PCs, which are the coefficients
of the 16 frequency bands in PC1. The magnitude of the coeffi-
cients suggests how much each frequency band contributes to
PC1–the larger coefficient, the greater contribution. If more than
one PC is significant, a weighted average of the PCs by their
respective eigenvalues, could be used as the feature input. The
feature input, hence, is still a one-dimensional functional curve
that represents the largest variance of the signals. For our applica-
tion, we tested using both PC1 and PC2 for the subsequent mod-
eling and analysis versus the option of using PC1 only and did not
find any appreciable difference.

Fig. 4 PCA results on the 16 frequency bands of the vibration signal: (a) the scree plot, (b) the energy spectra of PC1 over
the polishing process, and (c) the coefficients of the 16 frequency bands in PC1
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Looking at the energy curve in Fig. 4(b), one immediately notices
that the energy curve does not show a simple monotonic trend as
noted by Hetherington et al. [22] in their polishing process.
Toward the later part of the polishing process when the surface
roughness is under 30 nm, there is a considerable amount of fluctu-
ation in the energy curve, which leads us to believe that the energy
pattern in ultraprecision polishing is simply different from what was
observed in the micro-scale polishing.

4 Offline Study Through Functional Regression Model
The modeling objective of the offline study is to explain the

average surface roughness (a scalar response) with the continuous
signals collected over time (functional input).
The need to connect the scalar response, y, with a functional

input, X, naturally points to the use of a functional regression tech-
nique [31–34], which was developed for the very purpose of
regressing a scalar response on an input function. Neural networks
are not a functional regression technique but can take in functional
inputs and were indeed used for the same purpose [26]. As reviewed
in Sec. 2.2, the characteristics of our polishing process, i.e., long-

stretch and few stages, make it challenging to build neural
network models. On top of this difficulty, neural network models
lack interpretability, which is the key in this offline study for provid-
ing critical insights about the polishing process.
The specific functional regression model we selected is indeed

the modeling technique in Ref. [34], which trains a functional
slope parameter to reveal the effect of each x∈X on the scalar
response. We will show later that this functional slope parameter
plays an important role in interpreting the effect of vibration
signals on the change of surface roughness.
In Sec. 4.1, we explain in more detail the polishing experiments.

In the subsequent subsections, we apply the functional regression
model of [34] and discuss the implication of its finding in our pol-
ishing problem.

4.1 Experiments. Two polishing experiments are conducted
in LLNL for seven or eight stages and 24 h for each stage. Prior
to the polishing action of each stage, an assessment of the surface
roughness is conducted by measuring multiple inspection locations
(white dots in Fig. 1). Throughout the polishing process, the same
number of locations are measured on each shell’s surface, but

Fig. 5 Sa is evaluated at the end of each polishing stage. Panel (a) shows that in Experiment #1 the doped surface roughness
gradually evolves during polishing and panel (b) shows that in Experiment #2 the undoped surface roughness significantly
decreases during the first polishing stage and fluctuates afterward.

Fig. 6 The PC1 spectra are generated from the PCA on the vibration signal of the two experiments, respectively: (a) Experiment
#1 and (b) Experiment #2

061007-6 / Vol. 145, JUNE 2023 Transactions of the ASME



they are not necessarily the same locations measured at the previous
or subsequent stages. The roughness of each location is evaluated
by Sa. The median value of the Sa values at stage i, denoted by
Sai, is used to represent the roughness of the surface at that stage.
A surface pre-polishing action is undertaken to preserve certain

good properties of the shell surface and hence promote its useful-
ness for the inertial confinement fusion experiments in LLNL
[35]. The surface pre-polishing action differs for the two experi-
ments. In Experiment #1, the surface is first coated with diamond
and doped with tungsten uniformly on the diamond coating. The
doping step makes the polishing progression steady over the subse-
quent stages, as demonstrated in Fig. 5(a). In Experiment #2, the
surface is diamond coated but not doped (or called undoped). The
undoped surface roughness can be quickly brought down to
around 10 nm even with a single polishing stage. For the
undoped shells, the surface roughness fluctuates within a narrow
range after the first stage.
By “a stage,” we refer to the polishing action between two

pauses. The surface roughness measurements are taken at the end
of each polishing stage. The surface roughness difference at the
end of two consecutive stages (Stage i− 1 and Stage i) reflects
the performance of the polishing action in Stage i. We denote the
surface roughness difference by ΔSai = Sai−1 − Sai. In Experiment

#1, the surface roughness measurement before the first polishing
action is lost, so the first available surface measurement is obtained
after one polishing action and denoted as “Polish 1” in Fig. 5(a). In
Experiment #2, the first available surface measurement is after
coating but before polishing and denoted as “Coat” in Fig. 5(b).
For both experiments, we fit the functional regression model on
the seven-stage data.
The vibration signals of each stage are collected while polishing

is ongoing. We extract PC1 from the vibration signals following the
procedures in Sec. 3. As discussed in that section, PC1 of each stage
is the weighted average spectral curve of the 16 frequency bands,
i.e., a univariate continuous function of time t. We denote the
PC1 of Stage i by Xi(t), t∈ [0, 24] and in the unit of hour. For gen-
erality, we can scale t such that t∈ [0, 1] with each decimal repre-
senting a temporal proportion of the polishing stage. Figure 6
illustrates the Xi(t), i= {2, …, 8}, in Experiment #1 and that for
i = {1, …, 7} in Experiment #2.

4.2 Modeling. The functional linear regression model in Cai
and Hall’s work provides a way to connect a scalar response with
a functional input [34]. For our polishing monitoring and control
problem, the functional input, Xi(t), is the first principal component
of the vibration signals in the time-frequency domain, and the scalar

Fig. 7 Estimated coefficient curve, b̂(t), of two experiments: panel (a) is the estimate for the doped surface polishing in Exper-
iment #1 and panel (b) is for the undoped surface polishing in Experiment #2

Fig. 8 The estimated marginal Sa over 24h of all and each of the stages in the two experiments. Along the x-axis, x% of a stage
corresponds to the end of the x%·24th h. For example, 50% of a stage corresponds to the end of the 12th hour: (a) Experiment #1
and (b) Experiment #2.
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response, yi, is the change in surface roughness (scalar response),
ΔSai, after Stage i. The model in Ref. [34] is represented in our
notation as

yi = a +
∫
T
b(t)Xi(t) dt + εi (1)

where T denotes the domain of the independent variable t. A cons-
tant parameter a and a functional coefficient parameter b(t) are to be
estimated from the model. The noise term, εi, is assumed to follow a
normal distribution. The task of model fitting is to estimate the
parameters a and b(t); their estimates are denoted by â and b̂(t),
respectively.
The estimation of a is straightforward, that is â=�y−

�
T b̂(t)

�X(t)dt,
assuming that b̂(t) is already estimated. But the interpretation to a is
not trivial, although it is not a function of time. The functional
regression model (in Eq. (1)) assumes a constant a throughout the
stages of the whole polishing process. In practice, it sensibly repre-
sents a constant polishing effect of each stage, given a set of polish-
ing process parameters.
The estimation of b(t) is an infinite-dimensional problem. The

idea in Ref. [34] is to apply the functional PCA for dimension
reduction. Let K denote the covariance function of X that is positive
definite and equipped with a spectral decomposition of (θj, ϕj), i.e.,
the (eigenvalue, eigenfunction) pairs of the linear operator of kernel
K. The estimation of K with its spectral decomposition is

K̂(u, v) = 1
n

∑n
i=1

{Xi(u) − �X(u)}{Xi(v) − �X(v)}

=
∑∞
j=1

θ̂jϕ̂j(u)ϕ̂j(v)

u, v ∈ T (2)

where �X = 1
n

∑∞
i=1 Xi and θ̂j is ordered such that θ̂1 ≥ θ̂2 ≥ . . .. Cai

and Hall [34] proposed to estimate the function b with its Fourier
series, i.e.,

b̂ =
∑m
j=1

b̂jϕ̂j (3)

where bj is estimated by b̂j = ϕ̂jĝj and gj denotes the jth Fourier

coefficient of g(u) =
�
TK(u, v)b(v) dv and ĝj =

�
T ĝϕ̂j. If one evalu-

ates b̂(v) with a consistent estimator b̂(v) = 1
n

∑n
i=1 {Xi(v) − �X(v)}−1

(yi − �y), then b̂(t) =
∑∞

j=1 θ̂jϕ̂j(t)ĝj ≈
∑m

j=1 θ̂jϕ̂j(t)ĝj, where m is the
number of functional principal components.
The choice of the cutoff value for the number of principal com-

ponents, m, is related to the cutoff for the eigenvalue θ̂j. Let us

denote the latter cutoff by δ. Cai and Hall proposed a number of
potential approaches for choosing δ. The variety of methods
includes least squares, bootstrap, and cross validation. In our
work, we use the least square method to choose δ in the set of
{0.001, 0.01, 0.05, 0.1, 0.15, 0.2}, such that the square root of

the mean squared error (RMSE), i.e.,
�������������������∑n

i=1 (yi − ŷi)2/n
√

, is

minimal. For more derivation of the equations, one may refer to
Ref. [34].
Applying Cai and Hall’s functional regression model to the two

experiments data, we obtained the resulting b̂(t) curves, as shown in
Figs. 7(a) and 7(b). The coefficient curve indicates the leverage of
the input variable in contributing to the output variable over t. In our
case, the coefficient curve reflects the average polishing effect over
time during a given polishing stage. Here we say “average” because
the resulting b̂(t) is estimated using data across all seven stages. We
label this analysis an offline study because such an average model is
not stage-specific and is not intended for prediction purpose in real-
time decision-making.
The b̂(t) curves estimated from both the experiments present a

similar pattern over time: the b̂(t) curve quickly decreases in the
first portion of the polishing stage, followed by a rapid increase
in the second portion, and then followed by a flat third portion.
The specific time durations for the two experiments are different.
If denoted the three portions by b̂1(t), b̂2(t), b̂3(t), respectively,
Experiment #1 has b̂1(t) up to t = 13%, b̂2(t) for 13% < t ≤ 50%,

Fig. 9 The estimation results for Experiment #2 with Stage 1 removed for fitting the functional regression model: (a) estimated
b(t) and (b) estimated marginal Sa

Fig. 10 The RMSE remains at the low value as the number of
training points, |T|, is greater than 500
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and b̂3(t) for the rest half of the duration, whereas Experiment #2
has b̂1(t) up to t = 8%, b̂2(t) for 8% < t ≤ 26%, and b̂3(t) for the
rest three-quarter of the stage. The constant â has very different
values in the two experiments: â = 8.9 nm in Experiments #1 and
â = 112.2 nm in Experiment #2. The difference in â of two experi-
ments stems from the different polishing progressions. The large â
in Experiment #2 is due to the steep reduction in Sa after its first
stage.

4.3 Results and Discussions. The offline model nonetheless
offers useful insights. In Eq. (1), there are two sets of parameters,
the constant regression term, a, and the functional coefficient,
b(t). The term a represents the average effect of the polish-
ing action (like how much the Sa has been reduced), whereas the�t
0b̂(t)X(t) dt term reflects the dynamic effect after removing the
constant effect, which is how much it is varying overtime in the
rest of the signals. Based on the b(t) estimation and the input vibra-

tion X(t), we plot the estimated incremental surface roughness,ΔŜa,
for the two experiments in Fig. 8. A positive ΔŜa(= Ŝat − Ŝat−1) on
the vertical axis indicates a surface quality improvement, while a

negative ΔŜa suggests a surface quality deterioration aside the

constant effect. The absolute value of ΔŜa indicates how fast the
surface quality evolves (either improves or deteriorates) with

time. A close to zero ΔŜa apparently means that the surface
quality barely changes.
Experiment #1 has a steady and even progression over stages, as

shown by a similar change in Sa, which is a 10 nm or so difference
of every two consecutive stages (see Fig. 5(a)). The constant effect,
â = 8.9 nm, close to the above observation, explains the average
effect in Experiment #1. Aside from the constant effect, the residu-
als of Sa for all the stages are reflected by the dynamic effect in a
small magnitude in Fig. 8(a). In Experiment #2, Sa is considerably
reduced in the first stage (see Fig. 5(b)), reflected by the large cons-
tant effect, â = 112.2 nm. After removing this large constant effect,

the dynamic effect, ΔŜa, is shown in Fig. 8(b)). The dynamic effect
of Stage 1 is not pronounced. From Stage 2 onward, Sa remains at
the same level, but its fluctuation varies and the dynamic effect of
the latter stages could be greater than that of Stage 1.
The Ŝa curves in both experiments (in Fig. 8) show a distinct

pattern that delineates the polishing process in each stage into
three phases, which is consistent with the three portions observed
in the b̂(t) curves. The first phase, corresponding to b̂1(t), is the
“running-in” phase, showing that the surface quality deteriorates,

but the deterioration is in deceleration. The second phase, consisting

of positive ΔŜa and corresponding to b̂2(t), indicates a progressive
surface quality improvement with the maximum effect at the peak
of the curve. This second phase is known as the “steady” phase.
The third phase, known as the “saturation” phase, shows an appar-
ent pattern of small fluctuations without any significant change in

Ŝa, meaning that during the saturation phase, the surface roughness
does not change considerably.
We deem the running-in and steady phases together as the effec-

tive phase, where the effective polishing takes place before it gets
into the saturation phase. The proportions of the effective phase
in the two experiments are different (see Fig. 8): 50% for Experi-
ment #1 and 26% for Experiment #2. The different length of the
effective phase in the two experiments is consistent with the polish-
ing progression on the two different types of surfaces. On the doped
surface, roughness (in Fig. 5(a)–Experiment #1) gradually evolves
over eight stages, and the effective phase of the polishing lasts
longer (up to 12 h), whereas the effective phase in Experiment #2
when polishing the undoped surface shortens considerably, down
to 6 h.
The revelation of the three phases is hardly a surprise. There

were previous studies alluding to a similar understanding. For
instance, Tang et al. [15] named three phases in terms of MRR:
the loading phase, self-accommodation phase, and equilibrium
phase. The time scale in Ref. [15] was rather different. The
loading phase lasts for about 2–3 s when the sensor signal rises
while the product surface initially contacts the polishing tool
and achieves its local peak value. After the loading phase, it is
the self-accommodation phase during which the physical-
mechanical characteristics of the product surface may undergo
considerable changes due to the set-down of the polishing tool
on the product surface. This phase may last from several
seconds to several tens of seconds. The last phase claimed in
Ref. [15], i.e., the equilibrium phase, is a stabilization period of
the MRR.
The phases of the polishing effect revealed in our study show

consistency with the understanding discussed in Ref. [15], but the
phases are not one-to-one correspondences. In fact, the loading
and self-accommodation phases in MRR help explain the
running-in phase in polishing, and the equilibrium phase in MRR
explains the steady and saturation phases in polishing.
In every frequency band shown in Fig. 3, at the beginning of

each stage, the signal shows as a vertical line. This vertical line
presents evidence of the loading and self-accommodation
phases. The set-down of the polishing tool seems to create a pro-
found effect, due to which defects may happen, and the defect-

Fig. 11 The scaled PC1 spectra of vibration and Sa for both polishing experiments. The small insert in the right panel is the
zoom-in view of Polish 1 through Polish 7 where Sa fluctuates in a narrow range between 11.5 nm and 14nm: (a) Experiment
#1 and (b) Experiment #2. (Color version online.)
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correcting period may last for some time. That explains why the
running-in phase of the shell polishing extends rather long
(about 1–3 h).

During the equilibrium phase in MRR, the polishing effect
exhibits both steady progression and the saturation phenomenon.
Polishing is a cycling process in which the pad abrasives, in an
iterative fashion, destruct the surface’s uniformity, remove the
higher peaks and flatten the local surface. The polishing effect
shows a steady progression when the pad abrasives have deep
contact with surface heights. When the surface’s high peaks are
polished off, the pad abrasives barely touch the surface heights,
and only a small portion of heights can be flattened. That is

Fig. 12 Energy turning point detection for Experiment #1. Panel
(a) shows the turning points (red dots) that pass the derivative
checks in Step 2 of Algorithm 1, panel (b) plots the energy
increase (black up-pointing triangle) and the 95% confidence
interval (green up-pointing triangles), and panel (c) exhibits the
energy decrease (black down-pointing triangle) and their 95%
confidence intervals (green down-pointing triangles). The signif-
icant turning point is marked by the red star. (Color version
online.)

Fig. 13 Energy turning point detection for Experiment #2. Inter-
pretation of panels (a), (b), and (c) is the same as in Fig. 12.
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when the fluctuation in roughness, or the saturation in
the polishing effect, occurs.
While the general understanding of these polishing exists, to our

best knowledge, we are the first team who provides a mathematical
model for quantifying the time duration of each respective phase.
The significance of this quantification is the finding of a signifi-
cantly long saturation phase. Its existence provides a great opportu-
nity for shortening each polishing stage 50–75% of the time. Even
considering some model inaccuracy and uncertainty, we believe it is
rather safe to start some experiments by shortening the polishing
time by 25%, which is 6 h. This suggests that polishing up to 18 h
for seven (or eight) stages would have produced more or less the
same surface roughness outcomes at the end. That would lead to
substantial time and cost savings on such an operation.

4.4 Robustness and Sensitivity Analysis

4.4.1 Model Robustness. The polishing effect of Stage 1 in
Experiment #2 is much different than the other stages. Does its exis-
tence dominate or distort the understanding garnered in the above
analysis revealing three polishing phases? We therefore analyze
the robustness of the offline study by removing the first stage
when fitting the functional regression model. The estimation
results are presented in Fig. 9, which show a similar pattern as in
Figs. 7(b) and 8(b) where data from all seven stages are used.
When using the last six stages, the estimated constant effect,
â = −0.44 nm, meaning that on average, the last six stages do not
reduce Sa. This value is very different from â value when using
all seven stages, confirming that the previous large, positive a
value reflects primarily the effect of the first stage. The dynamic
polishing effect still shows clearly the three polishing phases but
the saturation phase is now about 70% of the polishing stage,
slightly shorter than the previous estimate at 75% for the saturation
phase.

4.4.2 Sensitivity of Training Points. The fitting performance of
the functional linear regression model depends on the feature func-
tion, X(t). As the model takes in the discretized version of X(t), how
much of the original signal can be preserved is primarily determined
by the number of training points along the time dimension, |T|.
Using |T|, one can also compute the time intervals by which
we divide the vibration signal in each polishing stage. Considering

that it is 24 h per polishing stage and suppose that the vibra-
tion signal is aggregated at equal-distanced intervals, |T|= 10 corre-
sponds to aggregating the vibration signal every 144min, and |T|=
1,000 is for aggregation every 1.44min.
Figure 10 presents the fitting performance in terms of RMSE

versus the choice of |T|. RMSE decreases as the number of training
points increases and retains a level of stability around RMSE≈ 6.7
when the number of training points is greater than 500, which cor-
responds to aggregating the vibration signal every 2.88min. There-
fore, we recommend setting |T| > 500 for this type of polishing
processes. For a new polishing process, practitioners can run the
same analysis to determine the appropriate |T|.

5 Online Detection
The offline model in Sec. 4 reveals the potential of shortening

the polishing process per stage by 50% to 75% of the time. But
the offline model is not intended to guide polishing decision-
making in real-time. In this section, we discuss an algorithm that
provides the online, real-time detection capability for nano-scale
polishing.
Recall that at the end of Sec. 3, we noted the disagreement

between our data and the observation made by Hetherington et al.
[22], who found that the vibration energy intensity decreases as
the surface roughness reduces. Such a monotonic pattern certainly
does not happen in our nano-scale polishing process. Figures
11(a) and 11(b) plot the vibration energy (the blue dotted curves
scaling on the left-hand vertical axis) and Sa (the red dashed lines
scaling on the right-hand vertical axis) for Experiments #1 and
#2, respectively. The patterns are evidently more complicated. In
Experiment #1, Stages 5, 6, and 7 experience higher vibration
energy but lower Sa than Stages 2 and 3. In Experiment #2, from
the first polishing stage onward, Sa is brought down to around
12 nm from the initial 118 nm but the vibration energy is, although
varying, nevertheless higher than that in the first stage. We conjec-
ture that the discrepancy in our data and Hetherington et al.’s obser-
vations could be due to the scale difference—our polishing is in
nano-scale (the surface roughness goes below 30 nm), whereas
the polishing process observed by them is in micro-scale, from
475 μm to 20 μm [22]. That is three to four orders of magnitude
higher than the surface roughness of our nano-scale polishing

Fig. 14 The sensitivity of the detection algorithm to data aggregation time intervals in Experiment #1. In (a)–(f), the signals are
aggregated every 10, 20, 30, 60, 80, and 90min, respectively.
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process. We believe the physics behind is dissimilar at such drasti-
cally different surface roughness scales.

5.1 Turning Point Detection Algorithm. We have to look for
different clues to enable online change-point detection than using
simple monotonicity. When we take a closer look at Figs. 11(a)
and 11(b), we notice the appearance of peaks on the energy
curves right before the polishing goes into the saturation stage.
The occurrence of the peaks may suggest the onset of saturation
and indicate a polishing endpoint. In Experiment #1, such a phe-
nomenon happens after Stage 6 and during Stage 7 when the
surface roughness is under 30 nm. In Experiment #2, this pattern
repeatedly occurs after the first polishing stage since the surface
roughness has been under 30 nm for all remaining stages.
In order to identify the right peaks, the first line of action is to detect

the maximum energy points within a polishing stage. Mathematically
speaking, a maximum energy point is a stationary or turning point on
a concave curve. More specifically, the turning point should satisfy
two conditions: its first derivative at t is equal to zero (for being a sta-
tionary point), and its second derivative at t is negative (for being a
maximum rather than a minimum). By checking these two conditions,
we can identify the set of turning points, which constitutes the candi-
date set for us to identify the peaks.
In a noisy data set, there are inevitably numerous turning

points—some trivial and others significant. Only the significant
ones warrant attention. To determine which turning point is signifi-
cant, we need to test the statistical significance of the energy
increase leading to that point and the energy decrease right after.
This needs two actions. The first is to calculate the energy increase
and decrease associated with a candidate point, and the second is to
estimate the energy fluctuation within the current polishing stage
and up to the candidate point.
The calculation of the energy increase leading to a candidate

point is the accumulation of energy increase since the previous sta-
tionary point. This may involve multiple points if they are on a
persistently increasing trend. The calculation of the energy
decrease after the candidate point is, in principle, done in the
same way, but there is a practical constraint to consider. In
order to flag the significant turning point as soon as possible,
one does not want to collect too many points after the candidate
point; doing so will delay the decision of detection. We, in the
end, decide to use one single point immediately after the candidate
point to calculate the energy decrease (more discussion in the next
paragraph). We acknowledge that this action sounds greedy, but
our test using actual polishing data shows it is rather effective
without causing any more delay in detection than what is
already part of the algorithm. For estimating the energy fluctua-
tion, we set a time window, which is from the beginning of a
stage up to the current candidate point (and includes the point
right after), and then calculate the energy increases/decreases asso-
ciated with all turning point candidates in that time window. We
construct the 95% confidence interval of the energy fluctuation
for the current candidate and use that to check whether the
current candidate is a significant one. Algorithm 1 summarizes
the above-described procedure. E(·) and σ(·) in the algorithm rep-
resent the mean and standard deviation, respectively.
We want to add a note about the delay in detection mentioned

above. In the online monitoring problem, a turning point will not
be identified until the next point is available. This means that we
can only remit the check on those aforementioned mathematical
and statistical conditions for the signal at time t until after the data
point at t+ 1 becomes available. This causes a slight delay in detec-
tion. The actual delay depends on how often the vibration signals are
processed into energy points. The default setting in our algorithm is
every 30min, suggesting a half-hour delay; such a delay is consid-
ered well tolerable for these 24-h long-stretch polishing stages. For
calculating the energy decrease, when we only use one point right
after the candidate point, we do not add any additional delay, as
the next point is needed for checking derivatives anyway.

Algorithm 1 The turning point detection based on tracing sig-
nificant energy change

Initialize t = 0, X(0) = X′(0) = X′′(0) = 0, where X′ and X′′ are the first and
second derivatives of X, respectively.

N up = Rup = Rdown = ∅. t = t + 1.
At each stage t, t ∈ T ,

(1) Track and record the trend of energy increases.
Record N up = N up ∪ {X(t − 1),X(t)}, if X(t) − X(t − 1) ≥ 0
The calculation of energy decreases is easier and done in Step 3.

(2) Detect the turning point on a concave curve.
Calculate X′(t − 1) and X′′(t − 1).
If X′(t − 1) = 0 and X′′(t − 1) < 0, go to Step 3; otherwise, go to
Step 4.

(3) Determine if the turning point is significant.
Calculate RN up

= max(N up) − min(N up) and reset N up = ∅
RN down

= X(t) − X(t − 1)
Record Rup = Rup ∪ {RN up

}
Rdown = Rdown ∪ {RN down

}
Check if both RN up

and RN down
exceed the upper 95% confident inter-

val of Rup and Rdown, respectively, i.e.,

RN up
≥ E(Rup) + 1.96 × σ(Rup) (4)

and

RN down
≥ E(Rdown) + 1.96 × σ(Rdown) (5)

If both Eqs. (4) and (5) hold, suggest a stop/check point at time t;
otherwise, go to Step 4.

(4) Continue polishing to the next stage.
Set t = t + 1. Go to Step 1.

5.2 Experimental Results. The vibration signals are col-
lected continuously and processed every 30min in our analysis.
The signals are decomposed into 16 frequency bands using the
wavelet packet decomposition and further converted into the most
significant PC of these frequency bands (or a weighted average of
the PCs if multiple PCs are significant). Then the PC of the
signals over the 30min duration is transformed into an energy
point, X(t); for instance, X(t) at t= 1 is the average point of the
signals in the first 30min segment.
The detection results for the two experiments are shown in

Figs. 12 and 13, respectively. In Experiment #1, only one turning
point exceeds the 95% confidence interval of both energy increases
and decreases. The significant turning point is at the beginning of
Stage 7 (roughly at the fourth hour). The red star, marked in
Fig. 12, indicates the detection time point, which is one point
after the actual significant turning point. This is the 30min delay
we talked about earlier.
Should one stop and check the polishing process at this point, as

Algorithm 1 suggests, one would most likely find the surface satis-
factory. It would save the rest of Stage 7 and the entire Stage 8,
which amounts to more than 44 h of polishing.
In Experiment #2 (Fig. 13), the turning point at the beginning of

Stage 2 is detected. This point captures the start of the saturation
phase, soon after the surface roughness Sa decreases below
30 nm. Had this turning point been detected and used for decisions,
it would provide an early suggestion for stopping the polishing and
avoiding the subsequent inefficient polishing operation. As shown
by the flattened Sa line (the red dashed line) in Fig. 11(b), the pol-
ishing process continues for 120 h from Stage 2 onward but barely
improves Sa. In case the first significant turning point is missed, the
detection method would pick up another stopping point in Stage 4
of a similar pattern. Of course, had the polishing process been
stopped after the first turning point, the subsequent stages of oper-
ation would not happen anymore, and thus the second turning point
would not exist. We want to note that not all seemingly peaks in the
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plots meet our standard of significant turning points. Consider the
peak at the beginning of Stage 3. This point was not deemed signif-
icant because neither the energy increase nor the decrease is found
significant. For the peak at the beginning of Stage 5, its energy
increase is significant but its energy decrease is not. The statistical
significance check based on the 95% confidence interval is a consid-
eration of the signal-to-noise ratio. Showing a peak (the signal)
itself is not enough for detection but needs to be large enough rel-
ative to the noise that is estimated through the data up to the current
time point.

5.3 Sensitivity of Signal Aggregation Frequency. The detec-
tion results in Sec. 5.2 are based on the energy points aggregated
every 30min. We refer to this 30min as the data aggregation time
interval. Here, we conduct a sensitivity analysis of the detection
results when the data aggregation time interval varies from 10
min to 90min. Figures 14(a)– 14( f ) plot, respectively, the detection
results of the significant turning point in Experiment #1 when the
data aggregation time interval is 10, 20, 30, 60, 80, and 90min.
The figure shows a consistent detection outcome. With different
data aggregation time intervals, the delay in detection, caused by
the need to use the energy point after the significant turning
point, also ranges from 10min to 90min. Even with a 90-min
delay, a good detection is still a benefit, considering that such
detection could shorten the polishing process by 44 h. Our default
choice of 30min is for alleviating such delay while also maintaining
a good margin for robustness.
For Experiment #2, as shown in Fig. 15, the earliest turning point

in Stage 2 is detected consistently when the data aggregation time
interval is set from 10min to 60min. When the data aggregation
time interval is 80min and 90min, the algorithm misses detecting
the first turning point but still detects the turning point in Stage
4. If the significant turning point is detected in Stage 2, the time
saving would be 140 h, whereas if it is detected in Stage 4, the
saving would be 90 h. In either case, the saving is significant.
Overall, we consider the detection outcome in Experiment #2 also
fairly robust.
Upon the analysis and discussion above, we suggest setting the

data aggregation time interval between 10min and 60min, with
the default setting at 30min. Longer than 60-min aggregation

time intervals not only further delay the detection but could
also average out certain effects in the signals, causing missed detec-
tion like in Experiment #2. Shorter than 10-min aggregation time
intervals are not advisable either. Short aggregation is more prone
to fluctuation in data. Also, recall that the polishing machine
usually takes a few minutes to settle at the beginning of each
stage. Too short an aggregation time interval could pick up too
much of the transition effect.

6 Concluding Remarks and Future Work
Two methods are proposed in this work to understand the surface

roughness change and inform more efficient polishing operations
for long-stretch nano-scale polishing in which only infrequent
offline surface measurements are conducted. To our best knowl-
edge, it is the first work to address the endpoint detection
problem for such a unique yet important polishing process.
The offline study reveals the presence of a significantly long

saturation phase of this type of polishing processes, unknown or
at least unsuspected previously. Such insights lay the ground for
considerably shortening the polishing duration per stage, potentially
saving half of the original polishing time. The online detection
method uses the in-process vibration signal and, with only a
slight delay, flags the real-time stopping point during the operations.
Equally significant is the finding that the vibration energy curve
exhibits remarkably different and, in fact, more complicated pat-
terns in nano-scale polishing than in micro-scale polishing. We
believe that we are among the very first to report this finding.
The modeling framework is general enough and can be readily

used for other polishing processes of the same nature, i.e., having
long-stretch stages and with nano-scale precision. We believe that
the existence of the three phases and the vibration intensity
pattern are also generalizable, although the length of the saturation
phase and the timing of the turning point would naturally vary when
different materials are used, or other processing parameters are set.
At least two lines of future work are in need of pursuit. The first is

to validate the effective/saturation phenomena learned from our
offline study and the efficiency of polishing guided by our online
detection method. Due to the high cost and other priorities of
LLNL where the original polishing was conducted, such a

Fig. 15 The sensitivity of the detection algorithm to the data aggregation time interval in Experiment #2. In (a)–(f), the signals are
aggregated every 10, 20, 30, 60, 80, and 90min, respectively.
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validation experiment is being discussed but has yet to be sched-
uled. We call for other researchers with a similar capability to test
our recommendations if possible and interested. The second line
of future work is to further the understanding of the physical differ-
ences between polishing at the nano-scale and those at other macro-
scales. Does the material medium also matter when the polishing
scale changes? For instance, will the energy curve differences, as
we observed, persist even if the coating material is not diamond?
Physical insights into such questions, combined with data science
models as proposed, could lead to even better guidance for polish-
ing decision-making.
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